
Computers Math. Applic. Vol. 33, No. 6, pp. 53-63, 1997 
Copyright@1997 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 

PII: SO898-1221(97)00031-X 
089&1221/97 $17.00 + 0.00 

A New Computational Method 
for the Functional Inequality 

Constrained Minimax Optimization Problem 

D. C. JIANG 
Department of Systems Engineering, Australia National University 

Canberra, ACT 0200, Australia 
Dan-chi.JiangQauu.edu.au 

K. L. TEO 
Australia Telecommunication Research Institute 

Curtin University of Technology 
GPO Box U 1987, Perth, WA 6001, Australia 

W. Y. YAN 
School of EEE, Nanyang Technological University 

Nauyang Avenue, Singapore, 2263 

(Received and accepted October 1996) 

Abstract-In this paper, we consider a general class of functional inequality constrained minimax 
optimization problems. This problem is first converted into a semi-infinite programming problem. 
Then, an auxiliary cost function is constructed based on a positive saturated function. The smallest 
zero of this auxiliary cost function is equal to the minimal cost of the semi-infinite programming prob- 
lem. However, this auxiliary cost function is nonsmooth. Thus, a smoothing function is introduced. 
Then, an efficient computational procedure is developed to estimate the smallest zero of this auxiliary 
cost function. Furthermore, an error bound is obtained to validate the accuracy of the approximate 
solution. For illustration, two numerical examples are solved using the proposed approach. 

Keywords-Functional inequality constraints, Optimization problems, Minimax, Estimation, 
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1. INTRODUCTION 

Consider the following functional inequality constrained minimax optimization problem: 

mjn FE% fk Y> (14 
subject to: h&Y) 5 0, QycS-2, i=1,2 ,..., k, (lb) 

where fl is a compact subset of R, f(z, y) and hi(z, y), i = 1,2,. . . , k, are continuously differen- 
tiable functions. 

For convenience, let 3 be the feasible region of the problem (1) defined by 

9 = {z E Rn : h&y) 5 0, Vy E R, i = 1,2,. . . , k}. 
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Throughout this paper, we assume the following condition is satisfied. 

ASSUMPTION (Al). The feasible set 3 contains at least one interior point, i.e., there exists an z” 
su&thathj(z0,y)<0,VyER,i=1,2 ,..., Ic. 

It is well known that the minimax problem (1) is equivalent to the following semi-infinite 
programming problem: 

subject to: f(z, y) 5 Z, VYER. (2b) 

Suppose R is a discrete set. Let the number of elements in R be denoted by T. Then, the semi- 
infinite programming problem (2) reduces to a conventional inequality constrained minimization 
problem, and hence, can be solved by gradient-based algorithms such as those reported in [l] and 
the references therein. However, it has been found in [2] that the rate of convergence of these 
algorithms is, in general, not high. Furthermore, if T is large, or R is a continuous set, then these 
methods are most likely to perform poorly. This unfortunate outcome was also reported in [3], 
where R is a continuous set. The minimax problem considered in [3] arises from a constrained 
H,, optimal control problem, where the cost function is the maximum singular value of the 
transfer function matrix over a frequency range. This cost function is to be minimized over all 
stabilizing controllers. Consequently, a new computational procedure was proposed in [3] based 
on a well-known idea in functional analysis. More precisely, the cost function is approximated 
by the &-norm of the maximum eigenvalue of the transfer function matrix over the frequency 
range. For the functional inequality constraints, they are handled by the constraint transcription 
introduced in [4]. 

Thus, the functional inequality constrained minimax optimization problem is approximated by 
a sequence of conventional optimization problems, each of which is solvable by existing smooth 
optimization software packages. Further results and new applications were reported in [5,6]. 
The main disadvantage of this approach is that it is required to scale the integrand of the Lp- 
approximate cost function to avoid numerical overflow when the value of p is large. A scaling 
scheme will be different from one problem to another. Furthermore, there is no systematic way 
to choose these scaling schemes. They are basically chosen on the basis of trial-and-error. In 
addition, the value of the scaled approximate cost function is not allowed to vary too much during 
the optimization or we will encounter numerical overflow. Unfortunately, there is no way to know 
if the value of the scaling approximate cost function would vary slowly or not as a function of 
the decision variables. 

Let us now return to consider the problem (1) with R being a discrete set. Many papers are 
devoted to the development of methods for this constrained minimax problem. For example, 
see [1,2,5,7]. In [7], the minimax problem (1) is first converted into an equivalent problem similar 
to (2). Then, an exact penalty function is introduced as follows: 

p(z,y,“)=2+~P(f(z,Y)-Z)+~BiP(h(Z,Y)), 
i=l 

(3) 

wherepandpi, i = 1,2 ,..., k are appropriate positive parameters, and p(t) is a positive saturated 
function such that 

p(t) = 
{ 

0, for t 5 0, 

t, for t > 0. 

Now, the minimax optimization problem is converted into the unconstrained nonsmooth mini- 
mization problem of the function P(z, y, z) with respect to Z, t for all y. In order to solve this 
nonsmooth minimization problem, many smoothing functions (see [7-g]) can be introduced to 
approximate p(t). The one used in [7] is, in fact, similar to that reported earlier in [8,9]. Let this 
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approximate function be denoted by SE(t). It will also be used in this paper, and hence, will be 
defined later. The main advantage of using the approximate function gE(t) is that the suboptimal 
solution obtained by solving the corresponding approximate cost function P,(z, Z) will satisfy the 
constraints if the parameters /.J and pi, i = 1,2,. . . , Ic, are chosen to be sufficiently large. 

In this paper, the functional inequality constrained minimax optimization problem will also be 
converted into a semi-infinite programming problem. Then, based on the constraint transcription 
introduced in (81, a smoothing auxiliary function is constructed for approximating this semi- 
infinite programming problem. A computational procedure is developed as the result of this 
approximate method. Two numerical examples are also given to illustrate our method. 

2. EQUIVALENT AND APPROXIMATE PROBLEMS 

Consider the problem (1) in Section 1. Let JO(Q) be an auxiliary function defined as 

Jo(o) = min 
J[ xER” Q 

PW,Y) -a) +&J(W Y)) dY* 
i=l 1 (4) 

Then, it is clear that the smallest zero of the auxiliary function is equal to the optimal solution 
of the original functional constrained minimax optimization problem (1). Let us adopt the 
smoothing function gE(t) introduced in [8,9] to construct a new smooth approximate auxiliary 
cost function to estimate the smallest zero of the nonsmooth function JO. For any E > 0, 

( 07 if t < -5, 

gE(t)= 4e, if -s<t<E, 

I 

(t + ey 

t, ift>e. 

From [8,9], we know that this function has several desirable properties. These properties, which 
can be easily obtained from its definition, are listed in the following remark. 

REMARK 1. The function gc(t) has the following properties [8,9]. 

(4 
04 
cc> 
(4 

(4 

It is monotonically increasing, though not strictly. 
0 5 gO(t) - t 5 ~14, Vt E R. 
For each t E R, gE(t) considered as a function of E is nonnegative and continuous. Fur- 
thermore, if 0 < ~1 < ~2, then gEl(t) 5 gEp(t), for any t E R. 
For each E > 0, se(t), as a function of t, is continuously differentiable and has a quadratic 
zero at t = -6. 
ge(t) 5 e/4 if and only if t < 0. 

Instead of searching for the smallest zero of the nonsmooth function &(a) directly, we consider 
the following smooth auxiliary cost function defined by 

where 

a+, E, a) = J[ &(.f(Zy Y) - a> + 5 Sr ChiCz, Y>) dY- 
n i=l I (5b) 

Obviously, the parameter E in the (f - cu)-term and hi-term can be different. For the theoretical 
analysis in this paper, we will only discuss the case that all of them are the same. However, all 
results can be extended to general cases. 

For the function Q(z, e, CY.) and J(E, a) defined in (6), several desirable properties can be easily 
obtained from the properties of gE(t) and the definition of J(e, a). These properties are listed in 
the following lemma. 
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LEMMA 1. 

(a) For any E > 0, Q(z, E, o) is continuously differentiable in x and CL 
(b) For cy E R, if 61 and ~2 are such that 0 5 ~1 5 ~2, then J(E~, cr) 5 J(e2, cu). 
(c) For any e > 0, if or and crs are such that (~1 5 ~2, then J(e,ar) 2 J(e,cr2). 
(d) J(e, o) is nonnegative and continuous. 
(e) For any E > 0, let cr: := min{a E R : J(e, (.y) = 0). Then, c$ is a quadratic zero of J(e, a) 

as a function of cr. 

To continue, we assume that there exist constants MI, Ms such that the following conditions 

1-1 I MI, 1-91 <Mrforany(x,y)~SxR,i=1,2 ,..., k. 

are satisfied. 

ASSUMPTION (A2). 

ASSUMPTION (A3). 

LEMMA 2. For any E 
H-4 Bfz;r <Msforany(r,y)ESxRandj=1,2,...,n. 

: > 0 and (Y E R, if x, satisfies @(z8, E, (.y) = J(E, cr) < .e2/(32Mr), then 

(a) h;(x:,,y)<O,Vy~R,i=1,2 ,..., k,and 
(b) f(x,, Y) < a, VY E fl. 

PROOF. Assume the contrary. Without loss of generality, we assume that (b) is not satisfied. 
Then, there exists at a point y” E R such that f(s,, y”) 2 cr. 

Let YE(yo) be a neighbourhood of y” defined by 

Y5 (YO) = 1 y E R : Iy - yOI 5 & . 
1 1 

Then, by Assumption (A2) and the Taylor Theorem, we have 

f (G, Y> 2 f (x0, YO> - yEsyu;o) Iy-y"I >cr-M~ly-y~[, 
I3 

and hence, 

f(xc,y) --(y 1-;, VY E K (YO) * 

Thus, by the definition of the function g,(t) and Remark l(a), it follows that 

J(E,Q) > I SE(f(G Y> - 4 dY 
ye (IlO ) 

& 

‘Is I Y,bO) 
dy=&. 

1 

This is clearly a contradiction. Therefore, the proof is complete. 

Define 
s E:={x~Rn:hi(x,y)<-~, forallyE1;2}. 

Since R is a compact set, and f(x, y) is continuous on S x 0, the function 

l$!! f(x, y) 

is a continuous function on 8. Similarly, the function 

Vx) := i=1,2yy yE* w7 Y> 

is a continuous function of x E 9. Therefore, h(x, h(x)) is a continuous function on S. Thus, the 
set S, can be expressed as 

s,={xES:h(x,qz)) <--E}. 

We need the following assumption. 
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ASSUMPTION (A4). The boundary X3 := {z E 3 : k(z) = 0) of the set ‘3 has no interior point 
nor i&a&d point. 

In view of (A4), it follows that for any z’ E 83, i.e., h(z’) = 0, there is a sequence {zi}~i c 53, 
such that zi + x’ and &(zi) is strictly monotonically increasing as i --) 00. Then, we have the 
following result. 

THEOREM 1. Let (Y, and a* be defined, respectively by 

a& = $$ $_y f(x7 Y) 
s 

and 

cY* = ;~g~E~f(z,~). 

Then, 
CY* I QE 

and 
CEY, + CY* El.?E-+O+. 

PROOF. Let (x0, y”) E S x R be such that 

There are two cases to be considered. 

(1) If (2O, y”) is an interior point of S, let 

Then, for any e, 0 < E < 6, 

pp$yf(GY) = zTg $.,f(X9Y). 
e 

(2) (x0, y”) is a boundary point of ‘3. For any given E > 0, since 

is a continuous function of x E S, there exists a 6 > 0, such that 

for all x E Oa(zO), where 

06 (x0) = (2 E s : lx -x0( < s}. 

On the other hand, from Assumption (A4), there exists a point 5 E S such that 

)z -201 < 6, 71@) < 0. 

Let E = -(&(1))/2. The following inequalities hold: 

Since E > 0 is arbitrary, the proof is complete. a 
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Now, define 
a* = +e!$&_ ypoyR f(G Y). 

THEOREM 2. For any E > 0, let 

0 < J(E,cr) < &. 
1 

Then, 
min mm f(z, Y) I Q I =~g yC% f(z, y) + E. XES’, yER c 

PROOF. Since J(e, Q) < c2/(32Mi), it follows from Lemma 2 that 

(6) 

On the other hand, let 2, E & such that 

Then, 
J (E, &) 5 Q (xc, E, &) = 0, 

where 
6, = Ye% f(G, Y) + E. 

Therefore, 
(Y 5 6,. 

The proof is complete. I 
THEOREM 3. For any E > 0, let zE E Rn and a a real number such that @(G,&,(Y) = J(E,cx), 
where 101 denotes the Lebesgue measure of the set Cl. If the following condition is satisfied: 

then 

PROOF. Since 

and S, R are compact sets by assumption, there exists a point (z*, y*) such that 

Assuming the contrary, suppose a > (Y*. It follows from Remark l(a),(e) that 

and 

Therefore, 

I n 
QE (f(z*, Y> - a) dY < $nt 

I- n 
QE (hi (Zc*,Y)) dY 5 @I. 

J(e, a) 5 ip (z*, E, a) < E$!k,q. 

This is a contradiction to the condition (7). Thus the proof is complete. 

(7) 

I 
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3. A COMPUTATIONAL PROCEDURE 
On the basis of the results established in Section 2, we are in the position to present a procedure 

for solving the functional inequality constrained minimax optimization problem. 

Computational Procedure 

STEP 0. Select parameters E and 6. 

STEP 1. Choose yr , yz E R and calculate the values of 

Denote the values as (~1, (~2, respectively. Without loss of generality, we assume that (~1 < (~2. 

STEP 2. Calculate J(E, or). Suppose J(e, (ri) # 0; otherwise, decrease e and recalculate J(E, ai) 
again. 

STEP 3. Calculate J(E,cY~). 

STEP 4. Calculate aa in the following two cases: 

(a) if J(E, CQ) = 0, find as according to Golden section search formula: 

a3 = cq + 0.618 (a2 - cxi) ; 

(b) if J(E, ~2) 2 6, then, use the method reported in [lo] to calculate (~3: 

o3 = o2 + (J(~,cyl);;(E:2))1/2 - 1’ 

Then, replace (~1 and 02 by (~2 and (~3, respectively. For the sake of simplicity, we still denote 
them as (~1 and ~2, respectively. Then, return to Step 3. 

STEP 5. If J(e,ag) < 6, check whether the solution satisfies the constraints and f(z, y) 2 a or 
not. If not, decrease 6 and return to Step 3. 

END of Procedure. 

The following theorem can be easily proved on the basis of the results obtained in Section 2, 
and hence, the proof is omitted. 

THEOREM 4. 

(4 
(b) 

(cl 

The Computational Procedure terminates in a finite number of iterations. 
Let all the (~1’s obtained in the successive order as bi, i = 1,2,. . . , L - 1. Let the last (~2 
be denoted by 6~. Then, &i is increasing and J(&) is decreasing. 
If there is an integer ie such that J(&,,) 2 ((k + 1)&/4)]R] and 

then, cr* E (CQ, , a~]. 

By Theorem 4, it is clear that the precision of solution is (YL - CQ . To increase the accuracy, we 
can reduce the value of E and then repeat the procedure. If a better lower bound ai, is required, 
one can modify Step 4(b) in the Computational Procedure to 

a3 = Q2 + (J (E,al;;i(:,1cx2)) - 1 

or develop another procedure according to Theorem 3. 
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Let the vector zf be the decision vector of J(E, (YL), i.e., 

We have the following result. 

THEOREM 5. If the decision vector x* of the minimax optimization problem, i.e., 

is unique, then, 
x,” + x* as&-+O. 

PROOF. Assume the contrary. Then there exists a positive real number u such that, for any 
positive real number 6, there is a z) such that 

Since 9 is compact, there is a convergent subsequence of these z,“. Let x$ i = 1,2,. . . be this 
subsequence and let x0 be its limit vector. Then, 

Therefore, z” is another decision vector of the minimax optimization problem. This is a contra- 
diction, and hence, the proof is complete. I 

4. NUMERICAL EXAMPLES 

For illustration of the proposed computational procedure, we consider two minimax optimiza- 
tion problems. 

EXAMPLE 1. Find a 4th order polynomial to approximate the function s6 on the closed inter- 
val [0, l] such that the maximal difference is minimized. More precisely, 

min max )x1+ 22s + xss2 + ~4.9~ + xss4 - s6] . 
ZEFP sE[O,l] 

Let 

P(z, s) := xi +x2.9+ 2392+24s3+25s4. 

To solve this problem, we construct an auxiliary cost function as 

Jha) = s o1 [se (P(v) - s6 - a) + ge (-a - P(x,s) - s6)] ds. 

Let c& (respectively, au) be the largest (Y (respectively, the first value of a) obtained by the 
procedure such that J(e, a) > (k + l).s/4 (respectively, J(E, a) < 6). The results listed in Table 1 
are obtained in 4 iterations, where 21, x2, x3,24, x5 are corresponding to o?. 

EXAMPLE 2. The harmonic filter design problem can be posed as a minimax optimization prob- 
lem. In [5], the C-type filter is considered, where the the following weighted cost function J is 

selected to reflect the requirements of the filter 

J = XlGs(s) + & + X3Gv(sh (8) 
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Table 1. 

E 10-4 10-s 

6 10-s 10-a 

a’ 5.87 x 1O-3 5.87 x 1O-3 

au 6.00 x 1O-3 5.95 x 10-S 

Xl 5.95 x 10-3 5.81 x 1O-3 

12 -0.27 -2.73 

max(f(x, s) -au) 1 -5.68 x 10m5 1 -2.73 x 10m6 1 

f(x, 3) I au I - 
violated at 8 = 

where s = wj is the frequency variable, Xi, Xz,Xs are positive weights, and Gs(s), GF(s), Gv(s) 
are defined, respectively, as 

G(s) = II Qds) I( flF(S) + %(s> ’ 

GF(S) = /I flFcS) II RF(S) + %3(S) ’ 

G(s) = I/ 1 

/I flF(S) + %(s) ’ 

These functions depend on some parameters R, L, cl, ~2. The objective is to minimize the 
Ho0 norm of J, i.e., 

(9) 

with respect to these parameters. 
In [5], the Ho0 norm of J is estimated by the minimization of L,-norm as p + +oo. The 

decision vector z obtained is that of the minimization problem of L,-norm. Only a subsequence 
of these vectors tends to the decision vector of the original minimsx optimization problem. Thus, 
the decision vector or its estimate is not provided by the method reported in [5]. 

For illustration, let us consider the following model: 

iIs = $f, 
S 

N(s) = 4.605 + 5208.3 x lo-‘s + 166.9s2 + 0.7 x 1O-3s3 + 0.49 x 10-+s4, 

D(s) = 1.071 x 10” + 4.467 x 10’s + 2267 x 1O-4s2 + 2833 x 1O-7s3 

+ 2.736 x lo-‘s4 + 1.835 x 10-7s5, 

fiF(S) = 
SC1 (s2Lcz + R&s + 1) 

szLc2(1 + R)10-2 + Rczs + R + 1’ 

where 
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300R I R 5 700R, 

0.15H 6 L 5 0.3H, 

3 x 10-4F 5 Cl I 15 x lo-+, 

15 x 10-6F < c2 < 50 x 10-9, 

X1 = 1, [(Y, p] = [250,80O]Hz, 

A2 = 0.1, x3 = 0.0005. 

In addition, there is a functional constraint on the filter 

For this specific problem, we choose E = 10m6, S = 10m8, and S’ = 2.5 x 10m4. We define an 
auxiliary cost function as 

J 

0.8 

&,a) = k?&(V) -a) +k2ge, (d'- Il%(Gs) +nF(GS)II) ds, (10) 
0.25 

where kl and ka axe the weighting factors which are free to be chosen. Choose cri = 0, op = 10, 
kl = 10, k2 = 1, E = 1O-3~r. By the Computational Procedure presented in Section 3, we use 
the minimization subroutine EOIVDF of Nag library to find the minimum of J. Now the criteria 
for determining the lower bound QI becomes 

The results are listed in the Table 2. 

Table 2. 

1 [10-d, 10-y 1 [lo-s, 10-y 1 

I 0.3 I 0.3 I 

constraint 
violated at: 

- 

In this table, one can see that 0.206 I cx* I 0.208, where cy* is defined by (6). Because of the 
different tolerances and search steps, the estimation of upper bound Q” for o* does not decrease 
as the true argument of minz @(z, E, o) does. However, they are very close. If one can obtain the 
bound Ml as that in Assumption (A2), an upper bound of a* can be determined. 

5. CONCLUSION 

In this paper, we have considered a functional inequality constrained minimax optimization 
problem. Using a constraint transcription, we constructed an auxiliary cost function. The small- 
est zero of this auxiliary cost function is the solution to the original constrained minimax op- 
timization problem. However, the auxiliary cost function is nonsmooth. Thus, a smoothing 
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technique was used to approximate the smallest zero of that auxiliary function. We have also de- 
veloped a computational procedure to estimate the smallest zero via solving several minimization 
problems. These minimization problems can be solved easily and efficiently by any optimization 
routine in the NAG library. Numerical studies demonstrate that the proposed computational 
procedure works well. 
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