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Abstract versions of L’Hépital's rule are proved for the “ratio” f(z)(g(z))™',
where f:5— X, g:S5—+ A are vector-valued holomorphic functions defined in a
region of the complex plane containing S, A being a complex unital Banach
algebra, and X a complex Banach module over 4. Both cases, (i) (g(z)) '—% 0,
and (ii) f(z)-%5 0, g(z)-%+ 0, as z—%» a, a being cither finite or infinite, are
considered when f"(z)(g'{(z))~! has a finite limit. Applications are given to the
asymptotics of linear second-order differential equations in Banach algebras.

T 1993 Academic Press, Inc.

1. INTRODUCTION

The past 15 years have witnessed a renewed interest in the generalization
of the well-known L’Hépital theorem. Almost all contributions, however,
were concerned with the weakening of the classical hypotheses, remaining
in any case within the realm of real functions of one real variable. The only
exception in this context appeared in [1], where the case of complex-
valued functions of one real variable was addressed. More recently, in
[7,8] extensions of the rule have been proposed in the framework
of Banach modules, still for functions of a real variable. The reader is
referred to [7] for a fairly complete list of references of the aforementioned
contributions.
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18 SPIGLER AND VIANELLO

In this paper, abstract versions of L’'Hopital’s theorem are presented for
the “ratio” f(z){(g(z))™' where f:S—X, g:S—A are vector-valued
holomorphic functions defined in a region of the complex plane containing
S, 4 being a complex unital Banach algebra and X a complex Banach module
over A. When f’(z)(g'(z))~ ! has a finite limit as z —» «, with o either finite
or infinite, sufficient conditions are given to ensure that f(z)(g(z)) ' has the
same limit. Both indeterminate cases, (i) (g(z)) ' —%» 0, and (ii) f(z) =% 0,
g(z) -2 0, as z -5 4, are considered (cf. Theorems 2.1, 2.4).

In Section 3, some applications to the asymptotics of linear second-order
differential equations in commutative Banach algebras, as well as in the
matrix algebra M ,(C), are shown. We stress, finally, that not even the
stmple scalar case (X'=4=C) has been considered before, apart from
the most trivial occurrences.

2. THE MAIN THEOREMS

In what follows, the properties of holomorphic functions taking values
in a complex Banach space will be used; for the basic theory, we refer to
[4, Ch. 3]. Moreover, we shall term, for short, a function “holomorphic
in $”, S C, when it is holomorphic in a region (an open connected set)
containing S. When necessary, the integrals used throughout the paper are
intended in the sense of Bochner. Here we state the first result of the paper.

THEOREM 2.1. Let X be a complex right Banach module over the
complex unital Banach algebra A, S a subset of the complex plane, and 2 a
finite or infinite limit-point of S, a €0S.

Let f:S—X, g:5— A be holomorphic, with g(z), g'(z)elnv(4) Vze S,
and |(g(z)) "', =0, as z— a. Moreover, suppose that

(i) lim f(z)(g'(z) "' =LeX; (1)

(i1) there exists £€S such that, for any z€S, there is a simple
piecewise regular path in S connecting ¢ and z, say ¥, ., parametrized by
n:lee, 0. 18, n(t:)=¢& nlt) =z, such that, if ue % ., then ¥, , coincides
with & . from ¢ to u, and

timsup [ 1€00)g(2) "L (o)) di < oc; @)

(i) I} zNg' (@) ' is bounded in S, and || g(z)|| is bounded in
Sn{z:|z—a| =6}, V<, for some 8,>0, if o is finite, or in
Sn{z:|z| =R}, YR> Ry, for some Ry>0, if o =o0. Then

lim f(z)(g(z)) "' =L. (3)

T
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Clearly, left-modules can replace right-modules here as well as in
Theorem 2.4 below, with obvious modifications.

Proof. For simplicity, we shall prove the theorem in the case
a=o0. Taking ¢>0, in view of (i) there exists R,>0 such that
W (z)(g'(z)) "= L|y<efor ze S, |z| > R,. By the holomorphy of f and g
we can write [4, Ch. 3, Section 2]

fe)gz) = L= L Lf'01)— Lg'(n)] dn(g(2)) "

+[/(&) — Lg(&)1(g(z) 7", 4)

where the second summand is an infinitesimal as z —» oo0. Let us consider
the point &, =n(z,), where t,=max{te[:,1.], In(z)] =R,}, and split the
first summand in (4) as

L [f'(n)—Lg'(n)] dn(g(z))~"
=L, L/ (1) — Lg'(n)] dn(g(z)) '

+ ULyl diee) )

By the definition itself of Banach module, there exists M >0 such that
mBly<M|m|x|IBlli, Yme X, VBe A (cf. [2, Ch. 1, Section 9, Def. 12]),
and observing that (2) is equivalent to

3K>0,3p>0: [ 1g0(0)g() (] dr <K, Vze S, |21 0, (6)

we get for the second summand in (5) the estimate

“L [f'(n)—Lg'(n)]dn(g(z)) "

%

sr ICS () (1)) " = LT g (n(1))(g(2) Ml In'(0)] dt

<M£J

[¢

g (D) (gz) 4 (1) de < MK, (7)

forzeS, |z]>p v R,.
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As for the first summand in (5), we observe that by (iii) there exists
N >0 such that || f(zXg'(z)})) ' — Ll < N for all ze S, and hence

[ trm-Lemidnee)
Lot

X

SMNflj lg'(n())(g(z)) ~'ll.4 In'()] dt

<MN g€ N2 "L [ g 0 e(E) "L bo'(e) de

SMNK | ()N 4 1(g(2) L4, (8)

for |z| > R,, provided that |£,| = R, has been chosen greater then p in order
to apply (ii). The proof is complete since, by (i), in (8) | g(&)ll 4 is
bounded in Sn{z:|zJ]=R,}, and thus the right-hand side of (8) is
infinitesimal as z » o0 in SN {z :|z| > R, }. Q.ED.

Remark 2.2. When condition (2) in (ii) can be replaced by the stronger
one

tim sup | 1g'(n(0)l In'(1)] di (g(2)) 1L < o, ©)

ra 14
then the latter can be given a simple geometric interpretation if the path
%, . coincides with an arc of a fixed curve, say y, ,, joining ¢ to « in S, for
all zey,,. Infact, if /., denotes the length of the curve (in 4) g(<..), then

lé‘z

o= g St 2)—g(&) laswl, s
o) e S e 182 = g () <kl (g2

for some constant k > 0 and z in a suitable neighborhood of « in S. There-
fore, identifying /. . in (9), it becomes clear that the ratio of the length of
g(.Z;. .) to the corresponding chord is asymptotically finite as z —> x on y
in this case. Obviously, (2) and (9) coincide when 4 =C, e.g..

If S is closed, necessarily o= oo0. In fact, o is a singular point for g(z)
since || g(z)]| = 1/[l(g(z)) 'l = +oc as z - a. It follows that condition (iii)
above is automatically satisfied, S {z : |]z] = R} being a compact subset of
the holomorphy region.

Eon

Remark 23. Let a be an isolated (finite) singularity for g and
(g(z)) '] =0 as z—a« Then it is necessarily a pole for g (since
lgll - +ovasz—a,clf [4]). If ais also a pole for £, then Theorem 2.1 can
be applied whenever the coefficient g _,, in the Laurent expansion of g(z),
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g)=g_z—a) "+ g_,i(z—o) ™ + .., is invertible in A. One can
choose for S a suitable open punctured disc centered in «; as path % .
joining ¢ (fixed in S) to z, one can follow the circular arc centered in o with
radius |£ —a| from & to the intersection with the straight line through «
and z, and then the portion of such a line up to z. This result could also
be seen directly manipulating the Laurent series representing f and g (with
£ _,, invertible) in the neighborhood of any pole of them. Note, however,
that when g _,, is invertible, if « is a pole, then necessarily |(g(z)) | =0
as z— o

It is worthwhile to observe that Theorem 2.1 can be applied when « is a
pole for g and g_,, is invertible, whatsoever the behavior of f around «
might be (provided that S contains paths % . as above, e.g.).

The second result of this paper is given by

THEOREM 24. Let X be a complex right Banach module over the
complex unital Banach algebra A, S a subset of the complex plane, and a a
finite or infinite limit-point of S.

Let f:S— X, g:5— A be holomorphic, with g(z), g'(z)elnv(a) Vze S,
and f(z) 250, g(z) % 0 as z 5> a. Moreover suppose that

(i) lim f'(z)(g'(z)) "' =LeX; (10)

I—a

(ii) for every z€ S in a neighborhood N(x) of « there is a simple
piecewise regular path in S, say %, ., connecting o to z, parameltrized by
n: [ty 1. Suia}l, n(t,) =0, n(t.) =z, such that |n(t) — o} < |z — &| for all
tet,,t,] when o is finite, or |n(t)} = |z| when o= o0, and

tim sup [ 1'(n(1))(g(z)) L4 ()] it < o0. (1)

Z—a

Then
lim flz)(glz)) =L (12)

I

Note that “piecewise regularity” of n(¢) is intended in a slightly generalized
sense when a = c0.

Proof. As in (4), but recalling that now f{a)=0 and g(x)=0, we have
SENEE) —L=] [~ Le'tn)] dn(g(z)) !

= [" L)~ L NI detg(z)) 1, (13)
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for ze N(a), since f(n(z)) and g(n(¢)) are absolutely continuous in [¢,, 7.],
being f(n(1)), gintt)) € AC,([1,, 1.1) and g'(n(1)) #'(1) € L(Lt,, 1.1);
S (n(e)yn'(t)e L([t,, t.]) then follows from (i). When 7, = — o0, by saying
that these functions are AC([t,, t.]) we mean that they are the integral
between ¢, and ¢ of their derivatives (as they vanish in ¢,); cf. [7] for the
analogous observations in the rea/ domain. Therefore

/NN ™ — LI <M [ 17 Go)g )]~ — Lilx

x [ (n(1))(g(z)) " L4 In'(1)] dt.

By the geometric property of the path n(r) as in (ii), n(¢) belongs to
some neighborhood of o whenever z does, and, consequently,
If' ()& (n(1))1~"' — L y <e. Finally, by (11),

W) gz) ' — L)y < MKe

for some K> 0 and z in a suitable neighborhood of . Q.ED.

Remark 2.5. The integral appearing in the key-condition (11) is finite,
e.g, when g'(z) has a finite limit as z —> . This is unnecessary, however.
Taking g(z)=\/3, where the square root is positive for z positive, =0,
and S={zeC:z#0, |arg(z)] <}, we obtain that g'(z)=1,2 \/-.;f» 20 as
z—% 0, but the integral above is finite and more (11) is satisfied. In fact,
choosing as paths %, . the rays joining a =0 to z, we obtain

T 1o 1
’ ! lt=——=| —=di=1.
—5i ] gyl a NE I, Nk

Remark 2.6. 1If o is an analiticity point for g, and (Sv {«})n B(x, ) is,
for some 6 >0, a star domain with respect to o, then condition (11) is
satisfied provided that the first nonzero derivative of g in « is invertible in
A. Details are similar to those in the case of the pole (cf. Remark 2.3), and
are left to the reader.

If « is an analiticity point for both f and g, one can see directly from
their Taylor expansions that L’Hépital’s theorem holds whenever the first
nonzero derivative of g in « is invertible. In this occurrence, the case A = oc
can be included.

Remark 2.7. As in Remark 2.2 suppose that condition (11) in
Theorem 2.4 can be replaced by the stronger one

lim sup [ 1/ '] d N(2(2)) "4 < o0 (14)
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Then, if the path %, , coincides with an arc of a fixed curve in S, ending
in a, say 7, for all zey, a geometric interpretation can be given. In fact, (14)
shows that the length of the curve (in 4), g(.%, .), is of order of the length
of the chord | g(z)l| 4-

When S itself is a curve, Theorems 2.1 and 2.4 can be obtained as special
cases from the analogous (abstract) cases on R (cf. [7, 8]). Indeed, we have

lim f(z)(g(z)) " = lim fin()){gln(1)]

=lim f'(n()Lg'n(] ™" = lim f'(z)(g'(z) ",

Pty

since holomorphy of f and g and piecewise regularity of » imply the
required absolute continuity properties [7, 8.

Exploiting this reduction, we can give a simple counterexample in
connection with Theorem 2.4. Let be f(z) =z, g(z)=z%"", S=(0, +w),
2= 0. Then, taking n(¢)=1¢, clearly f'(1)/g'(1) —»O asr—-0", while f()/g(t)
has no limit (cf. {1, 7]). On the other hand,

LA PR j 25— il ds = + oc.
g(1) :40* 0

lim sup '[{
0

t -0t
One can observe that, taking S={zeC:Im:z>0, z#0}, again
f(2)/g' (z) =0 while f(z)/g(z) has no limit, as z—%5 0. Then Theorem 2.4
implies that the limsup must be + oo whichever family of piecewise regular
paths is chosen, ail the other assumptions being satisfied. Condition (11)
(as well as (2) in Theorem 2.1) is not necessary, however. In fact, the case
f=g=2z%" shows that the thesis of L’'Hdpital’s rule trivially holds.
In closing, we present the following versions of the complex L'Hépital’s
rules, which cannot be obtained from the theorems above.

THEOREM 2.8.  Suppose that all hypotheses of Theorem 2.1 [2.4] hold, for
the pair of holomorphic functions [ S —C, g: S— A. Then

_lism Fz)g'(z) '=Le4

implies that

lim f(z)(g(z)) ' =L.

The proofs are similar to those of Theorems 2.1, 2.4, and thus are left to
the reader.
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3. EXAMPLES AND APPLICATIONS

Several applications of the previous theorems can be given for the
purpose of illustration. Some of them are of independent interest.

ExaMpPLE 3.1. Let f:S— X, X being a complex Banach space,
g: S —C, both holomorphic. Suppose that S is any fixed annular sector
with vertex at the origin. Then, if g'~z?, p>0, and f7/z" - i as z - o,
z? representing a given holomorphic branch in S, we obtain f/g— 4 as
z-%5 o0,

To prove this, observe first that the result holds for g'(z)=z”in S. In
fact, suppose that S’ is an annular subsector of S (with the same angle)
where (iii) of Theorem 2.1 holds, and ¢ is any fixed point in §’. Then,
choosing as path %, ; a circular arc with center in 0 and radius |£| from
¢ to the intersection with the straight half-line through O and z, and then
the part of such a line up to z, we obtain

lim sup (p-+1) 120>~ [ In()1” ()] s

— o ¢

=limsup (p+1)|z| 7!
N

I— 0

p+1 p+1
| 1617 targ = Arg g+ E—EE— |,

p+1

and hence f/g — 4 in this case (by Theorem 2.1). If g’ ~ z?, applying the
previous result to the ratio g'(z)/z” we obtain that g(z)~z?*Y(p+1).
Therefore, f'/g = (f"/z")(z"/g") — A which shows that, again, f/g — A since
such a g verifies the limsup condition. In fact, | g| can be bounded from
below by [z]?*leo/(p+ 1), and |g'| from above by |z|?c,, for some
constants cg, ¢;, in a suitable neighborhood of «0, N(o), and & can be
chosen in N(wo) N S’, where S’ is chosen as above.

EXAMPLE 3.2 (applications to abstract differential equations).

(a) Consider the linear abstract differential equation
Y"+Q(z)Y=0, ze S, (15)

where Qe H(S; A), S being an open annular sector with vertex at the
origin, 4 a complex commutative Banach algebra with unity, E; for
generalities on this subject, the reader is referred to [S]. Then, if there is
a solution to (15), Y,(z), with Y (z)~ E and zY|(z) » 0 as z—>» o0, then
there is a solution Y,(z), with Y,(z)~zE and Y}(z)~E as z—3» w0, and
conversely.
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In fact, representing Y,(z) in terms of Y,(z) as

Vi) =Y,(2) [ (Y,(0) 2 d, (16)

where zy€ S belongs to a suitable neighborhood of oo (where 3(Y,(z)) '),
and z€ S, |z] > |z,|, we obtain

Yiz) 1=
ﬁwj (Y,(0) 2dr, as z—5 oo. (17)
z 25
Then, by L'Hopital’s rule,
Yy(z)

4

~(Y(2)) > > E, as z—% w (18)
(cf. Example 3.1 with p=1). Moreover, from (16),
Vi) = Yi2) | () 2di+ (Y)Y, (19)

and hence, using again the rule, Y3(z) — E. Conversely, if there is a solution
Y,(z)~zE as z—% oo, then from

Yi(2)=Yao) [ (Yan) P (20)

valid for zeS with |z| sufficiently large, applying Theorem 2.4 with
f(z)=[7 (Yy(1))"?dr, g(z)=1/z, we obtain

Yi(z)~22(Ya(2)) P > E, 25 o0, (21)

Clearly, f and g tend to 0 as z—%» o0, and the usual limsup term is equal
to 1. All paths &, . to be used can be chosen as simple rays in .S through
z and 0. The statement concerning the derivative is verified as, from (20),
obtains

zY,’(z)=zY§(z)£ac (Y1) 2dt —z(Yy(z)) ' >0, as - oo,

where L’Hopital’s rule has been used again.

(b) Consider Eq. (15), with Qe H(S; 4), S being an open annular
sector with |Arg:z|<y<n/2, and 4 a commutative unital C*-algebLa.
Then, if there is a solution Y,(z) to (15) with Y,(z)~e V%3,



26 SPIGLER AND VIANELLO

Yi(z)~ —\/73 e P a5 2 5, oo, for some f positive in A, then there is a
solution Y,(z), with Y,(z)~ev?, Yiz)~./Bev? as z—5 ww. Here,
\/E denotes the positive square root of f; cf. [6, Ch. 11]. The converse is
also true.

In fact, from (16) obtains, for z = oo,

e Iy ~e [ (ry() e

= 1
~ (2 /B eVPy (Y,(z)rzai(\/ﬁ)"', (22)

where L’Hoépital’s rule has been applied as in Theorem 2.1 with
Slzy=§: (Y,(1)) *dt and g(z) =e>~'’". We stipulate that the sector S has
been reduced (increasing its radius) if necessary, to guarantee both that Y,
is invertible there (in view of its asymptotics), and to meet condition (iii)
in Theorem 2.1 (in view of the fact that f’(g’)”' has a finite limit).
Therefore, Theorem 2.1 can be applied since |[(g(z)) 'l = le >~ ,=
ple WE)y=p 2mina(MRez L0 a5 -5 o0, p(-) and o(-) denoting
spectral radius and spectrum, respectively. Moreover, the limsup condition
can be satisfied using the same paths as in Example 3.1. In fact, on the
straight part we have

g (=) .= 12 /Bexp(2 JBle M e 1—2)} ],
<2 II/Bla plexp{2 /B e (e —z])})
=2 |I\/B 4 exp{2 min o( /B) cos(Arg z)(1 — |z])},
(23)

being |&] <1< |z| there. Finally, rescaling Y,(z) appearing in (22) with the
factor 2 \/B, we obtain for Y, the asymptotic result predicted above, and
an easy calculation (again based on rule) yields that for Y75.

The converse can be proved similarly, by Theorem 2.4. We only observe
that the limsup condition is fulfilled being now

g (n(—0)gz) 'l
<2 I\/Bll 4 exp{ —2 min o(/B) cos(Arg z)(t — |z])},

where the paths &, _ used are the straight half-lines through the origin and
z, joining o¢ to z, thus n(t)= —e'*™® 71, —o0 <t< —|z|.

ExaMmpLE 3.3 (applications to matrix differential equations).
Suppose that Eq. (15) is given, with Q(z) symmetric nxn holomorphic
matrix in an annular sector S as in Example 3.2(b). [f there exists a
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solution Y,(z), with Yy(z)~e V%, Yi(z)~ —/Be V* as z—5 o0, B
being a real symmetric positive definite nxn matrix, and Y (z) commutes
with B (and thus with \/E) for every z€ S, then there is a solution Y,(z),
with Y,(z)~ev 5 Yﬁ(z)~\/1§e\/§’ as z—3» oo. Such a solution also
commutes with B. The converse statement can also be proved.

Note that the expression Y ,(z)~e*V/§*' is unambiguous, owing to the
commutativity hypothesis. Since it is easily proved by its asymptotics that
Y, is a “prepared” solution to (15), as W(z):=(Y)T Y, —(¥Y)T Y, -0,
which implies that the matrix W(z), being a constant, must be identically
zero (cf. [3, 5]), the representation

Vi) = Vo) | LOR0) Y] dr

holds, for z,, z in a neighborhood of oo. All proceeds then similarly to
Example 3.2(b), and analogously regarding the converse statement.

This example is, to some extent, the noncommutative finite-dimensional
counterpart of Example 3.2(b). The matrix case analogous to Example
3.2(a) is trivial, since L’Hopital’s rule given in Theorems 2.1, 2.4 can be
applied componentwise.

EXAMPLE 3.4 (extending derivatives of holomorphic functions up to bound-
ary points).

Suppose that ¢ e H(Q2; B) C*(Qu {a}; B), Q = C being a region, # a
complex Banach space, a € Q2. If there exists lim, e, ¢'(z) = 4, then

lim M=;ﬂ

L8, I—a

provided that (2 u {a})n B(a, 8} is a star-domain with respect to «, for
some 0>0. In fact, the limsup condition in (11), Theorem 2.4, is
immediately satisfied with g(z)=z—a and taking for %, . the segments
joining each z in (Qu {a})n B(a, ) to o This shows that i is the
derivative of ¢ “from inside” (cf. [7] for the real variable analogue).
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