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ABSTRACT The reversal potential of GABAA receptor channels is known to be less negative than the resting membrane
potential under some cases. Recent electrophysiological experiments revealed that a GABAergic unitary conductance with
such a depolarized reversal potential could not only prevent but also facilitate action potential generation depending on the
timing of its application relative to the excitatory unitary conductance. Using a two-dimensional point neuron model, we simulate
the experiments regarding the integration of unitary conductances, and execute bifurcation analysis. Then we extend our
analysis to the case in which the neuron receives two kinds of periodic input trains—an excitatory one and a GABAergic one.
We show that the periodic depolarizing GABAergic input train can modulate the output time-averaged firing rate bidirectionally,
namely as an increase or a decrease, in a devil’s-staircase-like manner depending on the phase difference with the excitatory
input train. Bifurcation analysis reveals the existence of a wide variety of phase-locked solutions underlying such a graded
response of the neuron. We examine how the input time-width and the value of the GABAA reversal potential affect the
response. Moreover, considering a neuronal population, we show that depolarizing GABAergic inputs bidirectionally modulate
the amplitude of the oscillatory population activity.

INTRODUCTION

GABA (g-aminobutyric acid), one of the principal neuro-

transmitters in the vertebrate central nervous system, is

classically considered to have inhibitory effects in mature

animals. However, the value of the reversal potential of

GABAA receptor channels is known to possibly be less

negative than the resting membrane potential, though it is

still lower than the firing threshold, in mature neocortical

pyramidal cells (1), as well as fast spiking cells (2) or striatal

spiny neurons (3). Moreover, in hippocampal cultures and

slices, it was recently shown that GABAergic stimulation

combined with postsynaptic spiking results in the long-term

increase of the GABAA reversal potential (4). Gulledge and

Stuart showed that, due to such a depolarized value of the

reversal potential, GABAergic unitary conductances could,

depending on the timing of their application relative to the

excitatory unitary conductance, facilitate action potential

generation (5).

Although several experiments have indirectly demon-

strated this paradoxical excitatory action of GABA (6,7), its

functional relevance has not been thoroughly examined. We

used a two-dimensional point neuron model to explore the

possible roles of depolarizing GABAergic conductances on

the neuronal input-output relationship, and we suggested that

a highly fluctuating depolarizing GABAergic conductance

would achieve discriminative firing rate modulation (8). This

modulation decreases the firing rate if and only if it has a

considerable temporal correlation with the fluctuating

glutamatergic conductance. In this article, we explore other

aspects of the depolarizing GABAergic inputs using the

same Wilson’s two-dimensional neuron model. Specifically,

we examine transient unitary and periodic waveforms of

depolarizing GABAergic inputs. First, we show through

a numerical simulation that Wilson’s neuron model with

a-function unitary conductances qualitatively reproduces

the experimental results of Gulledge and Stuart (5), that

GABAergic unitary inputs temporally adjacent to glutama-

tergic unitary inputs have inhibitory effects whereas

GABAergic inputs more advanced in time have excitatory

effects. We perform a bifurcation analysis of the model using

periodic inputs with long periods as substitutes for transient

unitary inputs. We then examine neural responses to periodic

glutamatergic and GABAergic inputs whose periods are in

the range of the cortical g-oscillation. We explore through a

numerical simulation and bifurcation analysis how the input

time-width, or the temporal jitter on the compound input,

and the value of the GABAA reversal potential affect the

response characteristics of the neuron. Finally, we discuss

the implications for the strategy of neuronal coding.

METHODS

Neuron model

We use the single-compartment model of a neocortical neuron proposed by

Wilson (9,10):

asC
dV

dt
¼ �gNaðVÞðV � ENaÞ � cKRðV � EKÞ1 Isyn (1)

dR

dt
¼ 1

t
ð�R1 f ðVÞÞ: (2)
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Here, V (mV) is the membrane potential (inside against outside); R is the

inactivation variable that qualitatively represents the conductance of the

potassium channels; cK ðnSÞ is a certain constant; as ð10�10 m2Þ is the area of
the axon hillock and the initial segment; C ðmF=cm2Þ is the membrane

capacitance per unit area; ENa ðmVÞ and EK ðmVÞ are the respective reversal
potentials of sodium and potassium channels; gNaðVÞ ðnSÞ is the steady-state
voltage-dependent sodium conductance; f(V) is the voltage dependence of

the potassium channels, including both the delayed-rectifier channels and

the A-current channels; and t ðmsÞ is the time constant of the inactivation

variable. The forms of the functions gNaðVÞ and f(V), as well as the values of
other parameters, were determined by Wilson (10) as gNaðVÞ ¼ 0:1781 1
4:758 3 10�3V 1 3:38 3 10�5V2; f ðVÞ ¼ 1:29 3 10�2V 1 0:79 1
3:33 10�4ðV138Þ2; C ¼ 1 ðmF=cm2Þ; as ¼ 10 ð10�10 m2Þ (that is, equal

to 1000mm2Þ; ENa ¼ 48 ðmVÞ; EK ¼ �95 ðmVÞ; t ¼ 5:6 ðmsÞ; and cK ¼
260 ðnSÞ: The area can be calculated from other defined values. Isyn ðpAÞ in
Eq. 1 represents the following current through synaptic channels:

Isyn ¼ �gGluðtÞðV � EGluÞ � gGABAðtÞðV � EGABAÞ; (3)

where EGlu and EGABA ðmVÞ represent the reversal potentials of the channels
coupled with non-NMDA glutamate receptors and GABAA receptors,

respectively; gGluðtÞ and gGABAðtÞ ðnSÞ represent the corresponding total

time-dependent synaptic conductances. NMDA and GABAB receptors are

not considered in this article. Although Wilson’s neuron model usually

generates action potentials with similar shapes, sometimes it generates a

wave form of the membrane potential that is difficult to classify into either an

action potential or a subthreshold fluctuation. To work around such a case,

we set a critical value of the membrane potential to V ¼ 0 (mV): we regard

that the neuron generates an action potential if the membrane potential

passes through this V¼ 0 (mV) from below, otherwise a membrane potential

transient is regarded as a subthreshold fluctuation.

Reversal potentials

In this article, we are primarily interested in the case in which the GABAA

reversal potential lies between the resting membrane potential and the firing

threshold. Thus we set the standard value of the GABAA reversal potential of

Wilson’s model at �64 mV, which is more depolarized than the resting

potential (�75.4 mV) but more hyperpolarized than the steady-state firing

threshold (�58.2 mV) of the model, and is at nearly the same proportional

level as in the Gulledge-Stuart experiments (5). Please refer to Morita et al.

(8) for detailed information. In some analyses, we test the effects of varying

the GABAA reversal potential. The reversal potential of the non-NMDA

glutamate receptor channel is set to EGlu ¼ 0 (mV) throughout this article.

Bifurcation analysis

Consider the following general representation of n-dimensional nonauton-

omous differential equations:

dx
dt

¼ f ðt; x;lÞ; (4)

where t 2 R denotes time; x denotes the state variables in Rn; and l denotes

the parameters in Rm: We represent a solution of Eq. 4 with an initial con-

dition x ¼ x0 at t ¼ t0 as uðt; t0; x0;lÞ for all t. If fðt; x;lÞ is a periodic

function with respect to t with a period T such that

f ðt1 T; x;lÞ ¼ fðt; x;lÞ (5)

is satisfied for all x and l; we can define the Poincaré, or stroboscopic map S

from the state space Rn into itself as follows:

S : Rn/Rn
; x01uðt0 1 T; t0; x0;lÞ: (6)

The study of the periodic solution of Eq. 4 is topologically equivalent to

the study of a fixed point of the map S. Let u 2 Rn be a fixed point of S:

SðuÞ ¼ u: (7)

Then the characteristic equation of the fixed point u is defined by

detðmI � DSðuÞÞ ¼ 0; (8)

where I is the n 3 n identity matrix, and DSðuÞ denotes the derivative of S
with respect to the state variables. The solutions of Eq. 8 are the char-

acteristic multipliers at the fixed point u: The codimension-one bifurcations

that could occur in Eq. 4 are the saddle-node (tangent) bifurcation, the

period-doubling bifurcation, and the Neimark-Sacker bifurcation, which is

the discrete analog of the Andronov-Hopf bifurcation. These bifurcations

occur when one of the characteristic multipliers, i.e., the solutions of Eq. 8, is

m ¼ 1; m ¼ �1; or jmj ¼ 1 ðm;RÞ; (9)

respectively. Each case in Eq. 9 describes a specific relationship among

the system’s parameters l ¼ ðl1; � � � ;lmÞt corresponding to each type of

bifurcation. Therefore, if we fix all the parameters except for two, for

example l1 and l2; we can define, although theoretically, the relationship

between l1 and l2: The curve representing this function on the l1 � l2
plane is called a bifurcation curve, of which we show many examples. In

practice, though, because usually neither Eq. 7 nor Eq. 8 can be solved

analytically, they require numerical solution. Specifically, we fix all but one,

say l1; parameters, and then numerically solve Eqs. 7 and 8 as a sim-

ultaneous equation for u and l1 using the Newton method (11). Next, we

slightly change the value of one of the other parameters, say l2; and then

repeat the same procedure so as to obtain a new l1 value. Repeating this

procedure while gradually changing the value of l2 will yield a l1 � l2
bifurcation curve. To execute the Newton method for Eqs. 7 and 8, we need

to know the first- and the second-order derivatives of S with regard to x0 and
l: To do so, we numerically solve variational equations for them using the

Runge-Kutta method. How to execute them, especially when the system’s

initial condition is partially reset to produce an a-function during each

period, as is the case in this article, was described before (12,13).

Mutual information

To quantify the amount of information transfer between the input signal, or

the phase difference of the periodic glutamatergic and GABAergic inputs,

and the output signal, or the time-averaged firing rate of a neuron, we

calculate the mutual information between them. However, because we deal

with deterministic, rather than stochastic, dynamics in most cases, simul-

taneous probability of the input signal and the output signal is equal to 0

unless multistability appears, from its usual definition, and thus the mu-

tual information in its naive definition is simply equal to the information

entropy of the output signal, except for some constant corresponding to the

information entropy of the input signal, for which we assume the uniform

distribution. To obtain a more meaningful definition of the mutual infor-

mation, therefore, we adopt some coarse-graining of the input signal, or the

phase difference, so that the simultaneous probabilities become positive.

Specifically, we calculated the output firing rates for 250 uniformly dis-

tributed points in the whole range of the input phase difference (time dif-

ference), i.e.,�T=2;T=2 (see below for details). Subsequently, we divided

the whole range of the input signal into 25 bins, each of which contains 10

points where the output firing rates are calculated, and regarded the

distributions of the output firing rates in individual bins as their ‘‘probability

distributions’’. We also divided the whole range of the output signal, 0; 40

(Hz), into 20 bins, and then calculate the simultaneous probabilities and

mutual information. Because this value depends on the way of dividing

the range of the input signal into the bins, we took an average of the values

of the mutual information over all the possible shifts about the division into

the bins.

1926 Morita et al.
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Simulation and numerical calculation

We numerically solved the ordinary differential equations described as Eqs.

1 and 2 by the fourth-order Runge-Kutta method for the right panel of Fig.

4 a and the lower panels of Figs. 5 a and 6 a. Other calculations and

simulations were done by MATLAB (The MathWorks, Natick, MA) (14)

using a built-in function ‘‘ode23’’, except for Figs. 9 and 10 that were

calculated using the forward Euler method with a time step of 0.01 ms. To

obtain dependence of the firing rate of the neuron model on the time

difference between two sorts of glutamatergic and GABAergic periodic

input trains, we calculated the time-averaged firing rate for 1000 ms for 250

uniformly distributed points in the whole range of the time difference, i.e.,

�T=2 ; T=2; for Figs. 4 f, 5 b, 6 b, and 8 a. As for the population activity, at

first we calculated the ‘‘population sum of activity’’, that is, the number of

neurons, out of the total 100 neurons, that fire in each 1 ms time bin, as

shown in the lower panels of Fig. 10, a and b. Then we performed fast

Fourier transformation on the population sum of activity vector for 1000 ms

with the 1-ms time bin using a MATLAB built-in function ‘‘fft’’ for the right

panels of Fig. 10, a and b.

RESULTS

Excitatory and inhibitory actions of GABAergic
unitary conductance simulation

First, we examine whether Wilson’s model can reproduce

timing-dependent excitatory and inhibitory actions of GA-

BAergic unitary inputs observed in the experiments byGulledge

and Stuart (5). In their conductance injection (dynamic-

clamp) experiments, the time courses of the glutamatergic

unitary conductance and the GABAergic conductance were,

respectively, represented by a mixture of two or three ex-

ponential functions. Using the same unitary conductance

functions, we have shown that Wilson’s model can quanti-

tatively well reproduce their experimental results (8). How-

ever, in many experimental and modeling studies, the time

courses of the unitary conductances are fitted or modeled

by a-functions. Because we are interested in the qualitative

rather than quantitative nature, we use the mathematically

simpler a-functions as follows (see Fig. 1 a):

gGluðtÞ ¼ +
i

g̃Glu

t � t
Glu

i

tGlu
e1�

ðt�t
Glu
i Þ

tGlu Qðt � tGlui Þ; (10)

gGABAðtÞ ¼ +
j

g̃GABA

t � t
GABA

j

tGABA
e
1�ðt�t

GABA
j Þ

tGABA Qðt � t
GABA

j Þ: (11)

Here, tGlui and tGABAj are the onset times of the ith gluta-

matergic unitary conductance and the jth GABAergic one,

respectively; g̃Glu and g̃GABA are the maximum values of the

FIGURE 1 Excitatory and inhibitory actions of GABA: simulation

results. (a) The top panel shows the wave forms of the a-functions

represented by Eq. 10 or Eq. 11 with various time constants: t ¼ 1; 2; 3; 4; 5

from the left to the right. For comparison, the bottom panel shows the wave

forms of glutamatergic (red line) and GABAergic (blue line) synaptic

conductances in the Gulledge-Stuart experiments (5) fitted by differences

of two or three exponentials. (b) Reproduction of the Gulledge-Stuart

experiments using Wilson’s neuron model and the a-function synaptic

inputs. Top, middle, and bottom traces in each panel represent glutamatergic

synaptic inputs, GABAergic synaptic inputs, and the membrane potentials,

respectively. (Left column) A subthreshold glutamatergic input cannot evoke

an action potential by itself (top), but a GABAergic input preceding the

subthreshold glutamatergic input by 8 ms facilitates action potential

generation (bottom). (Right column) A suprathreshold glutamatergic input

can evoke an action potential (top), but a GABAergic input coincident with

the suprathreshold glutamatergic input prevents action potential generation

(bottom). (c) Summary of the excitatory or inhibitory actions for tGABA ¼ 1

(ms) (left panel) and tGABA ¼ 2 (ms) (right panel). The horizontal axis

shows the timing of a GABAergic input relative to a glutamatergic input

(ms). The vertical axis represents the maximum conductance of a GABAergic

input (g̃GABA ðnSÞÞ: Red indicates the region where a GABAergic input has a
facilitatory action; that is, where it evokes an action potential in cooperation

with a subthreshold ðg̃Glu ¼ 17 ðnSÞÞ glutamatergic input. Blue indicates the

region where a GABAergic input has an inhibitory action; that is, it prevents

action potential generation by a suprathreshold (g̃Glu ¼ 18 ðnSÞÞ glutamatergic

input. White indicates the region where a GABAergic input has no action in

the above sense.

Effects of Depolarizing GABAergic Inputs 1927
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single glutamatergic and GABAergic unitary conductances,

respectively; tGlu and tGABA are the time constants of the

a-functions representing the durations from the onsets to the

time when they reach the maximums; QðxÞ represents a

Heaviside step function such that QðxÞ ¼ 1 if x $ 0 and

QðxÞ ¼ 0 otherwise.

We numerically analyze the interaction of a single gluta-

matergic and a GABAergic unitary conductance represented

by the a-functions with tGlu ¼ 1 (ms) and tGABA ¼ 1

(ms), respectively. In this setting, a single glutamatergic

unitary conductance cannot evoke an action potential if its

maximum (g̃Glu) is 17 nS, but can do so if g̃Glu is 18 nS. We

use these values as the subthreshold and the suprathreshold

input, respectively. If a single GABAergic unitary conduc-

tance in cooperation with the subthreshold ðg̃Glu ¼ 17 ðnSÞÞ
glutamatergic input evokes an action potential, it is said to

have an excitatory action. On the other hand, if a single

GABAergic unitary conductance inhibits spike generation

by the suprathreshold ðg̃Glu ¼ 18 ðnSÞÞ glutamatergic input,

it is said to have an inhibitory action. We examine under

what conditions GABAergic unitary conductances have ex-

citatory or inhibitory actions. For example, a GABAergic uni-

tary conductance that precedes a subthreshold glutamatergic

input by 8 ms facilitates action potential generation (the left
column of Fig. 1 b), whereas another GABAergic unitary

conductance coincident with a suprathreshold glutamatergic

input prevents spike generation (the right column of Fig. 1 b).
As summarized in the left panel of Fig. 1 c, a GABAergic

unitary conductance with the same time constant and

the same maximum value as the associated subthreshold

glutamatergic unitary conductance has an excitatory action if

it arrives ;2 ms or more before the glutamatergic input. On

the other hand, a GABAergic unitary conductance appears

to have an inhibitory action if it arrives within ; 6 2 ms of

the glutamatergic input. In this way, Wilson’s model with

the depolarized GABAA reversal potential can qualitatively

reproduce the experimental results of Gulledge and Stuart

(5) that GABAergic unitary conductances that are tempo-

rally adjacent to glutamatergic inputs have inhibitory ef-

fects whereas earlier GABAergic inputs have excitatory

effects.

Though the temporal borderline that divides the excitatory

and inhibitory actions of GABAergic unitary conductances

is ;2 ms before the onset of the glutamatergic input in our

above simulation, this boundary is located at ;5.8 ms in the

experiments by Gulledge and Stuart (5). This quantitative

difference may come from the fact that the GABAergic

unitary conductance in our simulation, which is the a-function
with the time constant tGABA ¼ 1 (ms) as described above,

decays much faster than the one in their experiments, whose

decaying time course is represented by the mixture of two

exponentials with time constants of 3.2 and 12.3 ms (the blue
line in the lower panel in Fig. 1 a). The inhibitory effect of

GABAergic unitary conductances that are temporally adja-

cent to glutamatergic inputs is due to so-called shunting

inhibition: the GABAergic conductance effectively shunts

the current through the coinciding glutamatergic conduc-

tance. Therefore, the shunting effect of our faster decaying

GABAergic conductance would be weaker than that in the

experiments by Gulledge and Stuart. To confirm this idea,

we examine the effects of GABAergic unitary conductances

with a longer time constant of decay, tGABA ¼ 2 (ms). As

shown in the right panel of Fig. 1 c, the borderline in this case
is about 4; 5 ms before the onset of the glutamatergic input,

which is closer to the result of Gulledge and Stuart. On the

other hand, the facilitatory effect of depolarizing GABAergic

unitary conductances that precede glutamatergic inputs

results from the fact that membrane charging lasts still after

the conductance change is terminated due to the membrane

capacity. Therefore, the membrane capacitance, and the

membrane time constant, would affect the duration for which

the facilitatory effect sustains. In Wilson’s model that we

have used, the system’s time constant t reflects the mem-

brane capacitance. Decreasing t generally tends to shift the

onset time of the facilitatory effect of the GABAergic input

later, i.e., closer to the glutamatergic input (results not shown).

Although the dependence of the excitatory and inhibitory

actions on the strength of the GABAergic unitary conductance

has not been examined in the experiments by Gulledge and

Stuart (5), according to these simulation results, the temporal

borderline has a negative slope (Fig. 1 c), indicating that as

the strength of the GABAergic unitary conductance increases,

the shunting effect is more enhanced than the excitatory effect

of depolarization.

Bifurcations associated with the excitatory
and inhibitory actions of GABAergic
unitary conductance

Next, we examine the dynamics of the interaction between

a glutamatergic and a GABAergic unitary conductance

through bifurcation analysis. Because it is generally difficult

to compute the bifurcation sets for a dynamical system with

such a transient time-varying driving force, we examine the

dynamics of the interaction between periodic glutamatergic

and GABAergic input trains as an approximation, assuming

that their period is substantially longer than the system’s

intrinsic time constant (t ¼ 5.6 (ms)).

At first, let us consider the case where the neuron receives

a periodic glutamatergic input train in the absence of

GABAergic inputs. Specifically, we assume that tGlui in Eq.

10 is periodic with period T (ms), that is, tGlu1 ¼ 0; tGlu2 ¼
T; tGlu3 ¼ 2T; � � � : We numerically calculate bifurcation sets

with respect to the frequency (1/T) and the maximum con-

ductance ðg̃Glu ðnSÞÞ for fixed values of the time constant

tGlu (ms) (see Methods for details). Fig. 2 a shows such

bifurcation curves in the 1=T � g̃Glu parameter plane in the

case with tGlu ¼ 1 (ms). Solid lines indicate saddle-node

bifurcation curves obtained numerically. There are two pre-

dominant regions, occupying large portions of this 1=T � g̃Glu

1928 Morita et al.
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parameter plane, where the periodic solution has the same

period (T (ms)) as the periodic driving force (gGluðtÞ). In the

upper region, the amplitude of this periodic solution is larger

than the value V ¼ 0 (mV), which was the critical value

expediently set as action potential threshold (see Methods

for details), as shown in Fig. 2 d. Therefore, in this region

the neuron generates a single action potential on every cycle,

with the firing frequency 1000/T (Hz), and thus it is called a

1:1 phase-locked response. On the other hand, in the lower

region, the amplitude of the periodic solution is smaller

than the value V¼ 0 (mV), as shown in Fig. 2 b, so that it may

well be regarded as a subthreshold oscillation without action

potentials. Therefore, in this region the neuron generates

no action potential, i.e., the frequency is 0 (Hz), and thus it is

called a 0:1 phase-locked state. As shown in Fig. 2 a, between
these 1:1 and 0:1 phase-locked states, there are several regions

separated from each other by a series of saddle-node bifurca-

tion curves. Among them, the most predominant region is the

middlemost one. In this region, the period of the solution is

twice the period of the driving force, and the state variable V
passes through the value V¼ 0 (mV) once every two cycles of

the driving force, as shown in Fig. 2 c. Therefore, the firing

rate is 1000/2T (Hz), and this is called a 1:2 phase-locked

state. The other regions correspond to various kinds of solu-

tions whose periods are some rational multiples of the period

of the driving glutamatergic input train.

Fig. 2 e shows the relationship between the maximum

conductance of the driving glutamatergic input g̃Glu and the

output firing frequency for T ¼ 25 (ms) (i.e., 40 Hz) and T ¼
125 (ms) (i.e., 8 Hz) cases calculated from numerical

simulation of Eqs. 1 and 2. In the case with T ¼ 25 (ms) (40

Hz), as the input magnitude g̃Glu increases, the output firing
frequency increases in a devil’s-staircase-like manner. Such

a response of a neuron to a periodic input has been observed

in many experiments and extensively analyzed (15–20). The

longest plateau in the relationship between the input

magnitude g̃Glu and the output firing frequency at 20 Hz,

which is half the input frequency 40 Hz, corresponds to

the region where the 1:2 phase-locked solution exists. On

the other hand, in the case with T ¼ 125 (ms) (8 Hz), the

relationship between the input magnitude g̃Glu and the output
firing frequency appears to be almost a single step function

rather than a staircase. This means that the solution of Eqs.

1 and 2 has almost always the same period T ¼ 125 (ms) as

that of the driving glutamatergic input train. The 1:1 phase-

locked solution exists when the input magnitude g̃Glu is

larger than a critical point indicated by the asterisk in Fig.

2 e, whereas the 0:1 phase-locked solution, representing

failure to generate any spikes, exists below the critical point.

FIGURE 2 Neuronal responses to periodic glutamatergic inputs in the

absence of GABAergic inputs: simulation and bifurcation analysis. (a) The

bifurcation diagram of the case with only glutamatergic input calculated with

respect to two parameters, the frequency 1/T indicated by the horizontal axis

and the maximum conductance g̃Glu indicated by the vertical axis, under the

fixed value of the time constant tGlu ¼ 1 (ms). Solid lines indicate saddle-

node bifurcation curves. Different phase-locked solutions are indicated by

different symbols as shown below the figure. These symbols are used

throughout this article. The blue spot and the red spot indicate the parameter

values used as the subthreshold and suprathreshold inputs for bifurcation

analyses (see text for details). (b–d) Glutamatergic input conductances (top

panels) and resulting wave forms of the membrane potential (bottom panels)

at the three points on the 1=T � g̃Glu parameter plane indicated by green

circles in panels a–d correspond to 0:1, 1:2, and 1:1 phase-locked solutions,
respectively. (e) The relationship between the g̃Glu (the maximum conduc-

tance of the driving glutamatergic input) and the output firing frequency for

the T ¼ 25 (ms) (i.e., 40 Hz) and the T ¼ 125 (ms) (i.e., 8 Hz) cases

calculated from numerical simulation of Eqs. 1 and 2. The asterisk indicated

the critical strength of the glutamatergic inputs for T ¼ 125 (ms) (i.e., 8 Hz).

Effects of Depolarizing GABAergic Inputs 1929
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Therefore, each cycle could be regarded as practically in-

dependent because the period T ¼ 125 (ms) of the gluta-

matergic input train is much longer than the system’s

intrinsic time constant (t ¼ 5.6 (ms)). Indeed, the critical

amount of g̃Glu that separates the 1:1 and 0:1 phase-locked

states (asterisk in Fig. 2 e) lies between g̃Glu ¼ 17 ðnSÞ;
which was found to be subthreshold in the simulation in the

previous section, and g̃Glu ¼ 18 ðnSÞ; which was supra-

threshold, indicating that the bifurcation analysis of a neuron

receiving the periodic glutamatergic input train with a long

period like T ¼ 125 (ms) produces results almost identical to

the simulation results for the transient inputs described in the

previous section. Therefore, we use this T ¼ 125 (ms) case

for bifurcation analysis as a substitute for the original

situation in the experiments by Gulledge and Stuart where

the neuron receives transient, rather than periodic, inputs.

We next consider a periodic GABAergic input train in

addition to the glutamatergic one. Specifically, we assume

that tGABAi in Eq. 11 has the same long period T ¼ 125 (ms)

as the glutamatergic input train, but with a time difference

Dtms, that is, tGABA1 ¼ Dt; tGABA2 ¼ T1Dt; tGABA3 ¼ 2T1
Dt; � � � : Note that Dt , 0 means that the GABAergic inputs

arrive jDtjms before the glutamatergic inputs. Here, as in the

previous section, the time constants of the synaptic conduc-

tances are fixed at tGlu ¼ tGABA ¼ 1 (ms). In this setting, we

numerically calculate bifurcation sets with respect to the time

difference Dt and the maximum GABAergic conductance

g̃GABA (nS) (see Methods for details) for either the sub-

threshold ðg̃Glu ¼ 17 ðnSÞÞ or the suprathreshold ðg̃Glu ¼
18 ðnSÞÞ glutamatergic input, indicated by the blue or the red

spot in Fig. 2 a, respectively.
Fig. 3 a shows the bifurcation sets on the Dt � g̃GABA

parameter plane for the g̃Glu ¼ 17 ðnSÞ subthreshold gluta-

matergic input. Solid lines in Fig. 3 a indicate saddle-node

bifurcation curves obtained numerically. As shown in the

figure, there are two wide regions on the parameter plane.

One region, including the horizontal line where there is no

GABAergic input ðg̃GABA ¼ 0Þ; corresponds to the 0:1

phase-locked solution that has the same period T ¼ 125 (ms)

as the glutamatergic input train, and whose amplitude is

small so that the neuron fails to generate spikes. The other

region, indicated by shadow in Fig. 3 a, corresponds to the

1:1 phase-locked solution that also has the same period

T ¼ 125 (ms) as the glutamatergic input train, but whose

amplitude is large enough so that the neuron can be regarded

as generating action potentials. According to Fig. 3 a, these
two wide regions appear to be divided by a saddle-node

bifurcation curve indicated as the solid line. According to

bifurcation analysis, however, there actually exist a large,

possibly infinite, number of bifurcation curves separating

the two regions. Bifurcation analysis shows that if the time

difference Dt is in a certain range, for example Dt ¼ �10

(ms), as the magnitude of the GABAergic input g̃GABA
increases from g̃GABA ¼ 0 ðnSÞ; a saddle-node bifurcation

occurs on the 0:1 phase-locked solution. On the other hand,

bifurcation analysis also shows that if the time difference Dt is
the same Dt ¼ �10 (ms), as the magnitude of the GABAergic

input g̃GABA decreases from a large value, for example

g̃GABA ¼ 2 (nS), another saddle-node bifurcation occurs on

the 1:1 phase-locked solution. Although these two saddle-

node bifurcations are distinct, they are so close to each other

that they are almost overlapped and thus appear to be a single

bifurcation curve in Fig. 3 a. Comparing Fig. 1 c with Fig. 3

a, it can be said that the boundary of the region where

GABAergic unitary conductances have excitatory actions,

which is indicated by red in Fig. 1 c, corresponds to the

closely packed bifurcation curves indicated by the single

curve in Fig. 3 a between the 0:1 phase-locked region and the
1:1 phase-locked one.

Fig. 3 b shows the bifurcation sets on the Dt � g̃GABA
parameter plane for the g̃Glu ¼ 18 ðnSÞ suprathreshold gluta-
matergic input. Solid lines in Fig. 3 b again indicate saddle-

node bifurcation curves obtained numerically. There are again

two wide regions on the parameter plane. The shadowed

region, including the horizontal line of Fig. 3 b where there is
no GABAergic input ðg̃GABA ¼ 0Þ; corresponds to the 1:1

phase-locked solution that has the same period T ¼ 125

(ms) as the glutamatergic input train, and whose amplitude is

large enough to be regarded as action potentials of the neuron.

The white region in Fig. 3 b, on the other hand, corresponds to
the 0:1 phase-locked solution that also has the same period

FIGURE 3 Bifurcations associated with the excitatory and inhibitory

actions of GABA. The bifurcation diagrams were calculated with respect to

two parameters, the time (phase) difference Dt between glutamatergic and

GABAergic inputs, indicated by the horizontal axis, and the maximum

conductance g̃GABA of the GABAergic inputs, indicated by the vertical axis.

The time constants are fixed at tGlu ¼ tGABA ¼ 1 (ms), and the periods are

fixed at T ¼ 125 (ms) (i.e., 8 Hz), which approximates the situation of the

transient inputs (see text). The maximum conductance of the glutamatergic

inputs is fixed either at the subthreshold value g̃Glu ¼ 17 ðnSÞ in panel a or

the suprathreshold value g̃Glu ¼ 18 ðnSÞ in panel b. Solid lines represent

numerically calculated saddle-node bifurcation curves. The shadowed areas

represent the regions where the 1:1 phase-locked solution representing full

firing of the neuron exists whereas the white areas represent the regions

where the 0:1 phase-locked solution representing no firing of the neuron

exists. There is a short dashed line just above the solid line in panel b, though

too short to be clearly visible, which indicates a period-doubling bifurcation

curve. Note that there is no bifurcation curve above the end of this dashed

line, indicating that the 1:1 phase-locked solution continuously changes into

the 0:1 phase-locked solution here.
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T ¼ 125 (ms) as the glutamatergic input train, but whose

amplitude is small meaning failure to generate spikes. Bifur-

cation analysis suggests that there exist between these two

regions multiple bifurcation curves, which again, however, are

so densely packed that they appear to be a single line in Fig.

3 b. Comparing Fig. 1 c with Fig. 3 b, it can be said that the

boundary of the region where GABAergic unitary conduc-

tances have inhibitory actions, that is the boundary of the

blue region in Fig. 1 c, could be characterized as the closely

packed bifurcation curves indicated by the single line in Fig.

3 b between the 0:1 phase-locked region and the 1:1 phase-

locked one.

In this way, in both the g̃Glu ¼ 17 ðnSÞ and g̃Glu ¼ 18 ðnSÞ
cases with a long-period periodic input, the boundary of the

excitatory and inhibitory effects of the GABAergic unitary

conductances can be characterized as the closely packed

bifurcation curves between the 0:1 and 1:1 phase-locked

regions.

Neuronal responses to glutamatergic
and GABAergic periodic input trains
with g-frequency

As we have shown above, the boundaries of the facilitatory

and inhibitory actions of the depolarizing GABAergic unitary

conductances are characterized by densely packed series of

many bifurcations. Such crowding of the bifurcation curves

might be related to the fact that the period of the inputs we

have assumed in the previous section is so long that each cycle

is almost independent, because in the absence of GABAergic

inputs, all the bifurcation curves converge in the limit of

infinite period, as shown in Fig. 2 a. Therefore it could be

expected that the intervals of such bifurcation curves broaden

if the period of the inputs becomes shorter. In the following,

we examine how bifurcation curves are arranged on the pa-

rameter plane, and in consequence, how the neuronal response

changes, when the period of the glutamatergic and GABAergic

input trains is shorter, specifically in the range of the cortical

g-oscillation.
First, though, the neurophysiological significance of

examining such situations should be presented. In the real

cerebral cortex of the animal, periodic glutamatergic and

GABAergic inputs to a single postsynaptic neuron would

come from synchronized oscillatory activities of two distinct

preneuronal populations, one of which is glutamatergic

whereas the other is GABAergic. Such pairs of neuronal

groups—for example, the pyramidal cells and the fast spik-

ing cells—are widely observed in the neocortex and the hip-

pocampus of the behaving animal’s brain, and are considered

to be associated with g- and/or u-oscillations (21,22). There-
fore, examining neural responses to such periodic gluta-

matergic and GABAergic inputs in the frequency range of

g- and/or u-oscillations should be important in considering

the functional relevance of synchronized oscillatory neural

activities. Especially, from the viewpoint of neural coding

theory, we focus on how the time difference between these

two oscillatory activities affects, or is transformed into, the

output neuronal time-averaged firing rate.

In a similar fashion to the previous section, let us consider

periodic glutamatergic and GABAergic input trains having

the same period T(ms) but a time difference Dt (ms). Period T
is now assumed to be T ¼ 25 (ms), corresponding to 40 Hz,

which is typical for cortical g-oscillations. The time con-

stants are assumed to be the same as in the previous sections:

tGlu ¼ tGABA ¼ 1 (ms). Thus, there are three parameters left

to be determined: the maximum conductance of the gluta-

matergic input g̃Glu; that of the GABAergic input g̃GABA; and
the time difference (Dt). Because we are interested in the

effects of the GABAergic inputs on the neuronal response,

here we fix the strength of the glutamatergic input and then

perform the bifurcation analysis about the remaining param-

eters g̃GABA andDt on theGABAergic inputs. Specifically, we
fix themaximum conductance of the glutamatergic input to be

g̃Glu ¼ 17:5 ðnSÞ so that a 1:2 phase-locked solution, which

means 20 Hz firing, exists as shown in Fig. 2 c. Then we

numerically calculate bifurcation sets with respect to Dt and
g̃GABA (see Methods for details).

The left panel of Fig. 4 a shows the bifurcation diagram on

the Dt � g̃GABA parameter plane. The predominant region

including the horizontal line where there is no GABAergic

input (g̃GABA ¼ 0) is that of the 1:2 phase-locked solution, an

example spike train of which is shown in Fig. 4 c, rep-
resenting 20 Hz firing. There exist two regions in the

Dt � g̃GABA parameter plane in which the solution has the

same period as the driving forces: the 0:1 phase-locked

region corresponding to 0 Hz (see Fig. 4 b) and the 1:1

phase-locked region corresponding to 40 Hz (see Fig. 4 e). In
this way, the firing rate of the neuron entrained by the

periodic glutamatergic input train can be decreased to 0 Hz,

but also can be increased up to the twice as the original value,

depending on the timing and the strength of the periodic

GABAergic input train. In other words, depolarizing

GABAergic inputs can have both excitatory and inhibitory

effects at the level of the time-averaged firing rate, as well as

at the level of the generation of single action potentials,

according to their strength and the temporal relationship with

the glutamatergic inputs. As shown in Fig. 4 a, there are

some gaps between those 1:2, 0:1, or 1:1 phase-locked re-

gions. Numerical calculation of bifurcation sets revealed that

there exist a large number of bifurcation curves of saddle-

node and period-doubling types in such spaces, only some of

which are drawn in the figure. Different regions divided by

such bifurcation curves correspond to different types of

phase-locked solutions, and therefore, different values of

the firing rates. For example, the dotted region in Fig. 4 a
indicates the region in which a 2:3 phase-locked solution,

as shown in Fig. 4 d, corresponding to 27 Hz firing, exists.

Fig. 4 f shows the relationship between the time difference

Dt (ms) and the neuronal firing rate for a fixed value of

the maximum conductance of the GABAergic inputs:
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g̃GABA ¼ 40 ðnSÞ: As shown in the figure, the firing rate,

which is originally 20 Hz in the absence of the GABAergic

inputs, changes from 0 to 40 Hz according to the time

difference between the glutamatergic and GABAergic peri-

odic input trains. In other words, it can be said that the

information about the time difference between these two

periodic input trains is, at least partially, transformed into an

increase or decrease of the firing rate of the neuron that

receives them.

Effects of input time-widths

So far we have fixed the time constants tGlu and tGABA;
which are the peak times of the unitary conductances, or the

‘‘input time-widths’’, to tGlu ¼ tGABA ¼ 1 (ms). Because in

a neuronal network in the brain, periodic inputs most likely

come from a presynaptic neural population that is in a state of

synchronized oscillation, these input time-widths can be

considered to represent also the degree of their synchroni-

zation: a small tGlu or tGABA value would mean high tem-

poral precision of presynaptic neuronal firings (6). Hence,

changing the input time-widths tGlu and tGABA would

correspond to changing the degree of synchronization of

presynaptic neural activities. Here we test how the neuronal

response is affected by changing the input time-widths tGlu
and tGABA:
At first, we test the tGlu ¼ tGABA ¼ 3:5 (ms) case. We fix

the maximum conductance of the glutamatergic input g̃Glu so
that the neuron fires at 20 Hz in the absence of GABAergic

inputs. Specifically, we fix g̃Glu to the mean value of the

range corresponding to 1:2 phase-locked solutions. Then we

numerically calculate bifurcation sets with respect to the time

difference Dt (ms) and the maximum GABAergic conduc-

tance g̃GABA ðnSÞ (see Methods for details). The top panel of

Fig. 5 a shows the bifurcation diagram on the Dt � g̃GABA
parameter plane for tGlu ¼ tGABA ¼ 3:5 (ms). The predom-

inant region including the horizontal line where there is

no GABAergic input (g̃GABA ¼ 0) is that of the 1:2 phase-

locked solution representing 20 Hz firing, as in the tGlu ¼
tGABA ¼ 1 (ms) case shown in Fig. 4 a. Also like in the

tGlu ¼ tGABA ¼ 1 (ms) case, there is a relatively large region

corresponding to the 1:1 phase-locked solution of 40 Hz

firing. The 0:1 phase-locked solution can also be found al-

though it is considerably shifted upward, i.e., toward the

direction of larger GABAergic inputs, compared with the

tGlu ¼ tGABA ¼ 1 (ms) case. Notably, in the widened gap

between the 1:2 phase-locked region and the 0:1 phase-

locked one, as well as in the also widened gap between the

FIGURE 4 Neuronal responses to peri-

odic glutamatergic and GABAergic inputs

of g-frequency: simulation and bifurca-

tion analysis. (a) The left panel shows the

numerically calculated bifurcation sets with

respect to Dt and g̃GABA under the fixed

parameters T ¼ 25 (ms), tGlu ¼ tGABA ¼ 1

(ms), and g̃Glu ¼ 17:5 ðnSÞ: Solid and

dashed lines indicate numerically calcu-

lated saddle-node and period-doubling

bifurcation curves, respectively. The right

panel is a corresponding result by explicit

simulation of Eqs. 1 and 2 using the Runge-

Kutta method; different colors indicate

solutions with different periods. The colors

listed right below indicate the periods of the

solution: the numbers under the colors

indicate how many input cycles are in-

cluded in the period of the solution. These

colors are commonly used throughout this

article. (b–e) Glutamatergic and GABAergic

synaptic conductances indicated by red

solid and green dotted lines, respectively

(top panels), and resulting wave forms of

the membrane potential (bottom panels) at

the locations in the 0:1 (b), 1:2 (c), 2:3 (d),
and 1:1 (e) phase-locked regions, as indi-

cated by red circles in panel a. (f) The

relationship between the time difference Dt

(ms) and the neuronal firing rate for a fixed

value of the maximum conductance of the

GABAergic inputs g̃GABA ¼ 40 (nS). The

firing rate was calculated by numerically

solving Eqs. 1 and 2 for 1000 ms.
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1:2 phase-locked region and the 1:1 phase-locked one, a

large number of different regions clearly appear. Because

these different regions are separated by bifurcation curves,

they correspond to different types of solutions, and therefore,

usually to different firing rates. Fig. 5 b shows the relation-

ship between the time difference Dt (ms) and the neuronal

firing rate for a fixed value of the maximum conductance of

the GABAergic inputs: g̃GABA ¼ 45 ðnSÞ: As shown in Fig.

5 b, the relationship appears to be a devil’s-staircase-like

shape, though there exist irregular ups and downs in the

region with positive Dt. Such a staircase-like graded re-

sponse means that the input time differences between the

glutamatergic and GABAergic periodic input trains are

transformed into finer values of the output firing rate than in

the tGlu ¼ tGABA ¼ 1 (ms) case, in which almost all time

differences are transformed into one of the four predomi-

nantly appearing values: 0, 20, 27, and 40 Hz. In terms of

neural coding, the transformation from the input time

difference into the output firing rate is more informative in

the tGlu ¼ tGABA ¼ 3:5 (ms) case than in the tGlu ¼ tGABA
¼ 1 (ms) case.

In this way, a lower precision of preneuronal synchroni-

zation would be better than a higher one for an informa-

tive neuronal coding transformation. Further decreasing the

precision of preneuronal synchronization, however, again

reduces the quality of the coding transformation as follows.

Fig. 6 a (top panel) and b, respectively, show the bifurcation

sets on the Dt � g̃GABA parameter plane and the relationship

between the time difference Dt (ms) and the neuronal firing

rate for a fixed value of the maximum conductance of the

GABAergic inputs: g̃GABA ¼ 45 ðnSÞ for tGlu ¼ tGABA ¼ 6

(ms). Although there again exist a large number of different

regions on the Dt � g̃GABA parameter plane and the overall

characteristic looks similar to that of the tGlu ¼ tGABA ¼ 3:5
(ms) case shown in Fig. 5 a, the 0:1 phase-locked solution

representing no firing of the neuron moves toward much

larger values of the GABAergic conductance than in the

tGlu ¼ tGABA ¼ 3:5 (ms) case. This recession of the 0:1

phase-locked region means that inhibitory effects of the

depolarizing GABAergic inputs become apparently weaker

as the time-widths tGlu and tGABA become larger. This result

may be naturally understandable because inhibitory effects

of the depolarizing GABAergic inputs are due to shunting so

that even a brief transient is sufficient and further increasing

tGABA provides no more inhibitory effect. The facilitatory

effect, in contrast, results from enhanced charging of the

membrane capacitor when tGABA increases. The weakened

inhibitory effects then result in the decrease of the range of

the output firing rate change shown in Fig. 6 b, compared

with the tGlu ¼ tGABA ¼ 3:5 (ms) case shown in Fig. 5 b

FIGURE 5 Neuronal responses to periodic glutamatergic and GABAergic

inputs of g-frequencies in the case when the input time-width is tGlu ¼
tGABA ¼ 3:5 (ms). (a) The top panel shows the numerically calculated

bifurcation sets with respect to Dt and g̃GABA under the fixed parameters

T ¼ 25 (ms), tGlu ¼ tGABA ¼ 3:5 (ms), and g̃Glu ¼ 9:425 ðnSÞ that gives a
1:2 phase-locked response, i.e., 20 Hz firing in the absence of GABAergic

inputs. Solid and dashed lines indicate numerically calculated saddle-node

and period-doubling bifurcation curves, respectively. The bottom panel is a

corresponding result by explicit simulation of Eqs. 1 and 2 using the Runge-

Kutta method. (b) The relationship between the time difference Dt (ms) and

the neuronal firing rate for a fixed value of the maximum conductance of the

GABAergic inputs g̃GABA ¼ 45 (nS).
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with the same strengths of GABAergic inputs. Such decrease

then would cause greater information loss. To estimate the

amount of information loss in the transformation from the

input phase difference to the output firing rate, we compute

the mutual information between the input signal, or the phase

difference, and the output signal, or the firing rate, defined

through coarse-graining (see Methods for details) for dif-

ferent values of the GABAergic conductance (g̃GABA) and
the time constant of the a-functions (tGlu; tGABA). The

maximum value of the glutamatergic conductance (g̃Glu)
was fixed so that a 1:2 phase-locked solution representing

20 Hz firing exists in the absence of the GABAergic inputs.

Fig. 7 shows the mutual information for various input time-

widths (tGlu; tGABA) and various values of the strength of

the GABAergic inputs (g̃GABA). As shown in the figure, the

mutual information takes large values around tGlu ¼ tGABA
� 3:5;4:5 (ms) with g̃GABA � 45;60 (nS). Therefore, this

range of the input time-widths, which represents the degree

of the presynaptic neuronal synchrony as previously de-

scribed, can be said to be the optimum value for maximizing

the information transfer from the input phase difference to

the output firing rate.

Effects of the value of the GABAA

reversal potential

So far we have fixed the value of the GABAA reversal

potential at EGABA ¼ �64 (mV), which is consistent with the

experimental results of Gulledge and Stuart (5) (see Methods

for details). We here examine how changing the value of the

FIGURE 6 Neuronal responses to periodic glutamatergic and GABAergic

inputs of g-frequencies in the case when the input time-width is

tGlu ¼ tGABA ¼ 6 (ms). g̃Glu is fixed to g̃Glu ¼ 6:625 (nS) that gives a 1:2

phase-locked response in the absence of GABAergic inputs, and g̃GABA is

fixed to g̃GABA ¼ 45 ðnSÞ in panel b.

FIGURE 7 The mutual information (see Methods for details) between the

input phase difference and the output firing rate for various input time-

widths (the horizontal axis) and maximum amplitudes of the GABAergic

inputs (the vertical axis). The period of the inputs is fixed to T ¼ 25 (ms),

and the maximum amplitude of the glutamatergic inputs are fixed to

g̃Glu ¼ 9:425 (nS), which gives a 1:2 phase-locked response, i.e., 20 Hz

firing in the absence of GABAergic inputs.
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GABAA reversal potential affects the neuronal response to

periodic glutamatergic and GABAergic inputs. Fig. 8 a shows
how the neuronal response to the 40-Hz periodic glutamatergic

and GABAergic inputs changes when the value of the

GABAA reversal potential is varied from EGABA ¼ �75

(mV) (top panel of Fig. 8 a), which is equal to the resting

potential of Wilson’s model, to EGABA ¼ �58 (mV) (bottom
panel of Fig. 8 a), which is equal to the firing threshold of the
model. As shown in Fig. 8 a, the phase difference between

glutamatergic and GABAergic periodic inputs is transformed

into a graded response of the neuronal firing rate, regardless

of the values of the GABAA reversal potential. However,

there are also differences. When the GABAA reversal

potential is equal to the neuronal resting potential (top panel
of Fig. 8 a), GABAergic inputs cannot increase the firing rate
but only decrease it from 20 Hz regardless of the timing

relative to glutamatergic inputs. On the other hand, when the

GABAA reversal potential is equal to the firing threshold

(bottom panel of Fig. 8 a), GABAergic inputs cannot

decrease the firing rate but only increase it. It is only when

the GABAA reversal potential is in an appropriate range

between the resting potential and the firing threshold (see the

third and fourth panels of Fig. 8 a) that modulating the firing

rate toward both directions is possible. Fig. 8 b shows the

dependence of the mutual information (see Methods for

details) between the input phase difference and the output

firing rate on the input time-width and the maximum

amplitude of the GABAergic inputs when the value of the

GABAA reversal potential is systematically valued from

EGABA ¼ �75 (mV), the resting potential, to EGABA ¼ �58

(mV), the firing threshold. As shown in this figure, the

neuronal coding transformation is optimal within a narrow

range of values for the GABAA reversal potential, around

EGABA ¼ �66;� 63 (mV), between the resting potential

and the firing threshold.

DISCUSSION

Although how information is coded in the brain is still

elusive, it has been postulated that there are two basic coding

schemes: firing-rate coding and temporal-spike coding

(23–27). The former can be further classified into population

rate coding and time-averaged rate coding. The brain seems

to use one of them according to regions, types of informa-

tion, or other circumstances. Therefore, there may be mech-

anisms of coding transformation between them. As we have

shown, when a neuron receives two kinds of periodic inputs,

a glutamatergic input train and a GABAergic one, the phase

FIGURE 8 Effects of change in the value of the GABAA reversal

potential on the neuronal response to periodic glutamatergic and GABAergic

inputs. (a) The relationships between the time difference Dt (ms) and the

neuronal firing rate for the different values of the GABAA reversal potential

indicated. The GABAA reversal potential is varied from EGABA ¼ �75 (mV)

(top panel), which is equal to the resting potential of Wilson’s model, to

EGABA ¼ �58 (mV) (bottom panel), which is equal to the firing threshold.

The time-widths of the glutamatergic and GABAergic inputs are fixed to

tGlu ¼ tGABA ¼ 3:5 (ms). The maximum amplitude of the glutamatergic

inputs is fixed so that the neuron shows a 1:2 phase-locked response, i.e., 20

Hz firing in the absence of GABAergic inputs, and the maximum amplitude

of the GABAergic inputs is fixed to be g̃GABA ¼ 45 (nS). (b) The

dependence of the mutual information (see Methods for details) between the

input phase difference and the output firing rate on the input time-width

(the horizontal axis) and the maximum amplitude of the GABAergic inputs

(the vertical axis) when the value of the GABAA reversal potential is

systematically varied from EGABA ¼ �75 (mV), the resting potential, to

EGABA ¼ �58 (mV), the firing threshold. The color represents the amount of

mutual information as indicated by the color bar at the bottom.
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difference between these inputs is encoded into a graded

response of the time-averaged firing rate (Figs. 4 f, 5 b, and 6
b). This could be a mechanism of the coding transformation.

Admittedly, such transformation is possible regardless of the

value of the GABAA reversal potential (Fig. 8), e.g., if the

magnitude of 40 Hz periodic glutamatergic inputs is tuned

so that the neuron gives 1:1 phase-locked response in the

absence of GABAergic inputs, purely shunting GABAergic

inputs with the reversal potential equal to the resting

potential can modulate the firing rate over the entire range,

that is, from 0 to 40 Hz (results not shown). However, the

purely shunting GABAergic inputs usually only decrease the

time-averaged firing rate. On the other hand, the depolarizing

GABAergic inputs are able to both increase and decrease it,

as we have shown (Fig. 8 a), enabling another kind of neural
computation. Most recently, Stiefel and colleagues experi-

mentally proved that a GABAergic input with such an inter-

mediate value of the GABAA reversal potential can either

increase or decrease the probability of the next spike gen-

eration depending on its timing relative to the phase of the

oscillatory driving current (28). This study may be consistent

with their results.

We have shown that increasing the time-widths of the

input waveforms, by which we have intended to represent

decreasing the precision of the presynaptic spikes, smoothes

the transformation from the input phase difference to time-

averaged firing rate, thus improving the information transfer

(Fig. 7). Increasing the time-widths, however, may not be

sufficient to represent the impreciseness of the spikes. Spe-

cifically, although we have assumed that all these parameters

are deterministically fixed, it would be more natural that the

parameters other than EGABA and 1/T are accompanied by

some degree of temporal fluctuations. To examine the effects

of such variability, we performed simulations in which pa-

rameters tGlu; tGABA; g̃Glu; and g̃GABA are accompanied by

Gaussian noise whose standard deviations are 5% of the

original parameter values. As shown in Fig. 9 a, adding such
small amounts of fluctuations smoothes the phase-to-rate

transformation, and thereby improves the associated infor-

mation transfer. When the value EGABA ¼ �64 (mV), as in

Fig. 9 a, there is a much wider range where GABAergic

inputs act facilitatory than the range where GABAergic

inputs have an inhibitory action. A slightly hyperpolarized

GABAA reversal potential, EGABA ¼ �66 (mV), together

with the same degree of small temporal fluctuations could

achieve almost ideally smooth and evenly bidirectional firing-

rate modulation, as shown in Fig. 9 b.
So far we have examined responses, or specifically, time-

averaged firing rates of a single neuron receiving periodic

inputs. Because there is increasing evidence that population

coding is used in at least some parts of the cerebral cortex,

here we discuss it with regard to our situation. Let us

consider 100 mutually unconnected neurons receiving 40 Hz

glutamatergic and GABAergic inputs with fluctuations

(of 5%) on their timings, durations, and amplitudes. If such

fluctuations are statistically independent over the popula-

tion as well as over trials, the population-averaged activity is

expected to be consistent with the trial-averaged activity

(29), and practically we calculated the latter by simulation.

The mean magnitude of the glutamatergic inputs are so

tuned as to give 1:2 phase-locked response in the absence

of GABAergic inputs and also without fluctuations on the

timing, duration, and amplitude. Actually, there are fluctu-

ations in inputs as just described, and therefore the response

varies from neuron to neuron, resulting in the nearly 40 Hz

population activity shown in Fig. 10 a. When GABAergic

inputs with a depolarized reversal potential EGABA ¼ �66

(mV) are added, the population activity is still nearly 40 Hz

periodic (Fig. 10 b). However, its amplitude, that is, the

power spectral density at 40 Hz, varies with the input time

(phase) difference. In other words, the input phase difference

is transformed into the amplitude of the output periodic

population activity, as shown in Fig. 10 c. Note that the

phase of the population activity, contrary to the amplitude, is

FIGURE 9 Effects of small temporal fluctuations of timings, durations,

and amplitudes of the periodic inputs on the phase-to-rate transformation. To

test the effects of temporal fluctuations, we added Gaussian noise on the

parameters tGlu; tGABA; g̃Glu; and g̃GABA with standard deviations of 5% of

the original parameter values. (a) The phase-to-rate transformation when

EGABA ¼ �64 (mV) and Æg̃GABAæ ¼ 45 (nS) without (the gray line) and with
(the black line) fluctuations. (b) The phase-to-rate transformation when

EGABA ¼ �66 (mV) and Æg̃GABAæ ¼ 65 (nS) without (the gray line) and with

(the black line) fluctuations. In both panels a and b, T ¼ 25 (ms),

ÆtGluæ ¼ ÆtGABAæ ¼ 3:5 (ms), and Æg̃Gluæ ¼ 9:425 (nS), realizing a 1:2 phase-

locked response, i.e., 20 Hz firing in the absence of GABAergic inputs and

of fluctuation on glutamatergic inputs.
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hardly affected by the input phase difference, as shown in the

bottom panels of Fig. 10, a and b. This is because different
amplitudes of the population activity come from different

types of phase-locked states, e.g., 1:2, 2:3, etc., of single

neurons, but the spike timing in each input period does not

largely change. Also note that such phase-to-amplitude trans-

formation would be possible with purely shunting GABAergic

inputs, but bidirectional modulation of the amplitude is en-

abled only when the GABAA reversal potential is more

depolarized than the resting potential.

Our analysis is based on Wilson’s two-dimensional neuron

model. There are two directions in terms of refinement of the

neuron model: one is increasing the number of types of ion

channels as well as representing more details of their gating

dynamics, and the other is considering spatial inhomogeneity

of the membrane potential. Both of these points could affect

the results in this study. High dimensionality generally could

enrich the types of possible bifurcations, and could induce

complex responses including multistability and chaos more

easily. More specifically, it is known that slow voltage-

dependent potassium current (M-current), which causes spike

frequency adaptation, would qualitatively alter the phase

responses of the neuron, namely, change its infinitesimal

phase-response-curve from type I to type II (30,31). Conse-

quently, a neuron having such adaptation potassium current

might show a response like rebound facilitation to appropri-

ately timed GABAergic inputs with a hyperpolarized reversal

potential. Other than this, time delay and low-pass filtering

effects of dendrites, as well as their possible active properties,

could also greatly affect the results, especially considering that

the majority of glutamatergic synapses are located on the

dendritic spines. These points should be addressed with

detailed neuron models, making use of simulation software

such as NEURON (32), and compared with results in real

living neurons via the dynamic clamp (conductance injection)

technique (33,34).
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FIGURE 10 Phase-to-amplitude transformation by a population of neu-

rons. (a) Raster plot (upper left panel) and histogram (lower left panel) of a
neuronal population composed of 100 neurons receiving the common 40 Hz

glutamatergic input train with 5% of independent fluctuation on its

amplitude, timing, and duration, in the absence of GABAergic inputs. The

parameters are T ¼ 25 (ms), ÆtGluæ ¼ ÆtGABAæ ¼ 3:5 (ms), and

Æg̃Gluæ ¼ 9:425 (nS), giving a 1:2 phase-locked response, i.e., 20 Hz firing

in the absence of GABAergic inputs and also without fluctuation on

glutamatergic inputs. The right panel shows the power spectrum (vertical

axis) versus the period (horizontal axis) obtained by fast Fourier transfor-

mation. (b) Raster plots, histograms, and Fourier spectra of 100 neurons

receiving 40 Hz glutamatergic input train and depolarizing GABAergic

trains with EGABA ¼ �66 (mV) and Æg̃GABAæ ¼ 65 (nS), both of which

contain 5% of fluctuations on their amplitudes, timings, and durations. Four

cases are shown: the temporal difference between glutamatergic input

and GABAergic input is, from top to bottom, �10, �5, 0, and 5 ms. (c)

Dependence of the power spectrum of the population activity at 40 Hz on the

time difference between glutamatergic and GABAergic periodic input trains.

The horizontal black line indicates the value in the absence of GABAergic

inputs for comparison.
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