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In this paper, we study the physical meaning of the wavefunction of the universe. With the continuity 
equation derived from the Wheeler–DeWitt (WDW) equation in the minisuperspace model, we show 
that the quantity ρ(a) = |ψ(a)|2 for the universe is inversely proportional to the Hubble parameter 
of the universe. Thus, ρ(a) represents the probability density of the universe staying in the state a
during its evolution, which we call the dynamical interpretation of the wavefunction of the universe. 
We demonstrate that the dynamical interpretation can predict the evolution laws of the universe in the 
classical limit as those given by the Friedmann equation. Furthermore, we show that the value of the 
operator ordering factor p in the WDW equation can be determined to be p = −2.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In quantum mechanics, the state of a particle is completely de-
scribed by its wavefunction �(x, t). At the time t , the probability 
of finding the particle in an interval �x about the position x is 
proportional to |�(x, t)|2�x, and thus ρ(x, t) = |�(x, t)|2 is inter-
preted as the probability density and �(x, t) is called the probabil-
ity amplitude for the particle. This is the statistical interpretation 
or the ensemble interpretation of the wavefunction determined by 
the Schrödinger equation in the standard quantum mechanics. In 
quantum cosmology theory, the universe is described by a wave-
function ψ(hij, φ) determined by the quantum gravity equation, 
called the Wheeler–DeWitt (WDW) equation [1], Hψ(hij, φ) = 0, 
where hij is the 3d metric and φ is a scalar field, rather than the 
classical spacetime. In principle, the wavefunction should contain 
all information about the universe [2], although it is hard to extract 
all the information from it [3]. At first glance, the wavefunction of 
the universe should satisfy the statistical interpretation [4]. But, if 
we adopt the statistical interpretation for the wavefunction of the 
universe directly, it would be strange that the quantity |ψ(hij, φ)|2
denotes the probability density of finding a universe somewhere.

The observed universe is unique. If we want to study the phys-
ical meaning of the wavefunction of the universe with only one 
universe, the statistical or ensemble interpretation should be aban-
doned. In this paper, we study the properties of the wavefunction 
of the universe in the minisuperspace model, in which the wave-
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function of the universe can be determined by the unique param-
eter, the scale factor a to describe the time-dependent evolution 
of the universe. First of all, we find that the operator ordering 
factor p representing the ambiguity in the ordering of noncom-
muting operators in the WDW equation should take value p = −2
due to the requirement of finiteness of the wavefunction of the 
universe. Next, we show that the quantity ρ(a) = |ψ(a)|2 for the 
universe is inversely proportional to the Hubble parameter of the 
universe, and represents the probability density of the universe 
staying in the state a during its evolution. We further show that 
the dynamical interpretation of the wavefunction of the universe 
can give inflation solutions of the small universe and the correct 
evolution laws of the universe in the classical limit, as required by 
the correspondence principle. This paper is organized as follows. 
In Section 2, the WDW equation is applied to the minisuperspace 
model. Then, the formula of ρ(a) for the universe is obtained with 
a determined p, in Section 3. The dynamical interpretation of the 
wavefunction of the universe is given in Section 4. The correct evo-
lution laws of the universe in the classical limit with dynamical 
interpretation is discussed in Section 5. In Section 6, the formula 
of ρ(a) of the universe within the scalar field model is obtained. 
Finally, we discuss and conclude in Section 7.

2. WDW equation in the minisuperspace model

Assumed to be homogeneous and isotropic, the universe can 
be described by a minisuperspace model [5–7] with one single 
parameter, the scale factor a. The Einstein–Hilbert action for the 
model can be written as
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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S =
∫ (

Rc3

16πG
− 9εn

16c

)√−gd4x, (1)

where the εn represents the energy density of the universe, and 
the constant before εn is chosen for later convenience. Since the 
universe is homogeneous and isotropic, the metric of the universe 
in the minisuperspace model is given by

ds2 = σ 2
[
−N2(t)c2dt2 + a2(t)d
2

3

]
. (2)

Here, d
2
3 = dr2/(1 − kr2) + r2(dθ2 + sin2 θdφ2) is the metric on 

a unit three-sphere, N(t) is an arbitrary lapse function, and σ 2 =
2/3π is a normalizing factor chosen for later convenience. Note 
that r is dimensionless and the scale factor a(t) has length dimen-
sion [8]. From Eq. (2), one can get the scalar curvature

R = 6
ä

σ 2c2N2a
+ 6

ȧ2

σ 2c2N2a2
+ 6k

σ 2a2
, (3)

where the dot denotes the derivative with respect to the time, t . 
Inserting Eqs. (2) and (3) into Eq. (1), we can get

S =
∫

6σ 2Nc4

16πG

(
a2ä

N2c2
+ aȧ2

N2c2
+ ka − Gεna3

c4

)
d4x,

= 6σ 2Nc4 V

16πG

∫ (
a2ä

N2c2
+ aȧ2

N2c2
+ ka − Gεna3

c4

)
dt,

= Nc4

2G

∫ (
− aȧ2

N2c2
+ ka − Gεna3

c4

)
dt.

The Lagrangian of the bubble can thus be written as

L = Nc4

2G

(
ka − aȧ2

N2c2
− Gεna3

c4

)
, (4)

and the momentum pa can be obtained as

pa = ∂L
∂ȧ

= − c2aȧ

NG
.

Taking N = 1, the Hamiltonian is found to be

H = paȧ −L

= −1

2

(
Gp2

a

c2a
+ c4ka

G
− εna3

)
.

In quantum cosmology theory, the evolution of the universe is 
completely determined by its quantum state that should satisfy the 
WDW equation. With H� = 0 and p2

a = −a−p ∂
∂a (ap ∂

∂a ), we get the 
WDW equation [1,3,9],(

1

ap

∂

∂a
ap ∂

∂a
− ka2 + εna4

)
ψ(a) = 0. (5)

Here, k = 1, 0, −1 are for spatially closed, flat and open universe, 
respectively. The factor p represents the uncertainty in the choice 
of operator ordering. For simplicity, we take h̄ = G = c = 1 in this 
paper.

3. The square modulus of the wavefunction for the universe

In order to study the physical meaning of the wavefunction of 
the universe, we should discuss the square modulus of the wave-
function for the universe first. Since there is only one parameter a
in Eq. (5), the complex function ψ(a) can be formally rewritten as

ψ(a) = R(a)exp(i S(a)), (6)
where R and S are real functions. Then the square modulus of the 
wavefunction is

ρ(a) ≡ |ψ(a)|2 = R(a)2.

It should be pointed out that, no matter what the physical mean-
ing it is, the value of ρ(a) should be finite.

From Eq. (5), it is easy to construct a conserved current ja

as [11,15]

ja = i

2
ap(ψ∗∂aψ − ψ∂aψ

∗), (7)

∂a ja = 0. (8)

Inserting Eq. (6) into Eq. (7), we can get

ja = −ap R2 S ′,

where the prime denotes the derivative with respect to a. Integrat-
ing Eq. (8) gives that

ap R2 S ′ = c0, (9)

where the c0 is a dimensionless integral constant.
In the quantum Hamilton–Jacobi theory, the relation between 

the action and the momentum can be written as [5,12],

pa = ∂ S

∂a
= ∂L

∂ȧ
= −aȧ. (10)

According to Eqs. (9) and (10), we can get ρ(a) for the universe

ρ(a) = R(a)2 = − c0

ap+1ȧ
. (11)

Using the definition of the Hubble parameter

H(a) = ȧ

a
, (12)

we can rewrite ρ(a) as

ρ(a) = − c0

ap+2 H(a)
. (13)

In principle, the value of ρ(a) should be finite for any a, i.e., no 
matter whether the universe is very small or large enough. In both 
the inflation stage and the dark energy stage, the value of the Hub-
ble parameter should be finite. From

ρ(a → 0) = − c0

ap+2 H(a)
,

we can get a boundary condition

p + 2 ≤ 0.

On the other hand, the finiteness of ρ(a) with large a

ρ(a → ∞) = − c0

ap+2 H(a)

requires that

p + 2 ≥ 0.

The above two boundary conditions determine the value of the 
ordering factor to be p = −2. Thus, Eq. (13) is reduced to

ρ(a) = − c0

H(a)
. (14)

With the above formula at hand, we can discuss now the physical 
meaning of the wavefunction of the universe.
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Table 1
The classical evolution laws of the universe given by the Friedmann equation. The 
universe is dominated by different kinds of energies εn = λn/an at different stages.

Dominator Density Evolution

radiation n = 4 a(t) ∝ (t + t0)1/2

matter n = 3 a(t) ∝ (t + t0)2/3

dark energy n = 0 a(t) ∝ et

4. Dynamical interpretation of the wavefunction of the universe

In quantum mechanics, the wavefunction �(x, t) of a particle is 
interpreted as probability amplitude and |�(x, t)|2�x is the prob-
ability of finding the particle at time t in the interval �x. This 
is the statistical interpretation or the ensemble interpretation of 
wavefunction. However, such an interpretation of wavefunction in 
quantum mechanics cannot be applied to the wavefunction of the 
universe in quantum cosmology. For an observer inside the uni-
verse, it is should be very strange if the wavefunction is related to 
the probability of finding a universe. So, the physical meaning of 
the wavefunction for the universe should be reinterpreted.

From Eq. (14), we can see that the value of ρ(a) for the uni-
verse only depends on the Hubble parameter H(a). ρ(a) is large 
when the universe expands slowly, and it is small when the uni-
verse expands quickly. So, it is obvious that ρ(a) for the universe 
represents the evolution velocity of the universe and thus relates 
to the dynamics of the universe. In this case, ρ(a) can be treated 
as the dynamical interpretation. Similar to the statistical interpre-
tation of the wavefunction in quantum mechanics, the dynamical 
interpretation for the wavefunction of the universe can be explic-
itly described as:

∫ a2
a1

ψ∗(a)ψ(a)da is proportional to the time spent when the 
universe involves from the state a1 to a2.

In this way, we have showed that the physical meaning of ρ(a) for 
the universe can be interpreted as the probability density of the 
universe staying in the state a during its evolution.

Generally speaking, an interpretation for the physical mean-
ing of wavefunction should satisfy the correspondence principle, 
i.e., the quantum cosmology can reduce to the classical cosmology 
in the classical limit within the dynamical interpretation. In fact, 
the dynamical interpretation completely depends on the evolution 
equation Eq. (11), which we call the dynamical equation for the 
universe. As will be shown below, solutions of the WDW equation 
in the classical limit (a � 1) together with the dynamical equation 
can predict the same evolution laws of the universe as those given 
by the Friedmann equation. The exponential expansion solutions 
of the early universe (a � 1) can also be obtained from the WDW 
equation together with the dynamical equation (11).

5. The evolution of the universe with the dynamical equation

If we want to probe the rationality of the dynamical interpreta-
tion of the wavefunction of the universe, we should verify whether 
the dynamical interpretation can give the correct evolution laws of 
the universe in the classical limit or not [13]. On the other hand, 
the quantum behaviors of the small enough universe should be re-
served with the dynamical interpretation. The classical evolution 
laws of the universe at different stages dominated by radiation, 
matter and dark matter, respectively, can be obtained by solving 
the Friedmann equation. The evolution equations of the classical 
universe at different stages are shown in Table 1.

Let us study the evolution laws of the universe with the dynam-
ical interpretation of the universe. For simplicity, we only consider 
the case of the flat universe k = 0. The WDW equation for the flat 
universe with energy density εn can be written as(

1

ap

∂

∂a
ap ∂

∂a
+ εna4

)
ψ(a) = 0. (15)

Here εn = λn/an , for n = 4, 3, 0 representing the universe domi-
nated by radiation, matter and dark energy, respectively [14].

In principle, the universe contains all kinds of energies at the 
same time, so the energy density should take the form of ε =
ε0 + ε3 + ε4. In practice, the universe is dominated by one kind 
of energy εn at a specific stage. During the evolution of the uni-
verse, n changes slowly from n = 4 to n = 0. For an arbitrary n, we 
can obtain the analytical solutions of Eq. (15),

ψn(a) = a
1−p

2

[
ic1 Jν

(√
λna3−n/2

3 − n/2

)
+ c2Yν

(√
λna3−n/2

3 − n/2

)]
.

(16)

Here, Jα(x)′s are Bessel functions of the first kind, Yα(x)′s are 
Bessel function of the second kind, and ν = |(1 − p)/(n − 6)|.

First, consider the wavefunction of the WDW equation in the 
classical limit (a � 1). For x � ∣∣ν2 − 1/4

∣∣, Bessel functions take 
the following asymptotic forms,

Jν(x) ∼
√

2

πx
cos(x − νπ/2 − π/4),

Yν(x) ∼
√

2

πx
sin(x − νπ/2 − π/4).

If the free parameters c1 and c2 in Eq. (16) take the values of c1 =
c2 = c−

√
π/2, the wavefunction can be rewritten as

ψn(a) = c−a
n−2p−4

4 exp

[−i
√

λna3−n/2

3 − n/2
+ iθ

]
, (17)

where θ = (3n − 2p − 16)π/(4n − 24), and S ′ < 0. From Eq. (10), 
we know that the wavefunction in Eq. (17) describes an expand-
ing universe as suggested by Vilenkin [11]. With the wavefunction 
above, we can get

ρ(a) ≡ |ψ(a)|2 = c2−a−p−2+n/2.

Together with the dynamical equation (11), the above equation 
gives

ȧ = −c0

c2−a−1+n/2
, (18)

where c0 < 0. Transforming the formula in Eq. (18) into

a−1+n/2da = −c0

c2−
dt,

and then integrating both sides of the equation, we have

a(t) ∝
{

(t + t0)
2/n, n �= 0,

et+t0 , n = 0.

The evolution laws of the universe from the WDW equation in the 
classical limit (a � 1) are completely consistent with the solutions 
of the Friedmann equation as shown in Table 1. It is interesting 
that the evolution equation of the universe derived from the WDW 
equation is independent of the operator ordering factor p, which 
definitely means that p only represents the quantum effects of the 
universe [15].

Next, consider the evolution of the early universe (a � 1) 
within the dynamical interpretation. For x � ∣∣ν2 − 1/4

∣∣, Bessel 
functions take the following asymptotic forms,
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Jν(x) ∼
( x

2

)ν 1

�(ν + 1)
,

Yν(x) ∼ −�(ν)

π

( x

2

)−ν
.

So the wavefunction Eq. (16) for the small scale factor (a � 1) can 
be rewritten as

ψn(a) = c−
√

π

2

(
iλν/2

n a1−p

�(ν + 1)(6 − n)ν
− �(ν)(6 − n)ν

πλ
ν/2
n

)
.

Here, we have assumed that p < 1, otherwise the wavefunction 
is divergent. c1 and c2 take the same value c−

√
π/2 as that de-

termined by the solutions in the classical limit. In this case, the 
probability density of the early universe is

ρ(a � 1) ≡ |ψn(a � 1)|2 = c2−
�2(ν)(6 − n)2ν

2πλν
n

.

It is obvious that, when a � 1, ρ(a) approximates a constant de-
noted as ρ0(n). When a � 1, the dynamical equation (11) can be 
rewritten as

ap+1ȧ = − c0

ρ0(n)
,

which is solved by

a(t) =
{

[−(p + 2)c0(t + t0)/ρ0(n)]
1

p+2 , p �= −2,

eH(t+t0), p = −2,

where H = −c0/ρ0(n).
When the universe is very small, its behaviors are dominated 

by quantum effects and the evolution of the universe depends on 
the operator ordering factor p: different p gives different evolu-
tion equations of the scale factor a(t). In fact, the ordering factor p
has been determined by the boundary conditions of finite density 
matrix of the universe as p = −2. This specific value p = −2 gives 
exponential expansion solutions for the early universe, which is 
consistent with the result from quantum trajectory theory [15,16]. 
Thus, we conclude that the WDW equation together with the dy-
namical interpretation can give exponential expansion solutions of 
the early universe and the correct evolution laws of the universe 
in the classical limit.

6. The dynamical interpretation for the minisuperspace model 
with a scalar field

In quantum cosmology, the most widely used model is the min-
isuperspace model with a scalar field. For a FRW universe filled 
with a scalar field φ, the WDW equation can be written as [10,17][

1

ap

∂

∂a
ap ∂

∂a
− 1

a2

∂2

∂φ2
− U (a, φ)

]
ψ(a, φ) = 0,

where U (a, φ) = a2(k − a2 V (φ)). We can rewrite the wavefunction 
ψ(a, φ) as ψ(a, φ) = R(a, φ)eiS(a,φ) , where both R(a, φ) and S(a, φ)

are real functions. Since the wavefunction ψ(a, φ) is a function of 
a and φ, the currents for WDW equation can be obtained as [10]

ja = i

2
ap(ψ∗∂aψ − ψ∂aψ

∗),

= −ap R2(a, φ)∂a S(a, φ), (19)

jφ = −i

2
ap−2(ψ∗∂φψ − ψ∂φψ∗),

= ap−2 R2(a, φ)∂φ S(a, φ). (20)
The quantum Hamilton–Jacobi theory gives the guidance rela-
tions [6]

∂a S(a, φ) = −aȧ,

∂φ S(a, φ) = a3φ̇.

The currents ja and jφ satisfy the continuity equation,

∂a ja + ∂φ jφ = 0. (21)

Inserting Eqs. (19) and (20) into Eq. (21), we can get

∂a(a
p R2∂a S) − ∂φ(ap−2 R2∂φ S) = 0.

Applying the guidance relation to the equation above, we can ob-
tain

∂a(a
p R2∂a S) + ∂a(a

p−2 R2∂φ S)a2φ̇/ȧ = 0. (22)

Integrating Eq. (22) over a, we get

ap+1 R2ȧ − ap+3 R2φ̇2/ȧ +
∫

ap+1 R2φ̇d(a2φ̇/ȧ) = −c0.

Let A(a, φ) = R−2
∫

R2ap+2φ̇(2φa + aφaa)da, which gives

ρ(a, φ) = R2(a, φ) = −c0

ap+1ȧ(1 − a2φ2
a ) + A(a, φ)

, (23)

where φa = dφ/da = φ̇/ȧ, and φaa = dφa/da. We can see when 
φ̇ → 0, i.e., A(a, φ) → 0 and a2φ2

a → 0, ρ(φ, a) in Eq. (23) will 
return to ρ(a) in Eq. (11), which indicates that the dynamical in-
terpretation still holds for the wavefunction of the early universe 
with a slowly-rolling scalar field.

7. Discussion and conclusion

In summary, we have found the mathematical relation between 
the quantity ρ(a) for the universe and the Hubble parameter that 
ρ(a) is inversely proportional to the Hubble parameter H(a). We 
argue that ρ(a) is not the probability density of finding a universe 
somewhere, but represents the probability density of the universe 
staying in the state a. This presents a dynamical interpretation of 
the wavefunction of the universe. We have demonstrated that the 
dynamical interpretation can give the same evolution laws of the 
universe as those given by the Friedmann equation, which satisfies 
the requirement of the correspondence principle that the quantum 
cosmology should reduce to the classical cosmology in the classi-
cal limit. In this way, we have presented an investigation of the 
physical meaning of the wavefunction of the universe.

Another result is that the value of the operator ordering factor 
p that represents the ambiguity in the ordering of noncommut-
ing operators has also been determined. With the requirement of 
the finiteness of the wavefunction of the universe, the ordering 
factor should take value of p = −2. This specific value of p can 
predict exponential expansion solutions of the small universe. In 
fact, when the universe becomes large enough, the evolution of 
the universe is independent of the value of the ordering factor p, 
which implies that p represents the rules of the quantization of 
the early universe and only dominates quantum behaviors of the 
universe.
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