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An Algorithm for Computing the Integral Closure

THEO DE JONG

FB 9 Mathematik, Universität des Saarlandes,
Saarbrücken, Germany

In this article we describe an algorithm for computing the integral closure of a reduced
Noetherian ring, provided this integral closure is finitely generated as a module.
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1. Introduction

In this paper we describe an algorithm for computing the normalization for certain rings.
This quite general algorithm is essentially due to Grauert and Remmert (1971, 1984).
They proved a normality criterion in order to give a simple proof of a theorem of Oka,
which says that the non-normal points of an analytic space is an analytic space itself.
We reformulate their results to better suit our purpose.

Since writing a first version of this article, I have seen a few papers which treat special
cases of our criterion, especially Gianni and Trager (1996) and Vasconcelos (1997, chap-
ter 6). However, the criterion in this article is the most general and flexible. As described
in Eisenbud et al. (1992), one obtains as a by-product an algorithm for finding the irre-
ducible components of a reduced affine variety. For earlier algorithms for computing the
integral closure, we refer to Seidenberg (1975) and Stolzenberg (1968).

An algorithm for computing the integral closure, based on the results in this article,
has been implemented in MACAULAY, and in SINGULAR (Decker et al., 1997). (For
SINGULAR, see Greuel et al. (1997).) It took 4 seconds on a Pentium-Pro2000 in SIN-
GULAR to compute the normalization of the following example of Huneke (see example
10.6.11 in Vasconcelos (1994)).

5abcde− a5 − b5 − c5 − d5 − e5,
ab3c+ bc3d+ a3be+ cd3e+ ade3,
a2bc2 + b2cd2 + a2d2e+ ab2e2 + c2de2,
abc5 − b4c2d− 2a2b2cde+ ac3d2e− a4de2 + bcd2e3 + abe5,
ab2c4 − b5cd− a2b3de+ 2abc2d2e+ ad4e2 − a2bce3 − cde5,
a3b2cd− bc2d4 + ab2c3e− b5de− d6e+ 3abcd2e2 − a2be4 − de6,
a4b2c− abc2d3 − ab5e− b3c2de− ad5e+ 2a2bcde2 + cd2e4,
b6c+ bc6 + a2b4e− 3ab2c2de+ c4d2e− a3cde2 − abd3e2 + bce5.
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2. The Algorithm

Let R be a commutative, Noetherian and reduced ring with 1, R̃ the integral closure
(also called normalization) of R. We consider the set:

NNL := {p ∈ Spec(R) : Rp is not normal}.
Here NNL stands for Non-Normal Locus. Let I be an ideal of R containing a non-zero
divisor. We have canonical inclusions:

R ⊂ HomR(I, I) ⊂ R̃.
The first inclusion is the map which sends an element of R to multiplication with this
element. The second inclusion is sending φ ∈ HomR(I, I) to φ(f)

f for any element f ∈ I
which is a non-zero divisor of R. It is easily checked that the map is independent of the
choice of f . That we in fact land in R̃ is a consequence of the Cayley–Hamilton theorem,
and a proof can be found in any textbook which includes integral closure as a topic, see
for example Eisenbud (1995, Theorem 4.3).

Theorem 2.1. (Grauert and Remmert, 1971, pp. 220–221, 1984, pp. 125–127). Assume
that the ideal I contains a non-zero divisor, and has the following property:

NNL ⊂ V (I),

where V (I) = {p ∈ Spec(R) : I ⊂ p} denotes, as usual, the zero set of I. Suppose
moreover that I has the property

HomR(I, I) = HomR(I,R) ∩ R̃. (∗)
Then one has the following normality criterion:

R = HomR(I, I) ⇐⇒ R is normal.

Proof. The implication ⇐= is trivial. To prove the converse, let h = f
g ∈ R̃. Consider

the following ideal in R:

{φ ∈ R : hφ ∈ R} = Ann(hR/(hR ∩R)).

We call its zero set the “pole set” of h:

P (h) := {p ∈ Spec(R) : h /∈ Rp}.
It is immediate that P (h) ⊂ NNL. Let J be the ideal of P (h). There exists a c > 0 such
that hJc ⊂ R, by the Nullstellensatz. By the Nullstellensatz again

√
I ⊂ J . Therefore

there exists a d > 0 such that hId ⊂ R. Let d ≥ 0 be minimal with this property. The
theorem follows, if we can prove that d = 0. Suppose the converse, that is, d > 0. Then
there exists an a ∈ Id−1 with ha /∈ R. Furthermore, ha ∈ R̃ and (ha)I ⊂ R. It follows
from (∗) that ha ∈ HomR(I, I). From the assumption R = HomR(I, I) it follows that
ha ∈ R, in contradiction with the choice of a.

We have to find an ideal which satisfies condition (∗). This is provided by:

Theorem 2.2. Every radical ideal I containing a non-zero divisor satisfies condition
(∗).
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Proof. The proof is in Grauert and Remmert (1971, 1984), but because it is so simple
we give it here. Let h ∈ R̃, so we have an equation:

hn = a0 + a1h+ · · ·+ an−1h
n−1; ai ∈ R.

If hI ⊂ R, then for each f ∈ I:
(hf)n = a0f

n + a1(hf)fn−1 + · · ·+ an−1(hf)n−1f ∈ I.
As I is supposed to be radical it follows that hf ∈ I, and that is what we had to
prove.

These results give rise to the following algorithm.

Algorithm

INPUT: A reduced Noetherian ring R.
OUTPUT: The normalization R̃ of R.

STEP 1: Determine a non-zero ideal I with NNL ⊂ V (I).
STEP 2: Take a non-zero element f ∈ I, and compute J := Ann(f). If J = 0, GOTO
STEP 4.
STEP 3: Put R := R/Ann(J)⊕R/J and GOTO STEP 1.
STEP 4: Compute the radical

√
I of I. Put I :=

√
I.

STEP 5: Compute HomR(I, I). If R = HomR(I, I) then put R̃ := R and STOP.
STEP 6: Set R := HomR(I, I) and GOTO STEP 1.

This algorithm terminates exactly when the normalization R̃ is finitely generated as
an R-module. This happens for example for affine rings, due to a classical result of E.
Noether.

Some remarks are in order.

1. To determine an ideal I with NNL ⊂ V (I) one can take any I which contains
the non-regular locus of R. This is what one probably always has to do in the
first step. Having such an I, which is radical, one can make a new one by taking
J := Ann(HomR(I, I)/R). Indeed the space defined by J is exactly the non-normal
locus of R. This is what Grauert and Remmert used to prove that the non-normal
locus of an analytic space is analytic.

2. Algorithms for computing the radical of an ideal are described in Eisenbud et al.
(1992) and probably will use most of the time in the algorithm. If possible, one
should avoid this computation by taking an ideal for which one knows in advance
that it is radical. This idea can be applied in the example of Huneke mentioned
in the introduction. One computes that the projective variety defined by those
equations is smooth. Therefore, for I one can take the irrelevant maximal ideal,
and one can avoid computation of the radical in this case.

3. Is it possible to find other ideals satisfying property (∗), which are easier to compute
than the radical? This would speed up the computation. Buchweitz remarked that
the proof of Theorem 2 shows that an integrally closed ideal (which contains a
non-zero divisor) in fact satisfies property (∗).
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4. Let I, J ⊂ R be ideals such that both I and J contain a non-zero divisor. One has a
canonical inclusion HomR(I, I) ⊂ HomR(IJ, IJ). If the inclusion R ⊂ HomR(I, I) is
strict, then also the inclusion R ⊂ HomR(IJ, IJ) is strict. Since R ⊂ HomR(I, I) ⊂
HomR(IJ, IJ)⊂ R̃, one can by replace I by IJ in STEP 5. One can take in particular
J = Ik for some k ≥ 1. This might make the computation faster in some cases, but
might slow down the calculation in other cases. A slower calculation will certainly
result when the inclusion HomR(I, I) ⊂ HomR(Ik, Ik) is not strict. For an example
where the computation is faster, consider the hypersurface defined by the equation
zy3−zx4−x8 = 0. In this case, the reduced ideal of the singular locus is I = (x, y).
One can compute that HomR(I, I) is not normal, but HomR(I2, I2) computes the
normalization of R.

5. In Gianni and Trager (1996), Propositions 4 and 5 it is shown that one can compute
HomR(I, I) ⊂ Q(R) as 1

f (fI :R I) for any non-zero divisor f ∈ I.
6. In STEP 4, having found a zero divisor f , the new ring defined is the ring which

separates two parts of Spec(R), the one part consisting of the union of the compo-
nents on which f vanishes, the other part (defined by J) consists of the union of
the residual components. The extension R ⊂ R/Ann(J) ⊕ R/J is indeed finite. It
is isomorphic to R[u]/K, where the ideal K is generated by u2− u and elements of
type uh1, (u− 1)h2 where h1 runs over Ann(J) and h2 runs over J .

3. The Ring Structure

In the algorithm, the computation of HomR(I, I) has two parts. In several com-
puter algebra systems, one can compute HomR(I, I) as an R-module. The description of
HomR(I, I) as a ring is essentially due to Catanese (1984). We will describe this now.
Take generators u0 := 1, u1, . . . , ut of HomR(I, I) as R-module. Consider the map:

R ·X0 ⊕R ·X1 ⊕ · · · ⊕R ·Xt
φ−→ HomR(I, I), Xi 7→ ui.

Computing the kernel of the map φ gives “linear equations”:

Li =
t∑

j=0

αijXj = 0 αij ∈ R; i = 1, . . . , s.

Because HomR(I, I) is a ring, we have that uiuj is in HomR(I, I) again (for all 1 ≤ i ≤
j ≤ t). Therefore, we can find elements βijk ∈ R such that:

uiuj =
t∑

k=0

βijkuk.

This gives t(t+1)
2 “quadratic equations”:

Qij := XiXj −
t∑

k=0

βijkXk.

For the easy proof of the following theorem, which might speed up the computation of
the the ring HomR(I, I) as quotient of a polynomial ring, we refer to Catanese (1984).

Theorem 3.1. Put X0 = 1, and consider the ideal J ⊂ R[X1, . . . , Xt] generated by the
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Li, i = 1, . . . , s and the Qij for 1 ≤ i ≤ j ≤ t. Then we have a ring isomorphism:

HomR(I, I) ∼= R[X1, . . . , Xt]/J.
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