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A technique for approximating uniformly the solutions for a class of 
ordinary linear differential equations with variable coefficients is 
developed. The coefficients are taken to contain a small or large param- 
eter in a simple way. In particular, the coefficients vary on a single scale 
and are small and rapidly varying or large and slowly varying. The 
method employed is the following (“extension”). The ordinary differen- 
tial equation is replaced by a set of partial differential equations that 
determine the unknown function in terms of a set of independent 
“scales.” The partial differential equations, in conjunction with the 
requirement of uniformity of the approximation in an interval, help us 
establish the functional dependence of the scales in terms of the original 
independent variable (“scale functions”). 

With the use of two scales, we obtain an approximation to the am- 
plitude and phase of each of the independent solutions of nth-order 
equations that improves perturbative and frozen approximations. In 
particular, “whipping tail” effects are eliminated. Under appropriate 
conditions, for second-order equations, the Liouville-Green (or WKB J) 
approximation is readily recovered as a special case of our method. 
Several examples are given. It is essential, for the success of the approxi- 
mation, that the scale functions be nonlinear as well as, in general, 
complex. Thus, the present approach generalizes earlier “time scale” 
analyses in several respects. 
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1. INTRODUCTION 

This paper is concerned with a technique for approximating the solutions 
for a class of ordinary linear differential equations with variable coefficients. 

While the linear equation of the first order can be solved explicitly in the 
form of a quadrature over the coefficient, higher-order equations cannot be 
handled in this way.l For example, the second-order equations of Bessel and 
Mathieu yield transcendental functions which cannot be expressed in terms of 
quadratures over the coefficients of the defining equation. Approximate 
solutions in this form are, however, very desirable; for example, when it is of 
interest to study the effect of arbitrary variations in the coefficients. 

In this paper we assume that a small (or large) parameter appears in the 
coefficients. We then develop a method, based on the concept of extension, 
for obtaining asymptotic approximations in the form of simply calculable 
functions of the coefficients. We will show that for second-order equations, 
the Liouville-Green (or WKBJ) app roximation is recovered as a special 
case of our method. The technique is then extended to higher-order equa- 
tions. Our main results are (3.3.10) and (3.3.18). 

Direct expansion in powers of the parameter often leads to a serious 
misrepresentation of the true function for a certain range of the independent 
variable. This occurrence is termed a nonuniformity in the perturbation 
expansion. Techniques have been devised to overcome this difficulty and 
render the approximations uniformly valid, as, for example, an expansion [l] 
of the independent variable (developed by Lighthill), the method of matched 
asymptotic expansions [2], and the method of extension [3]. We shall mainly 
follow the method of extension and study a class of ordinary linear differential 
equations with variable coefficients. We shall see that the failure of the direct 
perturbation expansion has as its r&on d’etre an inappropriate scale on 
which the function is observed. The natural scales can be interpreted as 
“clocks” which permit us to give a uniform description of the phenomenon 
and are determined by knowing the precise nature of the breakdown of the 
direct expansion. 

We recall what is meant by a uniformly valid approximation. We will denote 
by E a “small” parameter (i.e., j E 1 Q 1) and the one-dimensional independent 
variable will be called the time. Given a function y(t, 6) of arbitrary shape 
(Fig. l), yo(t, C) is said to be a uniformly valid approximation to y(t, C) to 
order C, in a specific interval, if and only if for all t in that interval: 

r(t, 6) = Y&C 4 + O(4. 

More generally we could have 

r(t, 4 = Y& c> + o(l). 

(1.1) 

1 We do not consider time-ordered exponent& of integrals over matrices “explicit”. 
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FIG. 1. Approximations to y. 

That is, the relation (1.1) holds if and only if the error between the function 
and its approximation is uniformly small within the domain of interest. 
Precise definitions are given by Erdelyi [4] and Wasow [5]. 

2. THE CONCEPT OF EXTENSION 

The origin of the concept can be traced to the work of PoincarC on the 
secular expansion in celestial mechanics, and to the works of Krylov, 
Bogoliubov, and Mitropolsky [6] who allowed a slow variation in the constants 
arising in lowest-order perturbation theory. The technique of multiple scales 
was applied to certain nonlinear differential equations by Cole and 
Kevorkian [7]. Some problems in celestial mechanics have also been treated 
in this manner by Kevorkian [8]. Frieman [9] and Sandri [3] have developed 
it in the context of the theory of irreversible processes [lo]. These applications 
employ linear time scales. Also, one of us has considered a general technique 
(method of extension) of uniformization and has discussed the relations of 
this method to the others mentioned [3]. 

The fundamental idea of the method of extension is to enlarge the domain 
of the independent variable to a space of higher dimension. Thinking of the 
independent variable as time, we introduce a set of new independent “clocks”. 
A complete reparameterization of the lowest-order term in the perturbation 
expansion can thus be achieved. The clock variables, in general, will not be 
restricted to be real. The “clocks” are so chosen as to eliminate the non- 
uniformities of direct perturbation theory. In the extended domain, uniform 
approximations to the unknown function may then be obtained. The simplest 
extension introduces a set of linear scales. 

There are many problems, however, for which linear scales are inadequate. 
It is the aim of this paper to demonstrate the need for, and the usefulness of, 
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nonlinear scales. This will be accomplished by studying a class of line:u 
ordinary differential equations with variable coefficients. In general, the scales 
may turn out to be complex quantities. Thus, the present paper generalizes 
earlier time scales analyses in several respects. 

We illustrate the idea of extension with a \-er); simple example. ‘I’his 
example is treated in Section 3.1 from the point of view of differential equa- 
tions. C’onsider a slow exponential decay 

y = exp(- it). (2.1) 

Direct expansion of y in powers of E yields 

l “P 
y= 1 -Et+2!+“‘. 

A finite term representation of this exponential series fails for t 2 l/c. A 
physical picture comes to mind if we takey to represent an observable quantity 
such as a displacement from a reference position or a temperature difference 
between two bodies. An observer who measuresy and records it using a clock 
with the units of r,, = t will have to wait for a long time (the longer, the 
smaller E is) before he can observe a perceptible change in y and will have 
considerable difficulty in ascertaining the exponential nature of the quantity. 
Instead, if our observer were to use the slow variable ~~ = et, i.e., a “super” 
clock which measures time in giant units of t/c, the nature of the phenomenon 
would transpire clearly since then our function can be written simply as 
y = exp(- TJ. Th e method of extension aims at facilitating such a useful 
change of variable. Its purpose is to enable us to perform readings on appro- 
priate scales by employing a sufficient number of independent “observers”. 
Thus, in a phenomenon exhibiting a mixed behavior in time, the slow and 
fast motions are to be extracted individually. Figure 2 shows a schematic of 
the concept. 

Mixed &h&x 

FIG. 2. Extension of the Domain. 
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A geometric interpretation can be given as follows. Consider a three- 
dimensional space (Fig. 3) with orthogonal axes, rO, 7r , and y. Readings on 
“fast” and “slow” clocks are represented, respectively, by points along T,, 
and i-r coordinates and y is defined to be the function 

Y(T” 9 TJ = exp(- 7r). (2.3) 

FIG. 3. Function surface in extended space. 

Graphically, y(~~ , r 7 ) is represented by the cylindrical surface in Fig. 3 
which is constant in ~a , but decays exponentially in or . To relate ~(7s , rr) 
to y(t), substitute T,, = t and TI = d into (2.3), then 

Y@, 4 = r(t)* (2.4) 

The function y(Ts , r 7 ) is said to be an extension of y(t). We are now prepared 
to give a formal definition of the concept of extension. 

Given a function y(t, 6) where t is, in general, an n-dimensional vector, 
and a function y(To , or ,..., q,~r) of the N-independent variables To , TI ,..., TNwl 

(each of which is an n-dimensional vector), y is said to be an extension ofy if 
and only if there exists a set of iIT * n functions 

Tk = 4, 4 k = 0, 1, 2 )...I N - 1 (2.5) 

which, when inserted into y, give: 

Y(T&, E), %(t, +.-, TV& d) = Y(t> 6). (2.6) 

409/28/2-8 
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The space of iv-tuplets ‘T :m~= {~a , or ,..., T~-~) is called the extension of the 
domain, and the locus defined by the equations 7,; == ~~(t, 6) is called the 
“trajectory” in the extended domain. The result of substituting the trajector! 
in the extended function is the “restriction” of y and is denoted by y(7) ‘, 
We shall denote the mappings described above by the following notation: 

t - (80 > 71 >..*, Wl:, Y - Y. 

It is evident that there are infinitely many extensions which correspond to a 
given function. In particular, if y is an extension ofy, the result of multiplica- 
tion by an arbitrary extension of the unit function and addition of an arbitrary 
extension of the zero function is also an extension. Simple examples of these 
extensions for the trajectory T,, = t and 7i = et are: 

1 + exp(7, - ETJ, 0 ---f 1 - exp(7, - ~7~). (2.7) 

Two types of freedom aye available: the choice of the trajectory and the 
choice of the extension of y itself. Both are utilized in obtaining a y with a 
simpler and smoother dependence on the parameter than that offered by y. 
Such a dependence should clearly facilitate the determination of uniformly 
valid approximations in the domain of interest. It is clear that “in general” the 
concept of extension can be applied to the range as well as to the domain of the 
function y. 

The derivatives, and indeed entire differential expressions, can be treated 
as functions on t and can be extended with the above definition. Derivatives 
of y are, of course, functionah on y but functions on t. Consider, for example, 

d. 4(t) = gy + EW(t)y. WV 

An extension of 4 corresponding to the trajectory T,, = t, pi = Et is 

c#a Ez g + E g + EW(TO) y. 

0 1 
(2.9) 

Extensions similar to the one given in (2.9) are readily constructed for a 
general trajectory. Note that we have extended 

49 --+ W(To)* (2.10) 

This particularly simple choice will be maintained throughout the rest of 
this paper. Clearly, the extension (2.10) can be used only if the variable 
coefficient depends on a single time scale and does not contain6 independently. 
Quite generally, for a linear differential equation for y(t) with nonconstant 
coefficients wi(t) 

W%l? Y) = 0 (2.11) 
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the freedom available in extension corresponds to the choice of the trajectory 
and to the extension of wi . We shall study below the nonlinear trajectory 
7. = t, TV = d(t) ( w h ere K is to be determined) in conjunction with the 
extension (2.10). 

3. LINEAR DIFFERENTIAL EQUATIONS 

We will now apply these ideas to some linear differential equations. We use 
the first-order equation to illustrate the mechanics of our approximation 
scheme. The class of equations discussed below can be characterized qualita- 
tively by the following restrictions on the coefficients: 

(i) all coefficients vary on a single scale, 

(ii) the coefficients are either large and slowly-varying or small and 
rapidly-varying. 

3.1. First-order Equations 

Consider, first, the linear equation of the first order with constant coejjicient, 

dr Jj + l y = 0. 

Direct Taylor expansion in powers of E yields, with y(O) = 1, 

Y = f ~nYn(t>, 
n=o 

r,=(-1)“: 

which corresponds to (2.2). As shown in the discussion following (2.2), 
this expansion is not uniformly valid. Our method readily uniformizes this 
simple case. Take the extension t -+ (T,, , or} with linear trajectory 

To = t, 71 = Ei! 

The time derivative operator is extended as 

(3.1.2) 

d a a +---+c-. Z aTo ar, 

Now, we extend the dependent variable as y(t) -+ y(~~ , TV) and obtain, 
equating powers of E: 

ay 0 -= aTo (3.1.3) 

(3.1.4) 
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From (3.1.3) and (3.1.4) y(~a , or) = .d(~r) = c cxp( - or). W’e now restrict 
the extended function along the trajectory (3.1.2) and obtain 

y(t) = c exp( -.- et) (X1.5) 

which is the exact solution of (3.1.1) with y(0) = c, and independent of c. 
It is clear that the treatment is independent of whether E is small or large. 
This situation will hold for the case with variable coefficient also. For higher- 
order equations, however, it will be important to distinguish the two cases. 

We now consider equations with a variable coefficient. We first show that 
the extension with linear scales (3.1.2) is inadequate. We will then use non- 
linear time scales. Consider, in fact, the linear equation: 

g++)y=O (3.1.6) 

with a coefficient that depends on a single time scale. Taylor expansion (i.e., 
the direct perturbation expansion) expresses y in terms of powers of SW dt, 
while the correct result is the exponential function of l w dt given by (3. I. 14). 
Using the trajectory (3.1.2) and with the extension (2.10) for w, we have, 
equating powers of E, 

i.e., y(~,, , TJ = A(T,) and A’ + W(TJ A(-r,) = 0, which leads to a 
contradiction unless w is a constant. A uniform approximation to y can there- 
fore not be obtained with the linear scales of (3.1.2). 

Consider now the extension t --f {T a , or} with the nonlinear trajectory 

70 = t 71 = A(t) (3.1.9) 

where k(t) is as yet an undetermined “clock” (or “scale”) function. The 
derivative operator now is extended as 

d 8 a 
----+A- 
dt lb,, a71 

reading to the equations: 

ay 0 -= 37, 

(3.1.10) 

A(q)) g + W(To) y = 0. (3.1.12) 
1 



LINEAR DIFFERENTIAL EQUATIONS 347 

We obtain, on integrating, y(~,, , TJ = A(T,) and 

$ (T1) = - 4 (To) = s (3.1.13) 

where s is a constant. Thus, y = c exp(sr,), where c is a constant and 
T1 = - (c/s) J w d7, . Clearly, s can be set equal to unity without loss of 
generality. Upon restriction, the solution is given by 

y(t) = c exp [- E J w(t) dt) (3.1.14) 

which is the exact solution of (3.1.6). 
We note that our method “simplifies” the problem reducing the original 

variable coefficient case to the constant coefficient case plus an explicit 
quadrature (see Eqs. (3.1.13)). In other words, the method yields a suitable 
change of either the dependent or of the independent variable. 

It can be verified that the trajectory represents the characteristics of the 
partial differential equation obtained by the extension of the given ordinary 
differential equation. The partial differential equations (3.1 .l 1) and (3.1.12) 
are compatible with each other as can be readily shown by cross differentia- 
tion. The compatibility conditions will be obtained only approximately for 
higher-order equations. The compatibility conditions play a particularly 
important role in the matrix formulation of the problem (see, e.g., Ref. 5). 
This approach will be discussed elsewhere. 

The clock function (scale function) K(t) can be highly nonlinear. Some 
simple examples are shown in Fig. 3. Further, with first-order equations, a 
uniformly valid (in fact, exact) solution can be obtained in any interval 
(although not necessarily through a clock). This is not possible for higher- 
order equations. 

The analysis is extended without difficulty to the case in which EW in 
(3.1.6) is preplaced by En d,(c) wn(t), where & is an asymptotic sequence [4], 
by means of the trajectory T, = &(E) Iz,(t). 

The necessity of using nonlinear scales is appreciated by treating (3.1.1) 
after the change of variable t’ = l/t. 

For both small and large E the extension (3.1.10) is appropriate. This will 
be seen not to be the case for higher-order equations. 

3.2. Second-Order Equations. 

Consider the second-order equation in “canonical” form; that is, the first 
derivative has been eliminated. We shall assume, as in Section 3.1, that the 
frequency function depends on a single time scale. We can then write 

y” + w(t) y = 0. (3.2.1) 
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W’e shall study this equation both for small and large values of the parameter t. 
We will see that in both cases the partial differential equation that will be left 
unsatisfied contains derivatives with respect to the slowest time scale. It can bt 
readily verified, in view of the choice (2. lo), that the class of second-order 
equations considered below corresponds to either rapidly-varying, low fre- 
quency (Case (1)) or slowly-varying, high frequency (Case (2)). The derivatil-c 
will be extended differently in the two cases. 

Case (l)-Coefficient with Small Parameter: 0 < 1 E / Q 1. The direct 
perturbation expansion may be nonuniform for values of t which depend on 
the nature of w(t). To study the low frequency with rapid variation we invoke 
the extension (3.1.10) and (2.10) an d are led to the set of equations: 

(3.2.2) 

We have chosen 2y/& = 0 which is adequate for first-order theory. 
Higher-order theory requires that either y be expanded or that additional 
scales be used. From (3.2.2) we find 

Y(To 7 71) = 471) To + B(Tl). (3.2.5) 

Two solutions are generated by using (3.2.3) and (3.2.5). These give rise to 
two clock functions that can be written as: 

k,=;j T~%J dr, -- 
I 

row dr,, (3.2.6) 

k, = j row dro - r. 
s 

w dr, . (3.2.7) 

Upon restriction along the trajectory (3.1.9), the approximate solutions to 
first order can be written as: 

j$ = c,t exp E f 
ii s 

Pm dt - 
s )I 

tw dt (3.2.8) 

twdt - t wdt . 
s )I 

(3.2.9) 

The constants of integration associated with (3.2.8) and (3.2.9) require 
careful consideration in applications. 
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A sufficient condition for the approximation to break down is that the term 
in (3.2.4) which is neglected attains the same order of magnitude as any term 
in (3.2.2). This leads to the following criterion (Appendix B): the approxima- 
tions (3.2.8) and (3.2.9) will fail when 

1 d2w-. 
c 

(3.2.10) 

It can also be noticed that the constancy of the Wronskian of the approximat- 
ing functions is destroyed when WP N l/c and (3.2.3) and (3.2.4) are then 
no longer linearly independent. For example, for the Airy equation 
(y” + sty = 0) the failure of the approximations (3.2.8) and (3.2.9) 
(t 2 c-l/3) is correctly given by the above criterion. 

One obtains the correct solution for the constant frequency case with the 
extension of the derivative (3.2.14) and (2.10). Application of the extension 
(3.1.10) yields an approximation that avoids the “whipping tail” defects of 
direct Taylor expansion but may not extend the interval over which the 
Taylor expansion is valid. 

For the choice 

w(t) = f (3.2.11) 

it is readily verified that our approximation formulae (3.2.8) and (3.2.9) 
substantially improve the Taylor expansion in E. For E Q 1 the WKB approx- 
imation is clearly at fault in this case [12]. 

Case (2)-Coeficient with Large Parameter. We will now change our 
point of view and consider (3.2.1) in the form 

y” + h‘&(t) y = 0 (3.2.12) 

where 1 h I> 1, and by comparison with (3.2.1) h = c112. We now choose the 
trajectory 

To = t, T1 = Ah(t) (3.2.13) 

with the derivative extended as 

and have the set of equations: 

h2(To) g$ + 470) y = 0 

Lg.,,&=, 
1 

a9 o 
-z. 

aTo 

(3.2.15) 

(3.2.16) 

(3.2.17) 
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We seek solutions of (3.2.15) in the form: 

Y(’ cl , 71) == c470) P(Tl) = 470) exp(71) (3.2.18) 

whence the clock k satisfies the equation: 

p. .+ w z- 0 (3.2.19) 

Substitution into (3.2.16) yields CX(T,~) = w -l14(~“). Restriction along (3.2.13) 
yields the approximations 

31(t) = c,w-~/~ ex p iiA 1 cA2 dt, 1 

jJ2(t) = c,w-~/~ exp (- iA 1 w1/2 dt) 

(3.2.20) 

(3.2.21) 

which are recognized as the Liouville-Green (or WKB J) formulae. Thus, with 
our method, the frequency and the amplitude variation are associated with 
the fast and slow time scales, respectively. 

Analogous approximation formulae can be obtained directly for second- 
order equations in which the first derivative appears explicitly. The precise 
condition for the asymptotic validity of (3.2.20) and (3.2.21) is that 

d2 
- ‘,-l/4 & < &’ 
dt2 

where M is a constant and (a, 6) is the interval considered. We can express 
this condition in terms of the characteristic roots x for the equations 
(x2 + w = 0) as 

b s I a 
xf1f2 $ x+l12 dt < M. 

This latter form lends itself to analyzing higher-order equations. In particular, 
in Ref. 11 the corresponding criterion has been developed for third-order 
equations. 

Third- and higher-order equations can be treated similarly. Therefore, we 
will now consider the nth-order case. 

3.3. Equations of nth Order 

We discuss some cases of equations of the nth order. Again, a small or a 
large parameter enters the coefficients in a simple way. 

Case (I)-Coejkients with Small Parameter: 0 < 1 E 1 << 1. We shall 
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first study the parameterized canonical (i.e., (n - 1)th derivative term is 
absent) equation, 

y(n) + E[Wn-l(t)y(“-2) + *me + wo(t)y] = 0 (3.3.1) 

in the limit as 1 E / + 0. Direct perturbation can be shown to be nonuniform, 
depending on the nature of the coefficients. The extension ~a = t; I = d(t) 
leads to a set of (n + 1) partial differential equations. Using the results of 
Appendix A, the two leading equations are written as: 

(3.3.2) 

K(n) ?$ + y 6) K(n - y) $& = - one2 3 + ..* + way. (3.3.3) 
y=l 

Integration gives: 

The terms on the right side are linearly independent with respect to r. and 
thus generate corrections to the lowest-order result. For example, substituting 
A,,(T,) 5-g-l into (3.3.3) and choosing an exponential I dependence of 
A s-1 results in the following equation for the clock: 

= - (con--270 + CQT: + “’ + Ott-‘>* (3.3.5) 

Even though this equation has variable coefficients, it can be recognized as 
the inhomogeneous Euler-Cauchy or equidimensional equation and can be 
solved exactly. The solution of the corresponding homogeneous equation can 
be expressed as &-, = TV”, where m satisfies the algebraic equation: 

m(m - 1) (m - 2) ... (m - 11 + 2) + m(m - 1) ... (m - n + 3) (;) (n - 1) 

+ *‘* + n! = 0. (3.3.6) 

This can be written as 

mn-l + a,-2mn-2 + a-* + a,m + a0 = 0 (3.3.7) 
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having (n - 1) roots which are assumed to be distinct for this analysis. Let 
the homogeneous solution be given by: 

The particular solution can then be written as: 

We have used the notation W = W(& , #a ,..., &-J for the Wronskian of the 
4. e > and ZI{ for the determinant of the matrix formed by replacing the ith 
column of the (n - 1) square matrix 

61 $2 . K-1 

6; 8; . &-1 

I 

. . 

by the column 

0 
0 II f 

where f (T,,) denotes the right-hand side of (3.3.5). One more integration of 
$n-1 gives the clock function K,-, , thus obtaining the proper time scales. 
After restriction along 70 = t, and or = A(t), one approximate solution to 
(3.3.1) can be written as: 

y&t) = cn-pl exp (c s +,+1 dt) . 

The other independent approximations are similarly obtained by determining 
the clock functions +12-2 ,..., +I , & . We note that &, satisfies an (n - 1)th 
order inhomogeneous linear equation; &;,, satisfies an (n - 2)th order 
equation, and so forth. Thus, &a satisfies a second- and I$ a first-order equa- 
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tion. The case given above is therefore the most complicated and the analysis 
becomes simpler for the determination of successive clocks. The approximate 
general solution of (3.3.1) to order E for small E can be written as 

y(t) = 5’ c,ti exp (E J & dt) 
0 

(3.3.10) 

(ci being arbitrary constants). 
For any given n the breakdown of this approximation can be determined 

by studying the equations that have been neglected. Higher-order corrections 
can be obtained by employing slower clocks. 

Case (2)-Coeficients with Large Parameter. Consider the equation: 

y(n) + hwn-l(t)y(+l) + h%+-2(t)y’n-2) + *se + X+lJl(t)y’l) 

+ ATq)(t)y = 0 (3.3.11) 

where / X 1 > I. Equation (3.3.11) is equivalent to an equation of the form 

y(n) + W,&T)y(“-l) + Wnp2(ET)y(“-2) + -** + wo(m)y = 0 (3.3.12) 

with 

O<E<l 

for (3.3.12) can be written in the form (3.3.11) by letting ET = t and h = I/E. 
We now choose the extension 

7-0 = t, 71 = M(t) 

and obtain (Appendix A) the two leading equations: 

(3.3.12) 

I;* any *n F + wn-lk - 
1 

1g+ 
1 

. . . +wll;~+,oy=o (3.3.13) 
1 

+ (n - I>@ -2) w &)“-3p-“y 1 . . . 
2 n a+ 1 

+ clJ2k g = 0. 
1 

(3.3.14) 
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As before, we seek solutions of the form: 

Y(T” 9 71) = 470) P(Tl) =- 4To) exp(-rt). 

The derivative of the clock function satisfies the algebraic equation: 

(ii)” + w,&iy+’ + ... + a,,rr; -‘- W” = 0. (3.3.15) 

On substitution into (3.3.14) and simplifying, the explicit amplitude variation 
is given by 

where 

i.e., 

qk’, To) SE kh + w,J+l + *-- $- Wlk’ + wo (3.3.16) 

a(~~) = ($&r”” exp (J” $ In (-$,“’ d7,) . (3.3.17) 

Thus, the approximate general solution to (3.3.11) is obtained after 
restriction and is given by 

j?(t) = 5 ci ($y” exp (J & In (zjl” dT0) exp(&) (3.3.18) 
i=l z 

where F is given by (3.3.16) and ki by (3.3.15). The ci are arbitrary constants. 
The roots of the equation (3.3.15) are called “characteristic” roots and are 

assumed to be distinct. When wr , w2 ,... w,-r vary more slowly than w. , a 
simpler expression is obtained for the approximation, viz., 

(3.3.19) 

We see that the results of the standard Liouville-Green theory can be recov- 
ered for second-order equations. 

4. EXAMPLES 

We shall now consider some examples of the present approach. It will be 
seen that our results hold well even in some cases for which the formal 
conditions of validity of the approximation are not strictly met. 
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4.1. Kummer’s Equation 

Consider Kummer’s equation 

ty”+(b-t)y’-ay=O (4.1.1) 

where a and b are fixed constants. As t -+ co, the solutions asymptotically 
behave as et@ and tP, and so have only a finite number of zeros. This 
information is obtained from the preceding theory as follows. The asymptotic 
behavior of the characteristic roots is obtained from the equation 

as kr N 1 + (a - b)/t and ka N - a/t. From (3.3.18) the asymptotic solu- 
tions are obtained as 

sl = CL~(T~) exp(7,) It = cleWb 

?2 = &$-a. 

(4.1.3) 

(4.1.4) 

4.2. A Third-order Equation 

Consider 
ty” + 3y” + ty = 0. (4.2.1) 

The characteristic equation can be written as: 

A3 + 3@ + 1 = 0. (4.2.2) 

For large t the characteristic roots t can be determined by a perturbation 
expansion, yielding 

k = A, + Sk,; I&=-l, * +1&i%+; 
%i 

Thus 

The approximation is given by 

5(t) = i ci exp(ikJ = i ci exp[k,i + Sk,J 
i=l i=l 

: - t. (4.2.3) 

1 
--. 

t I 
(4.2.4) 

= J$ exp( - t) + $ exp [( + ’ ; ’ -\/‘) t] + $ exp [(l-i ‘3) t] 

(4.2.5) 
which can be recognized as the exact solution of (4.2.1). 



4.3. “Double Airy” hlpation 

Consider the equation 

J”” - 4ty’ ~- 2.v = 0 (4.3.1) 

which we call the “Double Airy” equation. The characteristic roots for large t 

are obtained from the characteristic equation 

1;s - 4tk’ - 2 z 0 (4.3.2) 

as k1 _ 2tll"; A, z - 2t1/2; A3 =: 0. Th e approximate solutions to (4.2.1) are 
given by 

ii = (3ki2 - 4t)-li2 exp(k,) 

i.e., 

$1,2 = t-lt2 exp(& $t312), jj, _ t-l/!2 (4.3.3) 

Now, (4.3.1) has the products of Airy functions as exact solutions, Ai2(t), 
Bj2(t), and Ai B(t). Thus, the solutions (4.3.3) agree with the asymptotic 
behavior of the exact solutions [I 31. 

4.4. An Equation of the nth Order 

We shall now consider a special equation of the nth order, viz., the Euler- 
Cauchy or equidimensional equation: 

(4.4.1) 

in the limit 1 h I--+ co. The equation conforms to the conditions of the 
approximation. The characteristic equation is 

K’” + ; L7 0 (4.4.2) 

with the characteristic roots: 

k;=[expn(*)/(+), j-l,2 ,... n,i=d-il (4.4.3) 

The asymptotic solution of (4.4.1) as 1 A / -+ CO is given by our theory as: 

y?(t, A) = c~(/$+‘)-~‘~ exp(&(t)) 

== ci exp [ - ( (n L I) ) rr(i + 2j)l (+)--(a-1)‘8 exp(M,(t)). (4.4.4) 
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Simplifying: 

#A) = i cjt 2 n-1/2 pexp[(d+2i)/n]n. 

j=l 
(4.4.5) 

The exact solution can be determined as follows. Since (4.3.1) is a homo- 
geneous equation, we look for a solution in the form y = t”. On substitution, 
m is found to satisfy the equation: 

m(m - 1) (m - 2) ***(rn - 71 + 1) + An = 0. (4.4.6) 

The asymptotic behavior of the roots of this equation can be seen rather 
easily in the graphical root locus form [14] : 

1 + X”G(m) (4.4.7) 
where 

G(m) = 
m(m - l)...'(rn -n + 1) * 

The locus of the roots of (4.4.7) as X increases from 0 to co is governed by the 
sign of h and whether n is odd or even. For example, when h + co, the locus 
of the roots of (4.4.7) on the complex m plane as ] h ] increases from 0 to co 
is shown in Fig. 4. When X + -& co, the locus lies on the part of the real 

Complex m Plane 

FIG. 4. Root locus for ycnb + (/\/t)“y = 0; with y = t” : 
m(m- l).*.(m-n+ l)i-X”:=O. 
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axis which has an odd/even number of poles of G(m) to the right of the point 
considered. For the present, however, the behavior of the roots as / X / + 8~ 
is of interest. 4s j A / - co, the root loci become asymptotic to the rays 
emanating from the point m =~ (n ~ 1)/2 on the real axis, at angles 180”in 
or 36o”/n (according as h ---f + o or -- CD, respectively); i.e., 

--(%A) +‘\exp(“(i!2j)); Jo: 1,2 ,..., n; i = d- 1. 

Thus, the exact solution has the same asymptotic behavior for j X 1 -+ co as 
predicted by our approximation. 

The application to some other equations is given in Table 1. An application 
of the small E result, viz., (3.2.8) and (3.2.9), to the problem of wave propaga- 
tion in a turbulent plasma is discussed in Ref. 12. The motion of a vertical 
take-off and landing aircraft during the hover-forward flight transition has 
been analyzed by means of the multiple time scales technique and uniformly 
valid asymptotic solutions have been obtained [l 1, 131. 

TABLE 1 

EXAMPLES OF SOME CLASSICAL EQUATIONS 

NZUlle Equation Asymptotic Behavior 
__ 

1. Bessel’s eq. of 

zeroth order 

y” + iy’ + y = 0 t-‘ia exp( & it) ; t - CL 

2. Kummer’s 

confluent 

hypergeometric 

ty” + (b - t)y’ - ay = 0 
p-b ,t 

I ; 
t-a ) 

t-02 

3. A third-order t-l exp(-t) 

equation ty” + 3y” + ty = 0 

t-’ exp 
1+;1/3 

2 t 
t-cc 

4. “Double Airy” yU’ - 42y’ - 2y = 0 
t-112 
t-‘12 exp[ * 4/3 t3/z] 1 t4ai 

5. Euler’s 

equation 
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5. CONCLUDING REMARKS 

The main theme of this paper has been to demonstrate with a class of linear 
differential equations that when direct perturbation theory fails, natural 
(nonlinear) scales can be found on which the solution can be described more 
uniformly. The approach is mathematically straightforward and allows for 
the injection of physical insight. 

We have developed here first-order theory. Higher approximations can be 
obtained in two ways [ 111: (i) by employing more scales, and (ii) by expanding 
the dependent variable. Multiplicative and additive corrections to the approx- 
imate solutions are obtained, respectively. Both are of interest, as well as 
combinations. 

Error bounds can be found for our approximation formulae. Several 
results are discussed in Ref. 11. 

For the 1 h 1 > 1 cases, the compact form of our formula (3.3.18) enables 
one to write the approximation by inspection and ties in neatly with the con- 
cept of variable characteristic roots. Of course, special precautions are needed 
when characteristic roots coalesce and turning point problems arise [5]. 

It may not be amiss to remark that even though the coefficients have been 
taken to be either small and rapidly varying or large and slowly varying, 
special cases of a different nature are included in our treatment. Thus, for 
example, y” + hw(Xt) y = 0 with /\ > 1 is readily transformed to (3.2.1) 
with E -= l/h. 

APPENDIX A. EXTENSION OF THE &h-ORDER DERIVATIVE 

With the two time scale extension 

t - (70 7 Tl), i-0 = t, T1 = &(t). 

An extension of the derivative operator is 

d a dT1 a 3 a 
-'Tg+~a=a,++. 
dt n 71 0 1 

(A.11 

(A4 

Similarly, we have, for the second derivative 

(A.3) 

4'='9/28/2-9 
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We now consider the extension of the nth derivative: 

We order the terms in (A.4) with powers of E 

(A.51 

Clearly, the right-hand side of (A.5) contains terms due to the binomial 
expansion of the operator as well as terms with successive derivatives of the 
clock function. For purposes of the present approximation scheme, only terms 
of order l and 6%--l are needed, in addition to the lowest-order terms. The 
corresponding operator coefficients are: 

A, = z aron 
A, = k(“) 6 + y-1 (;) kc-‘) & 

64.6) 

(A.71 

A,-, = ,@)"-1 '* 
aToaT;z-l 

+ + ; ') (A-8) 

That these are, indeed, the coefficients is proven by mathematical induction 
as follows. We shall prove that if (A.6)-(A.9) is t rue for R, then it is true for 
n + 1. Letting the derivative operator (A.2) act again on (A.5), we find: 

+ + 2 I) (KY-2 k $t-) 
1 

+ .c* ((h)n &,) 1 = y l B, . 
p=o 

(A.10) 
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The relevant coefficients can be written as: 

an+1 

Bo = w 
0 
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(A.ll) 

B, = k(n+l) f- + k(n) 
1 

+ 5; (‘4) [k-+l) G + k(n-r) 
r=1 

aTrT;;r 
0 1 

] (A.12) 

=k(n+l, $ + i (" ; ') k@-T+l) $$ 

1 T=l 71 

B, = n(h)“-l k” f- + Iin & 
In 

+ 
4,; 1) (@?-lk" y& 

an+1 

= (n + 1) (A>" aTo &," + 
@' ;l' n(@n-lk" $ 

In 

B n+l = (I++1 g . 
1 

(A.13) 

(A.14) 

On examining (A.6)-(A.9) and (A.ll)-(A.14), it is seen that the latter are 
obtained from the former by replacing n by (n + 1). Hence, if (A.6)-(A.9) 
are true for n, they are true for (n + 1). It is easily verified from (AS)-(A.9) 
and (A.3) that the validity for n = 2; thus, the induction is complete. 

APPENDIX B. A CRITERION OF VALIDITY 

We derive here the criterion for validity of our approximation when applied 
to the second-order equation with small parameter. Failure of the approxi- 
mation occurs when the term neglected in the analysis ceases to be small: 

The condition for failure is then given by 

(B-1) 

(a) = $ . (B-2) 
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Substituting from (3.2.8) and simplifying, we obtain: 

dc- (J t%J dt) w:t”. 

Differentiation of (B.3) yields 

which can be rearranged to read 

We recognize the first term to be a total derivative; therefore 

f @- “) - + (&)-f) _ - z/E. 

(B.3) 

(B.4) 

P.5) 

( ‘34 

Using t-2 as an integrating factor, the above condition becomes: 

P-7) 

P-8) 

d w-t 
i i 

dE 
- -- =---. 
dt t2 t2 

Integration of (B.7) now gives 

-__ IL 1 
dGt2=t 

i.e., WtZ g l/c. The approximation will therefore fail when 

1 
cot”--. 

E 03.9) 

The criterion can be derived in a different way, also. The approximating 
functions A( 71 T,, and B(T,) are linearly independent with respect to -rO. ) 
Upon restriction along 70 = t, -rl = d(t), this property may not be satisfied 
throughout the domain. Our approximations can therefore be expected to 
fail in a region where the constancy of the Wronskian is destroyed. From 
(3.2.8) and (3.2.9), the Wronskian can be written as 

TV($, ,y2) = [- 1 + E (f j- t2w dt - t j” w dt)] 

t2w dt - 
s twdt +odt2)i (B.10) 
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i.e., to lowest order in E, W(j$ , j;,) is a constant. Hence, failure is indicated 
when either the exponent is of order unity or 

1 s I 1 
t 

t%,dt - t wdt--. 
E 

Therefore, we have 

w dt dt N t. 

(B.ll) 

(B.12) 

Differentiating Eq. (B.12), we obtain 

-2ct wdt-1. s (B.13) 

Differentiating again, 

1 
2EWN---. 

t2 

Thus, the approximations (3.2.8) and (3.2.9) fail near a value of t for which 
wt3 - l/6 as obtained earlier. Substituting this shows that the exponent in the 
exponential function of @‘(jr , $J is of order unity. 
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