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SUMMARY

The transcription activator-like (TAL) effector targets
specific host promoter through its central DNA-
binding domain, which comprises multiple tandem
repeats (TALE repeats). Recent structural analyses
revealed that the TALE repeats form a superhelical
structure that tracks along the forward strand of
the DNA duplex. Here, we demonstrate that TALE
repeats specifically recognize a DNA-RNA hybrid
where the DNA strand determines the binding spec-
ificity. The crystal structure of a designed TALE in
complex with the DNA-RNA hybrid was determined
at a resolution of 2.5 Å. Although TALE repeats are
in direct contact with only the DNA strand, the phos-
phodiester backbone of the RNA strand is inacces-
sible by macromolecules such as RNases. Con-
sistent with this observation, sequence-specific
recognition of an HIV-derived DNA-RNA hybrid by
an engineered TALE efficiently blocked RNase H-
mediated degradation of the RNA strand. Our study
broadens the utility of TALE repeats and suggests
potential applications in processes involving DNA
replication and retroviral infections.
INTRODUCTION

Transcription activator-like effectors (TALEs) are secreted by

phytopathogenic bacteria of the genus Xanthomonas and in-

jected into host cells through the type III secretion system (Bai

et al., 2000; Boch and Bonas, 2010; Bonas et al., 1993; Gu

et al., 2005; Swarup et al., 1992; White and Yang, 2009), where

they modulate transcription through direct DNA binding (Kay

et al., 2007; Romer et al., 2007). The code of DNA recognition

by the variable diresidue (RVD) in each TALE repeat has

been identified through both experimental and bioinformatic

approaches (Boch et al., 2009; Moscou and Bogdanove, 2009).

The bases A, G, C, and T can be recognized by the RVDs NI

(Asn-Ile), NN (Asn-Asn), HD (His-Asp), and NG (Asn-Gly), respec-

tively (Boch and Bonas, 2010). The modular assembly of TALE

repeats provides an important tool for genome manipulation
C

(Bogdanove and Voytas, 2011; McMahon et al., 2012; Reyon

et al., 2012). Customized TALE nucleases (known as TALEN)

have been generated to target specific genes in yeast (Christian

et al., 2010), worm (Wood et al., 2011), and zebrafish (Huang

et al., 2011), aswell as to engineer humanpluripotent cells (Hock-

emeyer et al., 2011).

The crystal structures of TALE-DNA complexes (Deng et al.,

2012a; Mak et al., 2012) reveal that the second residue of an

RVD directly contacts a DNA base, whereas the first residue

stabilizes the conformation of the RVD loop. Notably, in the

TALE-bound double-stranded DNA (dsDNA), the bases as well

as the backbone phosphates in the forward strand (sense

strand), but not in the reverse strand (antisense strand), are

specifically recognized by RVDs in TALE repeats (Figures 1A

and S1A) (Deng et al., 2012a). This structural observation

suggests that the reverse DNA strand might be dispensable for

TALE binding. Thus, we speculated that TALE might be able to

recognize single-stranded DNA (ssDNA) or a DNA-RNA hybrid

in which the DNA is the forward strand. In this report, we have

combined structural biology and biochemical approaches

to demonstrate that TALE repeats can specifically recognize

the DNA-RNA hybrid where the DNA strand determines the

binding specificity. Furthermore, designed TALE repeats can

specifically protect the target DNA-RNA hybrids from degrada-

tion by RNase H. The discoveries presented here suggest

potential applications of TAL effectors in the modulation of

biological processes involving themaintenance and degradation

of DNA-RNA hybrids such as DNA replication and retroviral

infections.

RESULTS AND DISCUSSION

TALE Repeats of dHax3 Specifically Recognize
a DNA-RNA Hybrid
The 12 TALE repeats of dHax3, a designed TALE (Deng et al.,

2012a; Mahfouz et al., 2011), bind to the target dsDNA with

a dissociation constant of approximately 0.3 mM, as estimated

by results of the electrophoretic mobility shift assay (EMSA) (Fig-

ure 1B, lanes 1–5; Figure S1B, lanes 1–11). To examine whether

TAL effectors can bind to nucleic acids other than dsDNA, we

assessed the binding of dHax3 to ssDNA, a DNA-RNA hybrid,

ssRNA, and dsRNA. In contrast to the specific binding with its

target dsDNA (Figure 1B, lanes 1–5), dHax3 exhibited little
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Figure 1. The TALE Repeats of dHax3

Specifically Recognize a DNA-RNA Hybrid

(A) Only the forward DNA strand is in direct contact

with the TALE repeats. Shown here is a schematic

representation of the dHax3-dsDNA complex

(Deng et al., 2012a). The forward and reverse DNA

strands are colored gold and gray, respectively.

The two residues in each repeat that contact the

DNA phosphates are shown as yellow sticks. The

RVD loops are colored red. See also Figure S1A.

(B) dHax3 exhibits little binding for ssDNA.

Details of EMSA are described in the Experimental

Procedures. dHax3 concentrations were 0, 0.15,

0.44, 1.33, and 4 mM, respectively, in lanes 1–5 and

6–10. The probe concentration was approximately

4 nM in each lane. The same range of concentra-

tions was applied to the assays in (C). See also

Figure S1B.

(C) dHax3 specifically recognizes the DNA-RNA

hybrid with forward DNA strand (lanes 1–5). f,

forward strand; r, reverse strand. dHax3 showed

no apparent binding to the DNA-RNA hybrid with

reverse DNA strand (lanes 6–10) or dsRNA (lanes

11–15). dHax3 displayed weak binding to ssRNA

(lanes 16–20). The free ssRNA contains a major

band and a minor band on the gel (lane 16)—most

likely a consequence of secondary structure for-

mation (because this ssRNA is homogeneous on

denaturing PAGE gel). All structural figures were

prepared with PyMol (DeLano, 2002).
specific binding to the forward DNA strand alone (ssDNA) (Fig-

ure 1B, lanes 6–10) or a mutated dHax3 binding sequence in

which six T bases were replaced by C bases (Figure S1B, lanes

12–22). This result suggests that the presence of the reverse

strand may be essential for recognition of the forward DNA

strand by TALE, perhaps for maintenance of appropriate base

conformation in the forward DNA strand.

Next, we examined whether either strand of the dsDNA can be

replaced by RNA for binding to dHax3. The DNA-RNA hybrid,

with RNA as the reverse strand, retained specific binding to

dHax3; the dissociation constant has been moderately reduced

to about 1 mM (Figure 1C, lanes 1–5; data not shown). In contrast,

the reciprocal DNA-RNA hybrid, with RNA as the forward strand,

led to complete abrogation of dHax3 binding (Figure 1C, lanes

6–10). This finding suggests that RNA bases in the forward

strand may not have the correct conformation for binding to

dHax3. Consistent with this analysis, dsRNA also exhibited no

specific binding to dHax3 (Figure 1C, lanes 11–15). Surprisingly,

however, the forward RNA strand alone (ssRNA) appeared to

retain some weak binding to dHax3 (Figure 1C, lanes 15–20).

We speculate that the conformational flexibility of ssRNA allows

some bases to adopt appropriate conformation for recognition

by dHax3.

Crystal Structure of dHax3 TALE Repeats Bound
to the DNA-RNA Hybrid
Compared to B-form dsDNA, the free DNA-RNA hybrid exhibits

a different conformation, closely resembling that of the A-form

dsDNA (Gyi et al., 1998; Shaw and Arya, 2008; Shi and Berg,

1995). To understand how dHax3 can specifically recognize

the DNA-RNA hybrid, we crystallized dHax3 in complex with
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a 17 bp DNA-RNA hybrid in the space group P61. This space

group, with one dHax3-DNA-RNA complex in each asymmetric

unit, is different from that of the dHax3-dsDNA complex (Deng

et al., 2012a). The structure was determined by molecular

replacement using atomic coordinates of the dsDNA-bound

dHax3 (PDB accession code 3V6T) (Deng et al., 2012a) and

was refined to a resolution of 2.5 Å (Figure 2, Table S1). The pres-

ence of the reverse RNA strand is clearly identified by a string of

discrete and strong electron densities that are associated with

the 20 oxygen atoms in the RNA oxyribose (Figure S2).

The overall structure of the dHax3-DNA-RNA hybrid is similar

to that of the dHax3-dsDNA complex (Deng et al., 2012a) (Fig-

ure S3A). The structure of dHax3 bound to the DNA-RNA hybrid

can be superimposed to that of the dsDNA-bound dHax3 with

a root-mean-squared deviation (RMSD) of 0.77 Å over 441 Ca

atoms (Figure S3B). Similar to the dHax3-bound dsDNA (Deng

et al., 2012a), the dHax3-bound DNA-RNA hybrid also exhibits

a distorted B-form conformation, with 11 bp per helical turn

and a longer pitch compared to the B-form DNA duplex (Fig-

ure S3C, Table S2). The forward DNA strands in these two

complexes have a nearly identical conformation in all but three

nucleotides at the 30 end (Figure S3D). Superposition of the

DNA-RNA hybrid with the dsDNA reveals significant backbone

shift in the reverse strand (Figure S3E). The positions of the phos-

phate groups are different by as much as 0.7 Å in the middle

stretch and 4.8 Å at both ends of the strand. Furthermore, we

believe that such conformational flexibility of the reverse strands,

initially observed in the structure of the dHax3-dsDNA complex

(Deng et al., 2012a), may play an important role in allowing

specific recognition of the forward DNA strand. Notably, the 20

hydroxyl groups of RNA, which represent the sole chemical



Figure 2. Crystal Structure of the Complex

between dHax3 and the DNA-RNA Hybrid

The superhelical assembly of dHax3 (residues

231–720) binds to the major groove of the DNA-

RNA hybrid. dHax3 contains 11.5 repeats. The

flanking N- and C-terminal helices are shown in

cyan. An enlarged view is shown on the right. Note

that the 20-hydroxyl groups of each nucleotide in

the RNA strand, shown in red spheres, are located

in the minor groove and away from the RVDs of

TALE repeats.

See also Figure S2, Figure S3, and Table S1.
difference between RNA and DNA, point away from the protein

and are completely exposed to solvent (Figure 2). This observa-

tion is fully consistent with the tolerance of both DNA and RNA in

the reverse strand for binding to TALE.

TALE Repeats Protect Specific DNA-RNA Hybrids from
RNase H Degradation
Despite a lack of direct interactions, the backbone phosphate

groups in the RNA strand of the DNA-RNA hybrid are in close

proximity to the TALE repeats (Figure 3A). Among the 12

nucleotides of the RNA strand that are complementary to the

DNA-recognition sequence, the ones corresponding to positions

3–12 are partially ‘‘wrapped’’ by the TALE repeats (Figure 3A),

most likely making these nucleotides inaccessible to bulky

moiety such as a protein or enzyme. Given the fact that RNase

H cleaves the RNA strand of the DNA-RNA hybrid by attacking

the 30 O-P bond (Tramontano and Di Santo, 2010), our observed

structural feature suggests that dHax3 may be able to protect

the RNA strand from degradation by RNase H. To test this

hypothesis, we designed an RNase H protection assay, in which

the substrate was generated between a 32P-labeled 49 nt RNA

and a 31 nt DNA that contains the dHax3-recognition sequence

(Figure 3B). This design leaves an 18 nt 50 overhang in the RNA

sequence, which allows convenient detection after RNase H

degradation.

In the absence of dHax3, the RNA sequence annealed to the

DNA strand was digested by RNase H, yielding a specific

cleavage pattern (Figure 3B, lane 3). The ribonuclease T1, known

to specifically cleave after the baseG, was employed to generate

a reference ladder (Figure 3B, lane 13). Comparison of these two

cleavage patterns revealed that the main cleavage products of

the RNA strand, comprising four closely spaced bands, are

those from the 50 end to the sequence UAAA within the dHax3-

binding site. In sharp contrast to the cleavage pattern generated

in the absence of dHax3, the quadruplet cleavage products of

the RNA strand gradually disappeared in response to increasing

concentrations of the dHax3 protein (Figure 3B, lanes 3–10).

Approximately half of the cleavage activity was blocked in the

presence of 60 nM dHax3 (Figure 3B, lane 6). Concomitantly,

novel cleavage products of the RNA strand appeared in the pres-

ence of dHax3. These cleavage products contain 5–12 more

nucleotides than those found in the absence of dHax3, indicating
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that dHax3 not only shielded its binding

sequence from RNase H degradation

but also extended the protection to extra
nucleotides, most likely because of steric clash between the

N-terminal domain of dHax3 and RNase H.

To further corroborate the concept that binding of the DNA-

RNA hybrid by TALE protects against degradation by RNase

H, we extended the dHax3-binding sequence by 12 nucleotides

(50-CTCCAGCTCGAG-30) and examined whether a designed

TALE protein could protect the complementary RNA strand (Fig-

ure 3C). On the basis of the dHax3 scaffold, we engineered

a TALE protein with 23.5 repeats (TALE24), which would recog-

nize the combined 24 nt DNA sequence containing the dHax3-

binding sequence and 50-CTCCAGCTCGAG-30 (Tables S3 and

S5) in addition to an obligatory base T at position 0 (Boch

et al., 2009; Moscou and Bogdanove, 2009). In the absence of

TALE24, RNase H degraded the DNA-RNA hybrid to smaller

cleavage products in comparison to those seen in Figure 3B (Fig-

ure 3C, lane 3). This result is consistent with the fact that the

DNA-RNA hybrid contains a shortened ssRNA overhang in

comparison to that seen in Figure 3B. In the presence of in-

creasing concentrations of TALE24, these cleavage products

gradually faded and novel, longer cleavage fragments appeared

(Figure 3C, lanes 4–10). Comparison with the T1 control revealed

that the entire 25 nt RNA sequence and its vicinity are protected

from RNase H degradation.

A Designed TALE Protein Protects an HIV-Specific
DNA-RNA Hybrid from RNase H Degradation
The finding that TALE repeats protect the DNA-RNA hybrid from

RNase H degradation suggests potential application in fight-

ing retroviruses through the control of reverse transcription,

because RNase H-mediated degradation of the RNA template

after synthesis of complementary DNA is indispensible for the

replication of retroviruses (Basu et al., 2008; Sarafianos et al.,

2009). Blockage of RNA degradation, perhaps by a designed

TALE, may represent a novel approach in antiviral therapies.

On the basis of the dHax3 scaffold, we designed a 22.5-repeat

TALE protein, named TALEHIV (Table S4), to specifically recog-

nize a 23 nt sequence element in addition to a preceding base

T of the reverse transcription product of the HIV genome at its

50 repeat region (Figure 4, Table S5). TALEHIV was purified to

approximately 95% homogeneity, and a DNA-RNA hybrid was

prepared with a 12 nt overhang (Figure 4). In the absence of

TALEHIV, the RNA strand of the DNA-RNA hybrid was degraded
October 25, 2012 ª2012 The Authors 709



Figure 3. TALE Repeats Protect Specific DNA-RNA Hybrids from RNase H Degradation

(A) The phosphodiester backbone of the RNA strand in the DNA-RNA hybrid is in close proximity to the TALE repeats. Shown are the recognition sequences of the

DNA-RNA hybrid by dHax3. The nucleotide numbers in the DNA strand correspond to numbers labeled on the structure in the lower three panels.

(B) dHax3 protects a specific DNA-RNA hybrid from RNase H degradation. Shown in the upper panel are sequences of the DNA-RNA hybrid. RNA is 32P-labeled

at the 50 end, indicated by a red asterisk. The final concentrations of dHax3 were 0.004, 0.015, 0.06, 0.25, 1, 4, and 16 mM, respectively, in lanes 4–10. BSA was

added at a final concentration of 16 mM (lanes 11 and 12). ‘‘ladder T1’’ and ‘‘ladder A’’ refer to the cleavage of the ssRNA by RNase T1 and RNase A, respectively.

(C) A designed TALE protein protects the 24 nt (excluding the base T at position 0) DNA-RNA hybrid from RNase H degradation. The final concentrations of

TALE24 were 0.0004, 0.0015, 0.006, 0.025, 0.1, 0.4, and 1.6 mM, respectively, in lanes 4–10.

See also Tables S3 and S5.
to yield two prominent cleavage products by RNase H (Figure 4,

lane 3). In the presence of increasing amounts of TALEHIV, these

cleavage products gradually disappeared (Figure 4, lanes 4–10),

indicating protection. At a concentration of 6 nM, TALEHIV

blocked at least 50% of RNase H-mediated degradation of the

RNA strand (Figure 4, lane 6). The specificity is manifested in

the observations that BSA was unable to protect this specific

HIV RNA element from RNase H degradation and TALE24

exhibited very limited protection at a concentration of 1.6 mM,

the latter most likely due to nonspecific binding (Figure 4,

lanes 11–14).
710 Cell Reports 2, 707–713, October 25, 2012 ª2012 The Authors
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Many additional experiments, both in cells and in animal

models, should be conducted in order to validate the concept

that the binding of the DNA-RNA hybrid by TALEs may find clin-

ical application. Notably, zinc finger proteins have been shown

to specifically recognize DNA-RNA hybrids (Shi and Berg,

1995), and the endonuclease Fok I fused to zinc finger protein

has been shown to cleave a DNA-RNA hybrid (Kim et al.,

1997). However, it remains to be seen whether zinc finger

proteins can be applied successfully for direct clinical benefits.

Nevertheless, our finding that designed TALE repeats can



Figure 4. A Designed TALE Protein Protects an HIV-Specific

DNA-RNA Hybrid from RNase H Degradation

The TALE protein, designated TALEHIV, contains 22.5 tandem repeats.

TALEHIV efficiently protected against RNase H-mediated degradation of a

DNA-RNA hybrid that mimics the HIV replication intermediate. The final

concentrations of TALEHIV were 0.0004, 0.0015, 0.006, 0.025, 0.1, 0.4, and

1.6 mM, respectively, in lanes 4–10. BSA (lanes 11 and 12) and TALE24 (lanes

13 and 14) were added at a final concentration of 1.6 mM each.

See also Tables S4 and S5.
protect the target RNA sequence of a DNA-RNA hybrid against

RNase H degradation offers an additional exciting opportunity

for consideration of potential therapeutic intervention against

HIV and other retroviruses. DNA-RNA hybrids are associated

not just with retroviruses but also with transcription in general

and with DNA replication in which Okazaki fragments form to

complete synthesis of the lagging DNA strand (Shaw and

Arya, 2008). Binding of these specific DNA-RNA hybrids by

designed TALEs may offer unprecedented opportunities for

manipulation of these biochemical processes, and perhaps

for disease intervention. Thus, our finding that TALE is able to

specifically recognize a DNA-RNA hybrid, together with the

recent report that TALE binds to methylated DNA sequences

(Deng et al., 2012b), may greatly expand the utility and applica-

tion of TALE. The hallmark property of TALEs, recognizing only

a single DNA strand of the DNA-RNA hybrid, facilitates the

design of such TALE proteins.

EXPERIMENTAL PROCEDURES

Vectors and Constructs

The cDNAs for the TALE tandem repeats were synthesized (View Solid

Biotechnology). The sequences of DNA elements and proteins are shown

in Tables S3–S5. In brief, for generation of TALE24 and TALEHIV, SpeI

and SalI cuttings sites were introduced at the ends of the synthesized

cDNA for these TALE repeats. The cDNA encoding dHax3 was subcloned

into pET-21b (Novagen) (Deng et al., 2012a). The cutting sites for NheI and

SalI were introduced into dHax3 cDNA such that the fragment encoding the

12 repeats can be replaced by the cDNA encoding the 24 repeats of

TALE24 or TALEHIV.
C

Protein Expression and Purification

Plasmids encoding the engineered TALE proteins were transformed into

E. coli Rosetta (DE3). Overexpression of TALEs was induced by 0.2 mM

isopropyl -D-thiogalactoside (IPTG) when the optical density of cell culture

at 600 nm (OD600) reached 0.8. After growth at 22�C for 16 hr, the cells

were harvested and homogenized in the buffer containing 25 mM Tris-HCl

(pH 8.0) and 500 mM NaCl. After sonication and centrifugation, the super-

natant was applied to Ni2+ affinity resin (Ni-NTA, QIAGEN), followed by heparin

affinity column (Heparin Sepharose 6 Fast Flow, GE Healthcare) and gel filtra-

tion chromotography (Superdex-200 10/30, GE Healthcare). The buffer for gel

filtration contained 25 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 10 mM DTT.

Peak fractions from gel filtration were collected. Truncated dHax3 (residues

231–720) was purified as previously described (Deng et al., 2012a).

Crystallization

The synthesized forward DNA strand and the reverse RNA strand were mixed

with equal molar amounts, heated at 85�C for 3 min, and annealed by slow

cooling to 22�C over a period of 5 hr. For crystallization, dHax3 (residues

231�720) and the 17 bp DNA-RNA hybrid were mixed with a molar ratio

of approximately 1:1.5 at 4�C for 30 min. The DNA-RNA hybrid sequences

are as follows: fDNA, 50-TGTCCCTTTATCTCTCT-30; rRNA, 50-AGAGAGA

UAAAGGGA CA-30.
Crystals of the protein in complex with the DNA-RNA hybrid were grown

at 18�C by the hanging-drop vapor-diffusion method. The crystals grew to

full size overnight in the mother solution containing 11% PEG3350 (w/v),

12% ethanol, and 0.1 M MES (pH 6.3). But the diffraction of these crystals

is too poor for data collection. Aging and dehydration strategies were

applied to the crystals. We left the crystals in the incubator for aging from

2 days to 3 weeks. Then dehydration was applied faithfully according to the

protocols described by Heras and Martin (2005). Eventually, one crystal

diffracted X-rays to 2.5 Å resolution at the Shanghai Synchrotron Radia-

tion Facility (SSRF) beam line BL17U after a 2 week aging followed by

dehydration.

Data Collection and Structural Determination

All data sets were integrated and scaled with the HKL2000 (Otwinowski and

Minor, 1997) package. Further processing was carried out with programs

from the CCP4 suite (Collaborative Computational Project, 1994). The struc-

ture of dHax3 in complex with the DNA-RNA hybrid was determined bymolec-

ular replacement with the structure of dHax3 bound to dsDNA (PDB accession

code 3V6T) used as the initial search model in the program PHASER (McCoy

et al., 2007). The structure was refined with PHENIX (Adams et al., 2002) and

COOT (Emsley and Cowtan, 2004) iteratively. Data collection and structural

refinement statistics are summarized in Table S1.

EMSA

The single-stranded DNA or RNA oligonucleotides were radiolabeled at the 50

endwith [g-32P] ATP (5,000Ci/mmol; Furui Biotech, Beijing, China) with the use

of T4 polynucleotide kinase (Takara). The sequences of nucleic acid oligos

used in EMSA are as follows:

fRNA, 50-CCACAUAUGUCAUACGUGUCCCUUUAUCUCUCUCCAGCUC

GAGGAAUUC-30;
rRNA, 50-GAAUUCCUCGAGCUGGAGAGAGAUAAAGGGACACGUAUGA

CAUAUGUGG-30;
fDNA, 50-CCACATATGTCATACGTGTCCCTTTATCTCTCTCCAGCTCGAG

GAATTC-30;
rDNA, 50-GAATTCCTCGAGCTGGAGAGAGATAAAGGGACACGTATGAC

ATATGTGG-30

The dsDNA, DNA-RNA hybrid, and dsRNA were generated by mixing equal

molar quantities of forward and reverse strands. For EMSA, TALE proteins with

indicated concentrations were incubated with approximately 4 nM 32P-labeled

probe on ice in the binding buffer containing 20 mM Tris-HCl (pH 8.0), 50 mM

NaCl, 5 mM MgCl2, 5% glycerol (w/v), 50 ng/ml poly (dI$dC), and 0.1 mg/ml

bovine serum albumin (BSA) for 20 min. Reactions were then resolved on 6%

native acrylamide gels (37.5:1 for acrylamide: bisacrylamide) in 0.253 Tris
ell Reports 2, 707–713, October 25, 2012 ª2012 The Authors 711



borate buffer under an electric field of 15 V/cm for 1 hr. Vacuum-dried gels

were exposed to phosphorimager screens and analyzed by a Typhoon Trio

variable scanner (Amersham Pharmacia).

RNase H Protection Assay

Generation of the DNA-RNA probes was described above. TALE proteins or

BSA were incubated with approximately 5 nM 32P-labeled probes for 20 min

on ice in a final volume of 20 ml in the RNase H reaction buffer containing

20 mM Tris-HCl (pH 8.0), 50 mM NaCl, 5 mM MgCl2, and 10 mM DTT. For

each reaction, 5 ml 0.1 U/ml RNase H (Takara) was added to the reaction

mixture and incubated for 5 min at room temperature. Reactions were

quenched by the addition of phenol-chloroform, followed by ethanol pre-

cipitation. Finally, the samples were resuspended in RNA-loading buffer

(95% formamide, 18 mM EDTA, 0.025% xylene cyanol, 0.025% bromophenol

blue) and applied to a 12% denaturing (7 M urea) polyacrylamide gel in 13

tris-borate-EDTA (TBE) buffer under an electric field of 15 V/cm for 2 hr.

Vacuum-dried gels were exposed to phosphorimager screens and analyzed

with a Typhoon Trio variable scanner (Amersham Pharmacia). The ladders

were generated by incubating RNase T1 or RNase A with the ssRNA probe

at room temperature for 10 min.
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