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Abstract

The effective potential of the Standard Model (SM), from three loop order and higher, suffers from 
infrared (IR) divergences arising from quantum effects due to massless would-be Goldstone bosons as-
sociated with the longitudinal polarizations of the W± and Z bosons. Such IR pathologies also hinder 
accurate evaluation of the two-loop threshold corrections to electroweak quantities, such as the vacuum 
expectation value of the Higgs field. However, these divergences are an artifact of perturbation theory, and 
therefore need to be consistently resummed in order to obtain an IR-safe effective potential. The so-called 
Two-Particle-Irreducible (2PI) effective action provides a rigorous framework to consistently perform such 
resummations, without the need to resort to ad hoc subtractions or running into the risk of over-counting 
contributions. By considering the recently proposed symmetry-improved 2PI formalism, we address the 
problem of the Goldstone-boson IR divergences of the SM effective potential in the gaugeless limit of the 
theory. In the same limit, we evaluate the IR-safe symmetry-improved 2PI effective potential, after taking 
into account quantum loops of chiral fermions, as well as the renormalization of spurious custodially break-
ing effects triggered by fermionic Yukawa interactions. Finally, we compare our results with those obtained 
with other methods presented in the literature.
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1. Introduction

In Quantum Field Theory (QFT), there are instances where fixed-order perturbative expan-
sions break down and one needs to rely on techniques for resumming higher-order contributions 
to deal with this problem. A few typical examples are: the IR problem in thermal QFT at high 
temperatures [1–4], the problem of pinch singularities in non-equilibrium QFT [5,6], the dynam-
ical generation of an effective gluon mass [7,8], the resonant production and mixing of unstable 
particles [9,10], as the latter occurs, for example, in scenarios of resonant leptogenesis [11–17]. 
On the other hand, there are cases in which higher-order effects could play an important role, 
even in scenarios with small perturbative couplings and non-resonant dynamics. For instance, 
recent studies [18–20] indicate that the profile of the SM effective potential, extrapolated to very 
high energies, is extremely sensitive to the physics at the electroweak scale. Thus, a formalism 
to incorporate and resum higher-order effects in a rigorous and self-consistent manner is highly 
desirable for a number of applications in thermal and non-thermal QFT.

Recently, it was pointed out [21] that the conventional One-Particle-Irreducible (1PI) effective 
potential [22–24] of the SM is plagued by IR divergences caused by quantum effects due to mass-
less would-be Goldstone bosons associated with the longitudinal polarizations of the W± and Z
bosons. These divergences start from three-loop order for the effective potential Veff(φ) itself, 
but from two loops for its derivative with respect to the Higgs background field φ, dVeff(φ)/dφ, 
which is required for determining the vacuum expectation value (VEV) of φ. The latter is a 
key quantity, as it enters the state-of-the-art calculations of the matching conditions for the SM 
effective potential at the electroweak scale.

The IR divergences in the 1PI effective potential pose a serious field-theoretic problem which 
needs to be addressed for two reasons. First, we expect conceptually that the effective poten-
tial Veff(φ) is a well-behaved analytic function for all values of φ. Second, we observe that 
these IR pathologies formally lower the loop order of the involved contributions, thus causing 
a breakdown of perturbation theory. Therefore, loop graphs that are naively of higher order can 
potentially give significant contributions to the threshold corrections to the VEV of φ. Since the 
precise functional form of the effective potential Veff(φ) for high values of φ is very sensitive to 
the matching conditions at the electroweak scale, this IR problem may affect the stability analyses 
of the SM potential. Most recently, this problem was addressed [25,26] by devising a procedure 
for resumming the pathological IR-divergent terms to all orders, albeit in an ad hoc manner.

A rigorous framework to study the IR problem of the 1PI effective potential is the formalism 
introduced by Cornwall, Jackiw and Tomboulis (CJT) [27]. In its simplest version, the Two-
Particle-Irreducible (2PI) effective action is a generating functional expressed not only in terms 
of fields, but also in terms of their dressed propagators. At any given order of its loopwise ex-
pansion, the 2PI effective action represents an infinite set of higher-order diagrams induced by 
partially resummed propagators. Most importantly, in this 2PI approach of selective resumma-
tions, one does not run into the danger of over-counting graphs.

There have been numerous applications of the 2PI formalism in the literature, although the 
main focus of these were within the context of thermal QFT [3,4,28–32]. Nevertheless, one major 
limitation of the CJT formalism remains its difficulty to describe properly the global and local 
symmetries of the theory, at any fixed order of a loopwise expansion of the 2PI effective action. In 
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particular, in the case of global symmetries, higher-order effects distort them at any given order 
of the loopwise expansion, giving rise to massive Goldstone bosons in the Spontaneous Symme-
try Breaking (SSB) phase of the theory [29,33,34]. A satisfactory solution to this problem may 
be obtained within the context of the recently proposed symmetry-improved CJT formalism [35]. 
In this formalism, the effective potential is defined by virtue of the 1PI Ward Identity (WI) as-
sociated with the global symmetry. This Symmetry-Improved Two-Particle-Irreducible (SI2PI) 
approach has a number of desirable field-theoretical properties [35] that ensure the masslessness 
of the Goldstone bosons within quantum loops. Recently, the SI2PI formalism has also been used 
to study the chiral phase transition [36] in an O(4) theory, and it has been extended to higher nPI 
effective actions [37]. In the same context, possible alternative 2PI formulations [38] have been 
suggested.

In this paper we calculate the SM effective potential with chiral fermions in the gaugeless 
limit of theory, within the SI2PI formalism. Specifically, we consider an ungauged model based 
on the SU(2)L ×U(1)Y group with one Higgs doublet, one doublet of left-handed top and bottom 
quarks, and one right-handed top quark. Moreover, quantum effects due to chiral fermions are 
treated semi-perturbatively, in the sense that the double Legendre transform giving rise to the 
2PI effective action is performed only with respect to the scalar fields. We expect that these 
approximations yield a relatively accurate evaluation of the full SM effective potential. In this 
simplified framework of the SI2PI formalism, we study the problem of IR divergences of the SM 
effective potential. In particular, we compute the SI2PI effective potential and show that it is IR 
safe. For comparison, we first consider only the scalar-boson contributions, by neglecting fermion 
quantum effects. We find that our results differ in a relevant manner with those obtained using the 
approximate partial resummation method of [25,26], thereby confirming the preliminary analysis 
given in [43]. Then, we include the contributions from quantum fermion loops to find that our 
results are in fair agreement with those reported in [25,26].

The layout of the paper is as follows. After this introductory section, in Section 2 we discuss 
how the IR divergences appear in the 1PI effective potential. Also, we briefly present an approx-
imate partial resummation prescription that enables one to deal with the Goldstone-boson IR 
problem. In Section 3 we review the SI2PI formalism, which we apply to the SM scalar sector, 
based on the SSB of the global SU(2)L × U(1)Y group. In Section 4 we include the contribution 
from chiral fermion quantum loops, specifically due to top and bottom quarks. In addition, we 
describe our renormalization programme of the SI2PI effective action, which includes renormal-
ization of spurious custodially breaking effects triggered by Yukawa interactions. In Section 5
we compute the IR-safe SI2PI effective potential, in which both SM scalar and fermion loops 
are considered. We compare our numerical estimates with the ones obtained with the method 
of [25,26]. Section 6 presents our conclusions. Finally, pertinent technical details and detailed 
formulae were relegated to the two Appendices A and B.

2. The infrared divergences of the SM effective potential

In this section, we will demonstrate how quantum loops of massless Goldstone bosons can 
cause IR divergences in the 1PI effective potential of the SM [21]. Also, we will briefly review the 
prescription presented in [25,26] to deal with this IR problem, which is based on an approximate 
partial resummation of a selected topology of graphs. The results obtained with this approximate 
method will be compared in Section 5 with those derived by employing our SI2PI approach.

From a given order and higher in perturbation theory, the SM effective potential Veff(φ) suffers 
from IR divergences due to the presence of Goldstone bosons in ring diagrams, as shown in Fig. 1. 
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Fig. 1. IR dependence of the Goldstone-boson ring contributions to the 1PI effective potential Veff(φ) and its φ-derivative 
dVeff/dφ, as a function of the squared Goldstone-boson mass g ≡ m2

G
. The IR infinities start from three loops for Veff(φ)

and from two loops for dVeff/dφ.

This IR problem starts at three-loop order, where the divergence is logarithmic, and becomes 
more severe with increasing loop order. As also shown in Fig. 1, these IR divergences become 
even more severe when one considers the derivative of the effective potential dVeff/dφ, in which 
case the IR infinities appear in two loops.

In the usual perturbation theory, the IR divergences stem from the value of the Higgs field φ, 
for which the neutral and charged Goldstone-boson propagators �G,+(k) exhibit massless poles 
at the tree level. Evidently, this happens at the minimum of the tree-level potential, i.e. when

k2 = m2
G ≡ λφ2 − m2 → 0 (2.1)

in the Landau gauge ξ = 0, where λ and m2 are the quartic coupling and the squared mass term 
of the SM potential, respectively. Instead, the effective potential Veff(φ) and all its φ-derivatives 
are finite at the dressed minimum φ = v. Nevertheless, the IR infinities in Veff(φ) for some values 
of φ still pose a serious field-theoretic problem, for the following reasons:

(i) The effective potential Veff(φ) should be a well-defined analytic function for all values of φ, 
and not only at its dressed minimum φ = v. Interestingly enough, the functional form of the 
effective potential at φ �= v is an essential quantity in inflationary scenarios, as it governs the 
dynamics of the background inflaton field.

(ii) At the dressed minimum φ = v, the dressed Goldstone-boson masses vanish. Hence, their 
tree-level mass m2

G given in (2.1) is formally of the same order as the one-loop Goldstone-

boson self-energy �(1)
G (k) at k2 = 0. As can be seen from Fig. 1, starting from three-loop 

order, the would-be IR infinities of dVeff/dφ are of the form 1/(m2
G)n, with n ≥ 1. Conse-

quently, all higher-loop contributions to dVeff/dφ are formally of two-loop order. Clearly, 
this signifies a breakdown of perturbation theory and these diagrams can potentially have 
a significant impact on the two-loop evaluation for dVeff/dφ, and so on the state-of-the-art 
threshold corrections to the VEV v. Because of the extreme sensitivity of the SM effective 
potential at high φ values to the matching conditions at the electroweak scale [18–20], it is 
obvious that an IR-sensitive value of φ at φ = v may have a relevant impact on the stability 
analyses of the SM itself.

Another related problem is that the squared tree-level mass of the Goldstone boson m2
G

can be negative at the dressed minimum φ = v, thus generating an unphysical imaginary part 
for the SM effective potential at its minimum, which does not correspond to a true instabil-
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ity of the homogeneous vacuum. This suggests that a resummation of higher-loop diagrams 
is needed to address this conceptual problem as well. Finally, we stress that, even though the 
location of the IR divergences depends on the value of the gauge-fixing parameter ξ , the diver-
gences are nonetheless present in any renormalizable Rξ gauge at field values of φ, for which 
m2

G(φ; ξ) = 0.

2.1. Approximate partial resummation

It is now interesting to briefly outline an approximate partial resummation procedure which 
was proposed in [25,26] to address the IR problem in the 1PI effective potential.

This procedure consists in considering only ring diagrams, as displayed in Fig. 1, with inser-
tions of one-loop Goldstone-boson self-energies �G(k). In this approach, the Goldstone-boson 
self-energies were approximated with their zero-momentum value �G(0). With this important 
simplification, the ring diagrams can, in principle, be resummed which results in making the fol-
lowing replacement for the one-loop Goldstone-boson contribution to the 1PI effective potential:

V
(1)
eff,G = 3m4

G

4(16π2)

[
ln

(
m2

G

μ2

)
− 3

2

]
−→ 3(m2

G + �G(0))2

4(16π2)

[
ln

(
m2

G + �G(0)

μ2

)
− 3

2

]
. (2.2)

However, as argued in [25,26], the φ-derivative of such a resummed term is still divergent. This 
pathology can be remedied by prescribing that �G(0) only contains terms that are not propor-
tional to m2

G, which amounts to replacing

�G(0) −→ �g ≡ �G(0) − 3λ

(16π2)
m2

G

(
ln(m2

G/μ2) − 1
)

. (2.3)

Note that the subtracted term from �G(0) in (2.3) does not correspond to a particular diagram, 
rather it represents an ad hoc choice of contributions from a tadpole-like self-energy graph in-
volving a single Goldstone-boson loop and a sunset graph with one Higgs and one Goldstone 
boson running in the loop. As a last step of the prescription adopted in [25,26], one needs to 
remove from Veff by hand all those diagrams that would be double-counted otherwise. Taking all 
these facts into account, the partially resummed effective potential reads:

V
(resum)
eff,G ≡ 3 (m2

G + �g)
2

4 (16π2)

[
ln

(
m2

G + �g

μ2

)
− 3

2

]
− V

(d.c.)
eff,G , (2.4)

where V (d.c.)
eff,G is the contribution of the double-counted diagrams.

In Fig. 2, we present numerical estimates of the φ-derivative of the 1PI effective potential, 
dVeff/dφ, as a function of φ, which are computed in two different approaches: (i) the perturbative 
three-loop leading computation of ring diagrams consisting of two Goldstone-boson self-energy 
graphs as indicated in Fig. 1 and (ii) the approximate partial resummation prescription followed 
in [25,26]. For definiteness, we use the following values for the MS parameters: μ = 173.35 GeV, 
m = 93.36 GeV and λ = 0.12710. As shown in Fig. 2, the dashed (red) line represents the pertur-
bative three-loop leading contribution, which exhibits an IR Goldstone-boson mass singularity 
at φ ≈ 261.87 GeV, whereas the solid (black) line results from the approximate partial resum-
mation prescription, which is ostensibly IR finite. Finally, the dotted (gray) line corresponds to 
the tree-level result. In the next sections, we will develop a SI2PI approach to address the IR 
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Fig. 2. Numerical estimates of (1/φ) dVeff/dφ versus φ, as obtained in different approaches for the scalar sector of 
the SM, using the MS parameters: μ = 173.35 GeV, m = 93.36 GeV and λ = 0.12710. The dashed (red) line is the 
perturbative three-loop leading contribution, which exhibits an IR Goldstone-boson mass singularity at φ ≈ 261.87 GeV. 
The solid (black) line is the prediction of the approximate partial resummation prescription of [25,26], whilst the dotted 
(gray) line corresponds to the tree-level contribution.

problem and compare the results of our approach with those using the approximate resummation 
prescription presented here.

3. The SM scalar sector in the 2PI formalism

In this section we briefly review the 2PI formalism applied to the scalar sector of the SM, 
in the gaugeless limit of the theory. A pertinent discussion and further details may be found in 
[35,43]. We postpone to Section 4 the inclusion of chiral fermion quantum effects arising from 
top-quark Yukawa interactions.

Our starting point is the Lagrangian describing the scalar sector of the SM,

Lscalar = (Dμ�†)(Dμ�) + m2 �†� − λ (�†�)2 . (3.1)

In the above, Dμ = ∂μ + igwT aWa
μ + ig′YBμ is the SU(2)L ×U(1)Y covariant derivative, where 

T a = σa/2 (with a = 1, 2, 3) and Y are the generators of the SU(2)L and U(1)Y groups asso-
ciated with the Wa

μ and Bμ gauge fields, respectively. In addition, � is the Higgs doublet with 
Y = 1/2, which is expanded about the background field φ as

� =
(

G+
1√
2
(φ + H + i G0)

)
, (3.2)

where H is the observed Higgs boson, and G0 and G+ are the neutral and charged Goldstone 
bosons, respectively. In the U(1)Y gaugeless limit g′ → 0, the Lagrangian (3.1) possesses a 
higher symmetry, the so-called custodial symmetry [39–42]: SU(2)L × SU(2)R/Z2 
 SO(4), 
which is spontaneously broken to a diagonal custodial subgroup SU(2)C ≡ SU(2)(L+R). As a 
consequence of the SU(2)C symmetry, the Goldstone bosons G0 and G+ are mass degenerate 
and their respective dressed propagators �G and �+ are equal to each other.

The 2PI effective action is obtained by introducing a local source J (x), as in the usual 1PI 
effective action, and a bi-local source K(x, y), with implicit SU(2) group structure. By Legendre-
transforming the connected generating functional with respect to these sources, one obtains the 
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2PI effective action �[φ, �], depending on the background field φ and the dressed propaga-
tors �. In the gaugeless limit of the theory in which gw, g′ → 0, the 2PI effective action for the 
SM scalar sector (expanded diagrammatically up to two-loop topology graphs) may conveniently 
be expressed as [35,43]

�
(2)
scalar[φ,�H ,�G,�+]

=
∫ [

Z0

2
(∂μφ)2 + m2 + δm2

0

2
φ2 − λ + δλ0

4
φ4

]
− i

2
Tr

(
ln�H

) − i

2
Tr

(
ln�G

) − i Tr
(

ln�+)
− i

2
Tr

{[
Z1 ∂2 + (

3λ + δλA
1 + 2δλB

1

)
φ2 − (

m2 + δm2
1

)]
�H

}
− i

2
Tr

{[
Z1 ∂2 + (

λ + δλA
1

)
φ2 − (

m2 + δm2
1

)]
�G

}
− i Tr

{[
Z1 ∂2 + (

λ + δλA
1

)
φ2 − (

m2 + δm2
1

)]
�+}

− i

4

{
− i(3λ + δλA

2 + 2δλB
2 )

∫
i�H i�H − 2i(λ + δλA

2 )

∫
i�H i�G

− 4i(λ + δλA
2 )

∫
i�H i�+ − i(3λ + δλA

2 + 2δλB
2 )

∫
i�Gi�G

− 4i(λ + δλA
2 )

∫
i�Gi�+ − 4i(2λ + δλA

2 + δλB
2 )

∫
i�+i�+

}

− i

{
+ +

}
, (3.3)

where the integrals are meant to be evaluated in position space over the common spacetime 
variable of the relevant fields and Green functions. In the last line of (3.3), double lines denote the 
dressed Green functions �, whereas single lines are reserved to represent tree-level propagators.

The additional counter-terms (CTs) in (3.3) that are not present in the 1PI formalism origi-
nate from the appearance of several related operators with mass-dimensions 2 and 4 in the 2PI 
effective action [44–46]. Instead, the standard perturbative 1PI CTs appear at higher loop or-
ders. In particular, no vertex CT is needed to be considered in the sunset diagrams in the last 
line of (3.3), as such a CT would be necessary to cancel subdivergences of higher-order dia-
grams.

The Equation of Motions (EoMs) for the dressed propagators �H, G, +(k) are obtained 
by differentiating the 2PI effective action �

(2)
scalar[φ, �H , �G, �+] in (3.3) with respect to 

these propagators. Because of the custodial SU(2)C symmetry of the SM scalar-sector 2PI 
effective action �

(2)
scalar, we can limit ourselves to the EoMs for �H (k) and �G(k), since 

�+(k) = �G(k). After a Wick rotation to Euclidean space with Euclidean momentum k, we 
obtain
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�−1, H (k) = (1 + δZ1) k2 + (3λ + δλA
1 + 2δλB

1 )φ2 − (m2 + δm2
1)

+ (3λ + δλA
2 + 2δλB

2 )TH + 3(λ + δλA
2 )TG

− 18λ2φ2 IHH (k) − 6λ2φ2 IGG(k) , (3.4a)

�−1, G(k) = (1 + δZ1) k2 + (λ + δλA
1 )φ2 − (m2 + δm2

1)

+ (λ + δλA
2 )TH + (5λ + 3δλA

2 + 2δλB
2 )TG − 4λ2φ2 IHG(k) , (3.4b)

where δZ1 = Z1 −1. In writing down the two EoMs in (3.4), we have introduced the tadpole and 
sunset integrals:

Ta = μ2ε

∫
p

i�a(p) , Iab(k) = μ2ε

∫
p

i�a(k + p) i�b(p) , (3.5)

where lnμ2 = lnμ2 + γ − ln(4π), with μ being the MS renormalization mass scale. Here and 
in the following, the Latin indices run over H, G, +.

At the two-loop level of the 2PI effective action �
(2)
scalar, there is no wavefunction re-

normalization and so the CT δZ1 can be set equal to zero. Otherwise, we may isolate the 
ultra-violet (UV) divergences from the integrals (3.5) by introducing the auxiliary propagator

�0(k) ≡ (k2 + μ2)−1 , (3.6)

which has the same asymptotic behaviour as the dressed propagators �a(k). Given that �a =
�0 + O(�2

0), one may extract, for instance, the UV divergence of Iab(k) as

Iab(k) = μ2ε

∫
p

[
i�0(p)

]2 + Iab(k) , (3.7)

where Iab(k) is the finite renormalized sunset integral. A more detailed discussion, including 
chiral fermion quantum effects, will be given in Section 4 and Appendix B. The EoMs (3.4)
are renormalized by cancelling separately the subdivergences proportional to the renormalized 
tadpole integrals and the overall divergences proportional to the field powers φ0 and φ2 [35,47]. 
Out of 2 ×4 relations, only 5 of them are found to be independent, which uniquely fixes the value 
of the 5 CTs appearing in (3.4). Hence, the renormalized EoMs are found to be [35,43]

�−1, H (k) = k2 + 3λφ2 − m2 + 3λTH + 3λTG − 18λ2φ2 IHH (k)

− 6λ2φ2 IGG(k) + �
2PI,(2)
H , (3.8a)

�−1, G(k) = k2 + λφ2 − m2 + λTH + 5λTG − 4λ2φ2 IHG(k) + �
2PI,(2)
G , (3.8b)

where the analytic expression for the renormalized tadpole integral Ta is given in [43]. The same 
expression can also be inferred from (B.10), for vanishing Yukawa couplings ht . In (3.8) we 
have included also the renormalized two-loop 2PI self-energies �2PI,(2)

a . However, as we discuss 
in more detail in Section 4, the latter contributions result from a three-loop order truncation of 
the 2PI effective action, and so we approximate them by their usual 1PI form evaluated in the 
zero-momentum limit k → 0. Their analytic expressions are given in Appendix A.

We conclude this section by reminding the reader of an important feature of the SI2PI formal-
ism [35] adopted here. The EoM for the background field φ is replaced by the standard 1PI WI 
stated later in (5.1). In Section 5 we employ this WI to compute the SI2PI effective potential in 
terms of the dressed G0 propagator.
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4. Quantum effects from chiral fermions

Our goal is now to include quantum effects from chiral fermions, by considering a simplified 
semi-perturbative 2PI framework with one third generation quark doublet and one right-handed 
top quark. This is a non-trivial task within the SI2PI formalism. The inclusion of SM chiral 
fermions breaks down explicitly the remaining custodial SU(2)C symmetry of the theory, giv-
ing rise to spurious custodially breaking effects that may even violate the Goldstone symmetry 
underpinning the SI2PI formalism. As we will see, however, such spurious effects can be consis-
tently removed by appropriate renormalization, thereby reinforcing the Goldstone symmetry of 
the theory.

To start with, let us consider a simple but realistic extension of the SM scalar sector with a 
single Yukawa coupling ht governing the interaction of the Higgs doublet � to third generation 
quarks. To be specific, the Yukawa interaction of interest is described by the Lagrangian

−LY = ht ε
ab QL,a�

†
b tR + H.c. , (4.1)

where εab is the antisymmetric Levi-Civita symbol, QL = (tL bL)T is the left-handed SU(2)L
quark doublet of the third generation and tR the right-handed top quark.

For the purpose of this study, we consider a semi-perturbative approach to include chiral 
fermion quantum effects in the 2PI effective action. Specifically, we only couple the scalar fields 
to bilocal sources, but not the chiral fermions. Upon a Legendre transform with respect to these 
bilocal sources, we generate dressed Green functions for all SM scalar fields, but not for the 
chiral fermions, i.e. for the third generation quarks. In this simplified framework, the 2PI effective 
action expanded to two-loop order is given by

�(2)[φ,�H ,�G,�+] = �
(2)
scalar[φ,�H ,�G,�+] + 3 i Tr lnSα (0)[φ]

− i

{
+ +

}
, (4.2)

where �(2)
scalar is the 2PI effective action for the SM scalar sector given by (3.3) and Sα (0)[φ], 

with α = t, b, is the tree-level fermion propagator. The factor of 3 in (4.2) arises from the sum 
over degenerate colour degrees of freedom. The 2PI effective action �(2) can be renormalized in 
a fashion similar to the scalar case discussed in Section 3, by introducing a set of renormalized 
parameters and their associated CTs. Notice that the wavefunction renormalization Z1 in �(2)

scalar
can no longer be set to 1, because it is needed to renormalize the UV divergences of the diagrams 
involving fermions.

Differentiating �(2)[φ, �H , �G, �+] in (4.2) with respect to �H(k), �G(k) and �+(k), we 
obtain respectively the EoMs (expressed in the Euclidean momentum space)

�−1, H (k) = (1 + δZ1) k2 + (3λ + δλA
1 + 2δλB

1 )φ2 − (m2 + δm2
1)

+ (3λ + δλA
2 + 2δλB

2 )TH + (λ + δλA
2 )TG + 2 (λ + δλA

2 )T+

− 18λ2φ2 IHH (k) − 2λ2φ2 IGG(k) − 4λ2φ2 I++(k) + �H (k) , (4.3a)
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Fig. 3. Leading two-loop topology for the operator (�†�)2 that gives rise to custodially violating artifacts in a fixed 
loop-order truncated 2PI effective action at zero momentum. See text for details.

�−1, G(k) = (1 + δZ1) k2 + (λ + δλA
1 )φ2 − (m2 + δm2

1) + (λ + δλA
2 )TH

+ (3λ + δλA
2 + 2δλB

2 )TG + 2 (λ + δλA
2 )T+

− 4λ2φ2 IHG(k) + �G(k) , (4.3b)

�−1, +(k) = (1 + δZ1) k2 + (λ + δλA
1 + δλcb

1 )φ2 − (m2 + δm2
1) + (λ + δλA

2 )TH

+ (λ + δλA
2 )TG + 2 (2λ + δλA

2 + δλB
2 )T+ − 4λ2φ2 IH+(k) + �+(k) .

(4.3c)

In the above, �a(k) (with a = H, G, +) are the one-loop H -, G0- and G+-boson self-energies, 
respectively, which have been calculated in the standard perturbative 1PI formalism. The one-
loop self-energies �a(k) are renormalized in the MS scheme. Upon MS renormalization, their 
analytic expressions in the Euclidean momentum space are given by

�H (k) = − 3h2
t

16π2

(
s B(k; t, t) − 4 tB(k; t, t) + 2A(t)

)
, (4.4a)

�G(k) = − 3h2
t

16π2

(
s B(k; t, t) + 2A(t)

)
, (4.4b)

�+(k) = − 3h2
t

16π2

(
s B(k; t,0) − tB(k; t,0) + A(t)

)
. (4.4c)

Here, we have introduced the φ-dependent tree-level top-quark mass squared t = h2
t φ

2/2 and 
the kinematic variable s = −k2 ≤ 0. In addition, by analytic continuation, we allow s to assume 
positive values as well, in which case s may be identified with the usual time-like Mandel-
stam variable. Finally, the MS-renormalized one-loop functions A(x) and B(k; x, y) are defined 
in Appendix A.

In addition to the CTs that occur in the 2PI effective action for the SM scalar sector, one 
extra CT, δλcb

1 , needs to be considered when chiral fermion quantum effects are included in the 
EoM (4.3c). As mentioned above, top Yukawa interactions break explicitly the custodial SU(2)C
symmetry, leading to artifacts that violate the Goldstone symmetry in the 2PI effective action 
and so the equality between the dressed Goldstone-boson propagators, i.e. �G(0) = �+(0), at 
zero momentum k = 0. We should stress here that these artifacts arise from a fixed loop-order 
truncation of the 2PI effective action and are absent in the standard 1PI perturbative formulation 
of QFT. In particular, one can show that some of the UV divergences proportional to φ2 get 
missed in the EoMs, because of this finite loop-order truncation of the 2PI action.

To understand better the mechanism of hard custodial violation in the 2PI action at zero mo-
mentum, let us consider the two-loop topology in Fig. 3. This topology generates an operator of 



A. Pilaftsis, D. Teresi / Nuclear Physics B 906 (2016) 381–407 391
Fig. 4. Field contractions of the topology in Fig. 3 that generate Goldstone-boson self-energy graphs that are included in 
the one-loop 2PI resummation.

Fig. 5. Field contractions of the topology in Fig. 3 that generate Goldstone-boson self-energy graphs that are not included 
in the one-loop 2PI resummation. In perturbation theory, these contributions cancel against the ones in Fig. 4 at zero 
momentum.

the form �†
i �

†
j�i�j . When two of the external fields are taken as the background field φ, the 

field contractions involving one index i and one index j would give rise to a hard custodial viola-
tion, i.e. to different contributions for the neutral and the charged Goldstone-boson self-energies 
at zero momentum. In perturbation theory these contributions vanish, because all field contrac-
tions are included at a fixed given loop order. However, in a two-loop truncated 2PI effective 
action, the resulting two-loop self-energies in Fig. 4 are included because of the 2PI resumma-
tion, but not the ones in Fig. 5. As shown in Figs. 4 and 5, all the different field contractions are 
needed to make the spurious custodially-violating terms vanish at zero momentum. In particular, 
some of the UV divergences proportional to φ2 get missed in (4.3b) and (4.3c), thus spoiling 
the equality �G(0) = �+(0), at zero momentum k = 0. Hence, the inclusion of δλcb

1 is neces-
sary to compensate for this artifact. Moreover, the finite part of δλcb

1 can be chosen, such that 
the renormalized neutral and charged Goldstone-boson propagators have both massless poles at 
φ = v, thereby reinforcing the Goldstone symmetry of the theory within the context of the SI2PI 
formalism adopted in this paper.

To renormalize the EoMs stated in (4.3), we deploy the same strategy as for the scalar case 
presented in the previous section, which closely follows [35]. The only new aspect is that fermion 
quantum loops as described by the self-energies �a(k) modify the asymptotic behaviour of the 
dressed scalar propagators �H, G, +(k). In the following, we show how the scalar sunset inte-
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grals Iab get renormalized. The renormalization of the tadpole integrals Ta goes along similar 
lines, but it is technically more involved and will therefore be discussed in detail in Appendix B.

In order to isolate the UV divergences appearing in the loop integrals involving scalar dressed 
propagators, we introduce the auxiliary propagator

�̃0(k) ≡
(
k2 + μ2 + �̃(k)

)−1
, (4.5)

where �̃(k) is chosen so as to have the same functional form as the neutral Goldstone-boson 
self-energy involving a top-quark loop, but with a fictitious MS mass μ, i.e.

�̃(k) = − 3h2
t

16π2

(
s B(k;μ2,μ2) + 2A(μ2)

)
. (4.6)

Notice that all the self-energies (4.4) have the same asymptotic behaviour as �̃(k), for high 
values of s. As a consequence, the auxiliary propagator has the same asymptotic behaviour as 
that of the scalar dressed propagators, i.e.

�a(k) = �̃0(k) + O
(
�̃2

0(k)
)

. (4.7)

Our aim is to find a set of CTs in terms of the auxiliary propagator �̃0(k). Since the so-derived 
CTs will only depend on the MS mass μ and the parameters of the Lagrangian, the EoMs will 
be successfully renormalized, for any value of the field φ.1

With the aid of the auxiliary propagator �̃0(k), we may now extract the UV-divergent part of 
the sunset integral Iab(k) by introducing the loop integral

Ĩ0 ≡ μ2ε

∫
k

�̃2
0(k) . (4.8)

We note that the combination Iab(k) − Ĩ0 is finite, because of the expansion (4.7). In order to 
exactly match our results to the perturbative MS-scheme results at two-loop accuracy, the finite 
part of the CTs has to be chosen accordingly. More explicitly, the CTs have to contain only the 
UV poles of Ĩ0 and not finite constant terms, when Ĩ0 is expanded perturbatively at two-loop 
order. To achieve this, we subtract from Ĩ0 its finite piece in a two-loop MS-renormalization, 
which we denote as ̃I0

∣∣(2)

fin , as follows:

Ĩ0
∣∣(2)

fin =
[ ](2)

fin

=
[

+ 2

](2)

fin

=
[

2

]
fin

. (4.9)

1 Observe that this procedure guarantees that the EoMs are successfully renormalized also at finite temperature T with 
T -independent counterterms, as they should be.
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In arriving at the last equality, we have used the fact that the perturbative one-loop diagram has no 
finite terms within the MS scheme, whilst the last finite two-loop diagram is calculated explicitly 
in Appendix B [cf. (B.11b)]. Thus, in the MS scheme, the UV infinite part of the sunset integral 
is extracted as

ĨCT ≡ Ĩ0 − Ĩ0
∣∣(2)

fin . (4.10)

Hence, the unrenormalized sunset integral Iab may be written down as the sum

Iab = ĨCT + Iab , (4.11)

where Iab is the corresponding MS-renormalized sunset integral given by

Iab(k) =
∫
p

(
�a(p − k)�b(p) − �̃2

0(p)

)
+ Ĩ0

∣∣(2)

fin , (4.12)

with Ĩ0
∣∣(2)

fin given by (B.11b). An analogous partitioning approach to the MS-renormalization of 
the tadpole integrals Ta is presented in Appendix B.

Proceeding as in the scalar case, we may now impose the vanishing of all UV divergences 
on the EoMs (4.3), which are contained in the CTs and the UV-infinite parts of the integrals as 
discussed above. We note that in our simplified semi-perturbative framework, the wavefunction 
renormalization δZ1 of the dressed scalar propagators �H ,G, +(k) may be calculated, within 
the context of standard perturbation theory. Instead, wavefunction renormalizations for fermions 
do not enter the one-loop order EoMs for �H ,G, +(k) and therefore they do not need to be 
considered here. Otherwise, exactly as done in the scalar case discussed in the previous section, 
one needs to require that the UV-divergent terms proportional to φ2, Ta and the remaining overall 
divergences vanish. These conditions also ensure that all subdivergences get cancelled. Out of 
3 × 5 relations, only 6 of them are found to be independent, which are sufficient to fix the values 
of the 6 CTs δm2

1, δλA,B,cb
1 and δλA,B

2 in terms of (UV divergent) integrals involving the auxiliary 
propagator �̃0(k), the MS mass μ and Lagrangian parameters, such as m2, λ and ht . Explicit 
analytic expressions for all these CTs are exhibited in Appendix B.

After executing the above renormalization programme, the renormalized EoMs for the dressed 
propagators �H ,G, +(k) are found to be (in Euclidean k-momentum representation)

�−1, H (k) = k2 + 3λφ2 − m2 + 3λTH + λTG + 2λT+ − 18λ2φ2 IHH (k)

− 2λ2φ2 IGG(k) − 4λ2φ2 I++(k) + �H (k) + �
2PI,(2)
H + �

2PI,(2)
H , (4.13a)

�−1, G(k) = k2 + λφ2 − m2 + λTH + 3λTG + 2λT+ − 4λ2φ2 IHG(k)

+ �G(k) + �
2PI,(2)
G + �

2PI,(2)
G , (4.13b)

�−1, +(k) = k2 + λφ2 − m2 + λTH + λTG + 4λT+ − 4λ2φ2 IH+(k)

+ �+(k) + �
2PI,(2)
+ + �

2PI,(2)
+ , (4.13c)

where the analytic expressions for �a(k), Iab(k) and Ta are given in (4.4), (4.12) and (B.10), 
respectively. As done in the scalar case discussed in Section 3, we have also included the renor-
malized two-loop self-energies �2PI,(2)

a (k) and �2PI,(2)
a (k), which are obtained from three-loop 

2PI vacuum diagrams, upon cutting scalar propagator lines and approximating the resulting self-
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energies by their perturbative 1PI forms in the zero-momentum limit k → 0.2 The expressions for 
the above two-loop 1PI self-energies are given in Appendix A. Within this approximated SI2PI 
framework, we are now able to consistently compare our results in the next section with those 
obtained in a full perturbative two-loop calculation of the SM effective potential in the gaugeless 
limit of the theory.

5. Symmetry-improved 2PI approach to resumming IR divergences

In this section we consider the SI2PI formalism proposed in [35] to study the problem of IR 
divergences in the SM effective potential. The SI2PI formalism is a rigorous and self-consistent 
theoretical framework, and proves suitable to address the Goldstone-boson IR problem outlined 
in Section 2 for a number of reasons. First, it is a first-principle method for performing dia-
grammatic resummations, without the need to resort to ad hoc subtractions in order to achieve 
single counting of graphs. Second, as we will explicitly demonstrate below, the 2PI nature of our 
approach takes into account more topologies of graphs, as well as the momentum dependence 
of the self-energy insertions that are resummed. In this respect, the SI2PI approach differs from 
the approximate resummation prescription of [25,26]. Finally, as discussed in detail in [35], the 
dressed Higgs- and Goldstone-boson propagators exhibit the proper threshold properties within 
the SI2PI formalism, which originate from the kinematic opening of on-shell multi-particle states 
in the loops. In particular, the Goldstone bosons G0,+ in quantum loops are exactly massless at 
the radiatively corrected VEV of the background field φ, since they are mediated by the re-
summed propagators �G, +(k) which have massless poles. Nevertheless, it can be shown that the 
SI2PI effective potential of the gaugeless SM has no IR infinities.

It is now instructive to understand diagrammatically the full set of topologies of graphs 
that are resummed by means of the EoMs for the dressed propagators denoted collectively 
as �(k; φ) ≡ �H, G, +(k; φ). In fact, Fig. 6 shows graphically the sort of diagrams that are ac-
counted for by the EoMs stated in (4.13). The first three graphs in the first line of Fig. 6 represent 
an infinite set of diagrams of certain topologies, as shown more explicitly in Fig. 7. In order to be 
able to compare our results with the perturbative two-loop calculation of the SM effective poten-
tial, we have also included the two-loop 2PI diagrams in the second and third lines of Fig. 6. In 
this way, we may also resum diagrams as the ones depicted in Fig. 8. Since we approximate in the 
EoMs (4.13) the dressed scalar propagators �(k; φ) appearing in these two-loop self-energies 
with their respective tree-level forms �(0)(k; φ) ≡ �(0),H, G, +(k; φ), the corresponding lines 
in Fig. 8 do not get dressed. The same is true for the fermion lines, which represent tree-level 
propagators as in the 1PI formalism. In summary, we take into account the full contribution of 
two-loop diagrams and, in addition, a much larger class of diagrams, as compared to the approx-
imate resummation method outlined in Section 2.1. Unlike in the latter method, the momentum 
dependence of all the resummed graphs is retained in the SI2PI approach.

At this point, it is important to emphasize that in the SI2PI approach, Goldstone-boson IR 
divergences are absent by construction. Such divergences could only occur, if two or more 
Goldstone-boson propagators carry the same momentum, as in the ring diagrams shown in Fig. 1. 
Specifically, the IR divergences originate from a series of Goldstone-boson self-energies occur-
ring in single Goldstone-boson lines. However, such topologies are necessarily Two-Particle-

2 Notice that the pure scalar two-loop corrections to the G0- and G+-boson self-energies are equal for any value of the 
momentum k, because of the custodial SU(2)C symmetry, i.e. �

2PI,(2)
(k) = �

2PI,(2)
+ (k).
G
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Fig. 6. Diagrammatic representation of topologies of graphs that are resummed by means of the EoMs stated in (4.13). 
Notice that the very last two-loop self-energy diagram is Two-Particle-Reducible with respect to the fermion lines and 
needs be consistently considered in this semi-perturbative treatment of fermion quantum effects.

Fig. 7. Typical topologies of graphs that are implicitly resummed by the one-loop 2PI self-energies in the first line of 
Fig. 6. Observe that the fermion propagators do not get dressed and are treated perturbatively as in the 1PI formalism.

Fig. 8. Typical set of graphs that are resummed when including the two-loop 2PI self-energies in the second and third 
line of Fig. 6. Notice that the propagators belonging to two-loop 2PI topologies do not get dressed, in the assumed 
approximation �(k; φ) ≈ �(0)(k, φ).

Reducible (2PR), and as such, they do not appear in the diagrammatic series of �[φ, �], which 
contains only 2PI diagrams with respect to the scalar-field propagators. Hence, the resumma-
tion of all Goldstone-boson IR divergences is automatic in the SI2PI formalism and can thus be 
performed in a systematic manner.

As presented in [35], the effective potential in the SI2PI formalism may be computed by 
means of the standard 1PI Ward identity

− dṼeff(φ)

dφ
≡ φ �−1, G(k = 0;φ) . (5.1)

In fact, the differential equation (5.1) should be viewed as a fundamental equation whose so-
lution defines the SI2PI effective potential, which we denote as Ṽeff(φ) so as to distinguish it 
from the usual 1PI effective potential Veff(φ), frequently used in the literature. In the custodial 
SU(2)C symmetric limit of the theory, such a definition is unique, because of the equality of the 
resummed neutral and charged Goldstone-boson propagators, i.e. �G(k; φ) = �+(k; φ). How-
ever, as discussed in detail in Section 4, the inclusion of chiral fermion quantum effects breaks 
explicitly this custodial symmetry, leading to a potential ambiguity, since one might have used 
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Fig. 9. Numerical estimates of (1/φ) dVeff/dφ, as a function of φ in the vicinity of the dressed minimum φ = v, located at 
values of φ ≈ 262.8 GeV, including only scalar quantum effects. Predictions for the perturbative one-loop, two-loop and 
leading three-loop computations are given by the dotted (green), dash-dotted (blue) and dashed (red) lines, respectively. 
The solid (black) line is the result of the approximate partial resummation procedure discussed in Section 2.1. The black 
dots are the results obtained in the SI2PI approach. The same input parameters as in Fig. 2 are used.

�−1,+(k = 0; φ) on the RHS of (5.1) to define Ṽeff. Although the finite part of the CT δλcb
1 is 

chosen so as to match the two resummed propagators at the minimum of the SI2PI effective 
potential, i.e.

�−1, G(k = 0; v) = �−1, +(k = 0; v) = 0 , (5.2)

far away from the minimum, e.g. for φ � v, the two versions of the so-derived effective poten-
tials may slightly differ from each other, through higher-order effects. The origin of this small 
difference is due to the scheme assumed to renormalize the aforementioned spurious custodially 
violating effects in the EoM of �+(k; φ), instead of �G(k; φ). Nevertheless, we find that the nu-
merical impact of these renormalization scheme-dependent effects is negligible for the purposes 
of this study.

We utilize the computational method developed in [35] to solve numerically the EoMs given 
in (4.13), for different values of φ, The numerical solution for �G(k; φ) is then employed to 
evaluate the SI2PI effective potential, by means of (5.1). The boundary condition of the differ-
ential equation (5.1) may be chosen such that Ṽeff = 0 at its minimum φ = v. As a non-trivial 
check, we have expanded the EoMs through two-loop order and have reproduced numerically 
the well-known perturbative two-loop results in the literature [48]. This cross check reassures 
the correctness of the renormalization procedure presented in Section 4 and in Appendix B, and 
establishes a high degree of accuracy for our numerical method.

Let us first discuss the results obtained by considering only scalar quantum effects on the 
effective potential in the gaugeless SM. In Fig. 9, we present numerical estimates of the quantity 
(1/φ) dVeff/dφ, as a function of φ in the vicinity of the dressed minimum φ = v, which is 
located at values of φ ≈ 262.8 GeV. The predictions for the perturbative one-loop, two-loop 
and leading three-loop computations are given by the dotted (green), dash-dotted (blue) and 
dashed (red) lines, respectively. We note that the black dots in Fig. 9 represent the numerical 
solution obtained in the SI2PI approach, which should be contrasted with the solid (black) line 
displaying the results obtained with the approximate partial resummation method outlined in 
Section 2.1. The difference between the two different approaches is significant, as it is about 
75% of the sum of three- and higher-loop contributions to the effective potential. In this respect, 
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Fig. 10. Comparison of the results for (1/φ) dVeff/dφ obtained in the SI2PI (black dots) and 2PI (black triangles) 
formalisms. The lines and the input parameters are the same as those in Fig. 9.

we observe that the leading three-loop result is larger than the naive expectation, which is about 
λ/16π2 times the two-loop one. This fact indicates a breakdown of finite-order perturbation 
theory, as discussed in Section 2. Thus, resumming IR-enhanced contributions in a complete and 
self-consistent manner, as done in the SI2PI approach, becomes an essential and indispensable 
task in higher-order precision computations of the SM effective potential.

It is now interesting to assess further the significance of our results obtained in the SI2PI 
formalism by comparing them with those derived in the conventional 2PI framework. To this end, 
we truncate the standard 2PI effective action at the two-loop order and compute the derivative of 
the effective potential dVeff/dφ, in Euclidean space, as follows:

dVeff

dφ
≡ 1

V4

δ�[φ,�(φ)]
δφ

= 1

V4

δ�[φ,�]
δφ

∣∣∣∣
�(φ)

= φ
(
λφ2 − m2 + 3λTH + 3λTG

) + T
(2)
H , (5.3)

where V4 is the infinite 4-volume of integration, TH,G are the renormalized Higgs- and 
Goldstone-boson integrals [cf. (3.8)], and T (2)

H is the two-loop tadpole contribution reported in 
Appendix A. Note that the latter has consistently been approximated by its perturbative 1PI form. 
In the standard 2PI framework, the propagators are evaluated using the EoMs in (3.8), but with-
out including the two-loop self-energies �2PI,(2)

H,G . Thus, there is a mismatch through the different 
loop order that the EoMs for the propagators and for the fields have been truncated, which af-
fects the predictions for the effective potential in the standard 2PI formalism. From Fig. 10, it 
is obvious that the discrepancy in the predictions obtained between the two methods is numeri-
cally significant. Specifically, the results derived by the standard 2PI formalism are quantitatively 
close to the ones found in the approximate partial resummation method discussed above. Con-
sequently, this exercise demonstrates that the SI2PI formalism provides a unique and consistent 
framework for resumming IR-enhanced contributions to the effective potential. Finally, we note 
that the solution pertaining to the Goldstone-boson propagator in the standard 2PI formalism be-
comes tachyonic for φ � 262.85 GeV, so that its naive use in the vicinity of the dressed minimum 
of the effective potential turns out to be problematic. Again, this feature is absent in the SI2PI 
approach, where the Goldstone-boson propagator becomes tachyonic, by construction, only for 
field values φ smaller than the minimum of Ṽeff(φ) [cf. (5.1)].
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Fig. 11. The same as in Fig. 9, after including both scalar and chiral fermion quantum effects. The value of the top 
Yukawa coupling ht = 0.93697 is used in the MS scheme. The remaining input parameters are chosen as in Fig. 2.

Fig. 12. Numerical estimates of the real part of 1PI two-loop self-energies of neutral Goldstone bosons involving quantum 
corrections due to only scalars or chiral fermions, as functions of the variable s. Observe that the momentum dependence 
of the latter quantum corrections in the IR region is much weaker.

We now turn our attention to the contribution of mixed scalar-fermion quantum effects to the 
SM effective potential in the gaugeless limit of the theory. In Fig. 11, we show numerical esti-
mates for (1/φ) dVeff/dφ, as a function of φ, by solving the complete EoMs (4.13), in which 
the contributions of fermion quantum loops are included. In this case, we find that the results 
obtained in the SI2PI approach are in fair agreement with those found in the approximate resum-
mation method of [25,26].

This last result is not obvious, but it can be understood in terms of the momentum-dependence 
of the Goldstone-boson self-energies. As shown in Fig. 12, fermion quantum effects yield the 
largest contribution to the Goldstone-boson self-energies, and unlike scalar quantum effects, they 
show a weaker momentum dependence, which is almost constant in the IR. Since the approxi-
mate partial resummation neglects the momentum-dependence of the resummed self-energies, it 
works significantly better in the mixed scalar-fermion case, as the latter is dominated by the top-
quark contribution thanks to the large top Yukawa coupling ht . However, in a full 2PI analysis, 
resummation effects may potentially alter this conclusion. As shown in Fig. 13, multi-particle 
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Fig. 13. Numerical values of the expression p Im�
(b G+)
t t (/p)//p, which is related to the absorptive part of the 1PI one-

loop self-energy of the t -quark induced by the on-shell contribution from a b-quark and a G+ boson in the loop, as a 
function of p ≡ √

s. This illustrates that the momentum dependence of the dressed top-quark propagator gets significantly 
modified in the deep IR region, with respect to the tree-level one.

threshold effects from the dressed top-quark propagator could significantly modify the momen-
tum dependence of the Goldstone-boson propagators in the relevant IR region, and so they can 
give rise to possible sizeable deviations from the predictions derived with the approximate par-
tial resummation method mentioned above. A detailed discussion of these effects in a full 2PI 
approach goes beyond the scope of this work and may be given elsewhere.

6. Conclusions

The 2PI effective action constitutes a first-principles systematic approach to consistently re-
sum infinite series of selected sets of diagrams. In this selective resummation approach, one does 
not run into the risk of over-counting graphs, and so no ad hoc subtractions are needed to achieve 
single counting. In its symmetry-improved version considered here, the SI2PI formalism is a 
rigorous framework to study models with global symmetries. In this paper we have applied this 
formalism to the SM in the gaugeless limit of the theory, namely to an electroweak model re-
alizing a global SU(2)L × U(1)Y group with vanishing gauge couplings. Specifically, the field 
content of the gaugeless SM that we have been studying consisted of one Higgs doublet, one 
left-handed top and bottom quark, and one right-handed top quark. For the purpose of this work, 
we treated all quantum effects due to chiral fermions semi-perturbatively. This means that we 
have not considered bilocal sources and dressed propagators for all chiral quarks, but only for 
the scalar fields in the Higgs doublet, including the ones for the Goldstone bosons.

In this simplified framework of the SI2PI formalism, we have studied the problem of IR diver-
gences of the SM effective potential due to massless Goldstone bosons related to the longitudinal 
polarizations of the W± and Z bosons. To this end, we have taken into account all relevant coun-
terterms related to the renormalization of the 2PI effective action, as well as those associated 
with the renormalization of spurious custodially breaking effects triggered by the top Yukawa 
couplings. We have calculated the SI2PI effective potential and have shown that it is IR finite, 
thereby providing a firm proof of earlier observations that the IR divergences in the 1PI effective 
potential are an artifact of perturbation theory. This conclusion is not only valid for the ungauged 
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SM under study, but general. It applies to the full SM, as well as to models of New Physics 
realizing SSB of extra gauge groups.

The results of our analysis have been compared with those derived from an approximate partial 
resummation of Goldstone-boson ring diagrams, as done so far in the literature to address the 
Goldstone-boson IR problem. Moreover, we have compared our results with those that would 
have been found, if we had calculated the effective potential within the standard 2PI framework. 
By considering only quantum scalar effects of the SM, we have shown that the results obtained 
in our SI2PI approach differ in a relevant manner with the ones predicted by the aforementioned 
approximate resummation method and the standard 2PI approach. Specifically, the difference 
in the predictions between the SI2PI and the other two methods was found to be numerically 
significant, i.e. about 75% of the sum of three- and higher-loop contributions.

This sizeable difference in the predictions is not generic, but alters considerably, once the 
contributions from top- and bottom-quark loops were added. In this case, we have found fairly 
good agreement with the previously quoted estimates of the approximate method. The latter is 
not an obvious result and may be partially attributed to the kinematic behaviour of the Goldstone-
boson self-energies in the IR region. Fermion quantum effects give the biggest contribution to 
the Goldstone-boson self-energies, and unlike scalar quantum effects, they show a weaker mo-
mentum dependence, which is almost constant in the IR. Nevertheless, we have argued that 
such a conclusion may be premature and can potentially alter in a full 2PI analysis. We have 
demonstrated that if the fermions are treated non-perturbatively within the SI2PI formalism as 
well, multi-particle threshold effects can modify significantly the momentum dependence of the 
Goldstone-boson propagators in the relevant IR region, thus leading to possible significant devi-
ations from the predictions found using the approximate partial resummation method mentioned 
above. A detailed discussion of the fully non-perturbative inclusion of chiral fermions in the 
gaugeless SM lies beyond the scope of this work and may be given elsewhere.

We note that the SI2PI approach developed further in this paper can find an immediate appli-
cation to precision computations of the effective potential in supersymmetric extensions of the 
SM. In particular, in the so-called Minimal Supersymmetric Standard Model (MSSM), scalar top 
quarks provide the dominant source of radiative corrections [51–53], in which case the afore-
mentioned approximate partial resummation method is bound to be inadequate to deal with 
the higher-order precision required in the computation. Instead, in view of the present study, 
the SI2PI formalism proves itself to be a rigorous and systematic approach that allows one to 
accurately address the Goldstone-boson IR problem in the MSSM effective potential. Finally, 
the SI2PI formalism may be used to study, from first principles and with higher precision, IR-
sensitive renormalon effects in Quantum Chromodynamics [54,55]. It would be interesting to 
report progress on the above issues in the near future.
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Appendix A. Loop integrals

In this appendix, we present analytical formulae for the renormalized two-loop self-energies 
�

2PI,(2)
a and �2PI,(2)

a appearing in the EoMs (3.8) and (4.13). These are calculated in perturbation 
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theory by standard techniques [49,50]. As discussed in Sections 3 and 4, we approximate them 
by their zero-momentum value. This simplification introduces an error that is negligible for the 
purposes of this work. We adopt the compact notation of [49], and introduce lnx ≡ ln(x/μ2) and 
s = −k2, where the momentum k is given in the Wick-rotated Euclidean space. We may now 
define the one-loop functions

A(x) ≡ x (lnx − 1) , (A.1a)

B(k;x, y) ≡ −
1∫

0

dt ln[tx + (1 − t)y − t (1 − t)s] . (A.1b)

For a concise presentation of our analytic results, we may also need to define the two-loop func-
tions I (x, y, z), V (x, y, z, w) and U(x, y, z, w), evaluated at zero momentum. The analytical 
formulae for these loop functions, together with the explicit expression of B(k; x, y), may be 
found in [50].

For the 2PI self-energies involving only scalar loops, the relevant topologies are the ones 
depicted in the second line of Fig. 6. Introducing the tree-level background masses squared h =
3λφ2 − m2 and g = λφ2 − m2, we find [43]

(16π2)2 �
2PI,(2)
H (φ) = 54λ3φ2 ln

2
h + 36λ3φ2 lnh lng + 30λ3φ2 ln

2
g

− 6λ2 I (h,h,h) − 6λ2 I (h, g, g) − 216λ3φ2 I (h′, h,h)

− 72λ3φ2 I (h′, g, g) − 24λ3φ2 I (g′, g,h) − 648λ4φ4 I (h′, h′, h)

− 144λ4φ4 I (h′, g′, g) − 24λ4φ4 I (g′, g′, h) , (A.2a)

(16π2)2 �
2PI,(2)
G (φ) = 8λ3φ2 B(g,h)2 − 24λ2I (h,h,h) + 22λ2I (g,h,h)

− 16λ2I (g, g,h) + 6λ2I (g, g, g) , (A.2b)

where B(x, y) (without explicitly displaying the momentum argument) is understood to be eval-
uated at zero momentum and a primed argument denotes a derivative of the loop function with 
respect to that argument, e.g.

I (h′, h,h) ≡ dI (x,h,h)

dx

∣∣∣∣
x=h

. (A.3)

For the self-energies that include fermion loops, the relevant topologies are the ones shown 
in the third line of Fig. 6. It proves convenient to calculate first at zero momentum the two-loop 
self-energies �2PR,(2)

a (with a = H, G, +), which are 2PR with respect to cuts of scalar lines, as 
can be seen from Fig. A.14. Then, we may obtain the 2PI self-energies through the relations

1

φ

dV
Yuk,(2)
eff

dφ
= �

2PI,(2)
G + �

2PR,(2)
G = �

2PI,(2)
+ + �

2PR,(2)
+ , (A.4a)

d2V
Yuk,(2)
eff

dφ2
= �

2PI,(2)
H + �

2PR,(2)
H . (A.4b)

The first relation stems from the standard WI of the 1PI effective action. The well-known re-
sult for the perturbative two-loop contribution to the effective potential V Yuk,(2)

eff (φ) thanks to 
top-quark Yukawa interactions is given by
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Fig. A.14. Perturbative 2PR topologies, with respect to cuts of scalar lines, that contribute to �
2PR,(2)
a .

V
Yuk,(2)
eff (φ) = 3h2

t

2 (16π2)2

[
2A(t)2 − 4A(t)A(g) − 2A(t)A(h) + (4t − h)I (t, t, h)

+ 2(t − g)I (t, g,0) − g I (t, t, g)
]

. (A.5)

The 2PR self-energies �2PR,(2)
a are calculated to be

(16π2)2 �
2PR,(2)
H (φ)

= −9λh2
t

[
(h − 4t)I (h′, t, t) + I (h, t, t) + 2A(t) lnh

]
− 3λh2

t

[
g I (g′, t, t) + I (g, t, t) + 2A(t) lng

]
− 6λh2

t

[
(g − t) I (g′, t,0) + I (g, t,0) + A(t) lng

]
+ 108λ2h2

t φ
2
[
(4t − h)V (h,h, t, t) + U(h,h, t, t) + 2A(t)B(h′, h)

]
+ 12λ2h2

t φ
2
[
− g V (g,g, t, t) + U(g,g, t, t) + 2A(t)B(g′, g)

]
+ 24λ2h2

t φ
2
[
(t − g)V (g,g, t,0) + U(g,g, t,0) + A(t)B(g′, g)

]
, (A.6a)

(16π2)2 �
2PR,(2)
G (φ)

= −3λh2
t

[
(h − 4t)I (h′, t, t) + I (h, t, t) + 2A(t) lnh

]
− 9λh2

t

[
g I (g′, t, t) + I (g, t, t) + 2A(t) lng

]
− 6λh2

t

[
(g − t) I (g′, t,0) + I (g, t,0) + A(t) lng

]
+ 12λ2h2

t φ
2
[
(4t − h)V (g,h, t, t) + U(g,h, t, t) + 2A(t)B(h′, g)

]
+ 12λ2h2

t φ
2
[
− g V (h,g, t, t) + U(h,g, t, t) + 2A(t)B(g′, h)

]
, (A.6b)

(16π2)2 �
2PR,(2)
+ (φ)

= −3λh2
t

[
(h − 4t)I (h′, t, t) + I (h, t, t) + 2A(t) lnh

]
− 3λh2

t

[
g I (g′, t, t) + I (g, t, t) + 2A(t) lng

]
− 12λh2

t

[
(g − t) I (g′, t,0) + I (g, t,0) + A(t) lng

]
+ 12λ2h2

t φ
2
[
(4t − h)V (g,h, t, t) + U(g,h, t, t) + 2A(t)B(h′, g)

]
+ 12λ2h2

t φ
2
[
(t − g)V (h,g, t,0) + U(h,g, t,0) + A(t)B(g′, h)

]
. (A.6c)
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As discussed above, the 2PI two-loop self-energies �2PI,(2)
a (with a = H, G, +) are finally ob-

tained by combining these expressions with (A.4) and (A.5).
Finally, we give the analytical expression for the two-loop tadpole contribution T

(2)
H (φ) to the 

Higgs field,

(16π2)2 T
(2)
H (φ) = − 6λ2 I (h,h,h) − 6λ2 I (h, g, g) . (A.7)

This last expression will be needed for the evaluation in (5.3) of the derivative of the effective 
potential dVeff/dφ in the standard 2PI formalism.

Appendix B. Renormalization of mixed scalar-fermion quantum loops

In this appendix, we complete the discussion of Section 4 on the renormalization of the EoMs 
stated in (4.3), in which both scalar and chiral fermion quantum effects are considered.

We start by renormalizing the tadpole integral Ta , along the lines of what was done in Sec-
tion 4 for the sunset diagrams. To this end, we decompose the scalar dressed propagators as

�−1,a(k) ≡ k2 + M2
a + �scalar

a (k) + �a(k) , (B.1)

where the mass parameter M2
a contains all momentum-independent terms and �scalar

a (k) stands 
for the renormalized scalar sunset diagrams, with a = H, G, +. In terms of the auxiliar propa-
gator �̃0(k) introduced in (4.5), we may perform the asymptotic expansion

�a(k) = �̃0(k) − �̃0(k)
(
M2

a − μ2 + �scalar
a (k) + �a(k) − �̃(k)

)
�̃0(k) +O

(
�̃3

0(k)
)

.

(B.2)

In order to extract the UV divergences of Ta in terms of the auxiliary propagator �̃0(k), we 
introduce the integrals

T̃0 ≡ μ2ε

∫
k

�̃0(k) , (B.3a)

J̃0 ≡ μ2ε

∫
k

�̃0(k)2 B(k;μ2,μ2)

16π2
. (B.3b)

Hence, we have

Ta = T̃0 − (M2
a − μ2) Ĩ0 −

∫
k

�scalar
a (k) �̃2

0(k) −
∫
k

(
�a(k) − �̃(k)

)
�̃2

0(k)

+ (finite) . (B.4)

Like in the pure scalar case, we may replace in the third term on the RHS of (B.4) the dressed pro-
pagators contained in �scalar

a (k) with the auxiliary tree-level propagator �0(k) of (3.6), since the 
difference so introduced is UV finite (see [35]). In order to match to the perturbative MS scheme 
at two-loop order, we select the CT parts as described in Section 4. Thus, the MS-renormalized 
tadpole integral Ta may be calculated as follows:

Ta = T̃CT − (M2
a − μ2) ĨCT + νaλ

2φ2J̃CT

−
∫ (

�a(k) − �̃(k)
)

�̃2
0(k)

∣∣∣
CT

+ Ta , (B.5)
k
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where νH = 24 and νG = ν+ = 4. The UV-infinite CT parts are obtained as in Section 4, i.e.

T̃CT ≡ T̃0 − T̃0
∣∣(2)

fin , (B.6a)

J̃CT ≡ J̃0 − J̃0
∣∣(2)

fin . (B.6b)

In order to write down the fourth term on the RHS of (B.5) more explicitly, we make use of the 
asymptotic expansion

�a(k) − �̃(k) = − 3h2
t

16π2

[
ξat − 4μ2 − (χat − 2μ2)B(k;μ2,μ2)

]
+ O

(
1

s

)
+ O(ε) .

(B.7)

Here, the values of the coefficients are: ξH = ξG = 4, ξ+ = 2 and χH = 6, χG = χ+ = 2. By 
virtue of the asymptotic expansion (B.7), one is now in a position to isolate the UV divergences 
from the fourth term on the RHS of (B.5) as follows:∫

k

(�a − �̃) �̃2
0

∣∣∣
CT

⊃ − 3h2
t

16π2
(ξat − 4μ2) ĨCT + 3h2

t (χat − 2μ2) J̃ CT . (B.8)

There is an additional finite contribution to (B.8) coming from the O(ε) term in (B.7). We find 
convenient to obtain this term by matching directly the LHS and the RHS of (B.5), expanded at 
two-loop order, in the MS scheme. This correction term is found to be

− 3h2
t

(16π2)2
(ξat − 4μ2)

1

2
. (B.9)

In this way, we finally obtain the MS-renormalized tadpole integral

Ta = Ta − T̃ CT +
[
M2

a − μ2 − 3h2
t

16π2
(ξat − 4μ2)

]
ĨCT

+
[
− νaλ

2φ2 + 3h2
t (χat − 2μ2)

]
J̃ CT + 3h2

t

(16π2)2
(ξat − 4μ2)

1

2
. (B.10)

The finite parts of the integrals involving the auxiliary propagators are needed to evaluate (B.10), 
by means of (4.10) and (B.6). As we did for the loop integrals in Appendix A, these finite pieces 
can be calculated in analogous manner. More explicitly, we find

T̃0
∣∣(2)

fin =
[

+
]

fin

= − μ2

16π2

(
1 − 3h2

t

16π2
η3

)
, (B.11a)

Ĩ0
∣∣(2)

fin =
[

2

]
fin

= −2
3h2

t

(16π2)2
η2 , (B.11b)
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J̃0
∣∣(2)

fin =
[

−
]

fin

= − 1

(16π2)2

1

2
η1 , (B.11c)

where

η2 = 1 − 2 i

3
√

3

(
Li2

1 − i
√

3

2
− π2

36

)

 0.60935 , (B.12a)

η1 = 6η2 − 5 
 −1.34391 , (B.12b)

η3 = 12η2 − 4 
 3.31219 . (B.12c)

Employing (4.11) and (B.10) in the EoMs given in (4.3), we can separate the UV-divergent 
parts from the finite renormalized remainders. The latter give the renormalized EoMs listed 
in (4.13). Requiring that in addition to the wavefunction renormalization, the UV-divergent terms 
proportional to φ2, Ta and the remaining overall divergences do individually vanish, we arrive at 
the following 6 independent constraining equations:

0 = −12λ2ĨCT + δλA
2 (1 − 6λ ĨCT) + δλB

2 (2 − 6λ ĨCT) , (B.13a)

0 = −8λ2ĨCT + δλA
2 (1 − 6λ ĨCT) + δλB

2 (−2λ ĨCT) , (B.13b)

0 = 9h4
t

16π2

1

ε
+

(
30λh4

t

16π2
− 36λ2

)
ĨCT + (84λ3 − 36λh4

t ) J̃ CT + δλA
1 + δλB

2

+ δλA
2

[(
18h4

t

16π2
− 6λ

)
ĨCT + (36λ2 − 18h4

t ) J̃ CT

]
+ δλB

2

[(
12h4

t

16π2
− 6λ

)
ĨCT + (48λ2 − 18h4

t ) J̃ CT

]
, (B.13c)

0 = 3h4
t

16π2

1

ε
+

(
30λh4

t

16π2
− 12λ2

)
ĨCT + (44λ3 − 24λh4

t ) J̃ CT + δλA
1

+ δλA
2

[(
18h4

t

16π2
− 6λ

)
ĨCT + (36λ2 − 18h4

t ) J̃ CT

]
+ δλB

2

[(
12h4

t

16π2
− 2λ

)
ĨCT + (8λ2 − 6h4

t ) J̃ CT

]
, (B.13d)

0 = δλcb
1 − (λ + δλB

2 )
6h4

t

16π2
ĨCT , (B.13e)

0 = −δm2
1 + 6λT̃ CT + 6λ

(
m2 + μ2 − 12h2

t μ
2

16π2

)
ĨCT + 36λh2

t μ
2J̃ CT

+
(

2δλA
2 + δλB

2

)[
2T̃ CT + 2

(
m2 + μ2 − 12h2

t μ
2

16π2

)
ĨCT + 12h2

t μ
2J̃ CT

]
. (B.13f)

The first two constraining relations come from the cancellation of the subdivergences propor-
tional to Ta in the three EoMs given in (4.13). Equations (B.13c) and (B.13d) are obtained from 
the ones proportional to φ2 in the EoMs for �H (k) and �G(k), respectively, whilst (B.13e) is the 
analogous constraining condition for �+(k), after imposing (B.13d). Finally, (B.13f) is obtained 
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by cancelling the remaining overall divergence in the three EoMs stated in (4.13). In this way, 
the following analytic expressions for the CTs are obtained:

δZ1 = − 3h2
t

16π2

1

ε
, (B.14a)

δm2
1 = 6λ

1 − 6λĨCT

[(
T̃ CT + (m2 + μ2) ĨCT

)
− 3h2

t μ
2
(

4

16π2
ĨCT − 2J̃ CT

)]
, (B.14b)

δλA
1 = − 3h4

t

16π2ε
+ 4λ2 3ĨCT(1 + 4λ2J̃ CT) − 11λĨ2

CT + 12λ2Ĩ3
CT − 11λJ̃ CT

1 − 8λĨCT + 12λ2Ĩ2
CT

+ 6λh4
t

−ĨCT

(
5

16π2 + 6J̃ CT

)
+ 12λ

16π2 Ĩ
2
CT + 4J̃ CT

1 − 8λĨCT + 12λ2Ĩ2
CT

, (B.14c)

δλB
1 = − 3h4

t

16π2ε
+ 4λ2

1 − 2λĨCT

(
3ĨCT − 5λĨ2

CT − 5λJ̃ CT

)
+ 6λh4

t J̃ CT

1 − 2λĨCT
, (B.14d)

δλcb
1 = ĨCT

1 − 2λĨCT

6λh4
t

16π2
+ δλcb

1,fin , (B.14e)

δλA
2 = 4λ2ĨCT

1 − 8λĨCT + 12λ2Ĩ2
CT

(2 − 3λĨCT) , (B.14f)

δλB
2 = 2λ2ĨCT

1 − 2λĨCT
. (B.14g)

Notice that we have added the finite contribution δλcb
1,fin to δλcb

1 , which is chosen so as to en-

sure that �−1,G(k = 0; φ = v) = �−1,+(k = 0; φ = v) = 0, as discussed in Section 4. In case 
the two-loop self-energies �2PI,(2)

a (k) and �2PI,(2)
a (k), as calculated in perturbation theory, are 

included in the EoMs given in (4.13), one then needs to add to the CTs (B.14) the relevant contri-
butions resulting from standard perturbation theory. We shall not report their explicit expressions 
here.
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