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In this paper we describe conjugacy classes of a Renner monoid
R with unit group W , the Weyl group. We show that every el-
ement in R is conjugate to an element ue where u ∈ W and e
is an idempotent in a cross section lattice. Denote by W (e) and
W∗(e) the centralizer and stabilizer of e ∈ Λ in W , respectively. Let
W (e) act by conjugation on the set of left cosets of W∗(e) in W .
We find that ue and ve (u, v ∈ W ) are conjugate if and only if
uW∗(e) and vW∗(e) are in the same orbit. As consequences, there
is a one-to-one correspondence between the conjugacy classes of R
and the orbits of this action. We then obtain a formula for calcu-
lating the number of conjugacy classes of R , and describe in detail
the conjugacy classes of the Renner monoid of some J -irreducible
monoids.
We then generalize Munn conjugacy on a rook monoid to any Ren-
ner monoid and show that Munn conjugacy coincides with semi-
group conjugacy, action conjugacy, and character conjugacy. We
also show that the number of inequivalent irreducible represen-
tations of R over an algebraically closed field of characteristic zero
equals the number of Munn conjugacy classes in R .

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

There are different conjugacy relations in semigroup theory of which the following two are com-
monly studied ones. Let R be a monoid with unit group W . Two elements σ ,τ ∈ R are conjugate,
denoted by σ ∼ τ , if there is w ∈ W such that τ = wσ w−1. Let S be a semigroup. Then elements
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σ ,τ ∈ S are called primary S-conjugate if there are x, y ∈ S for which σ = xy and τ = yx. This
latter relation is reflexive and symmetric, but not transitive. Let ≡ be its transitive closure, called
semigroup conjugacy. If two elements in a monoid are ∼-conjugate, then they are semigroup con-
jugate. In a group these two conjugacy relations coincide and are equal to the usual group conju-
gacy.

The purpose of this paper is two-folded. We first describe the ∼-conjugacy classes in a Renner
monoid R , and then investigate the connections between semigroup conjugacy classes and irreducible
representations of R . A Renner monoid is a finite inverse monoid induced from inductive (algebraic)
monoids [23,27,29,30]. It plays the same role for reductive monoids as the Weyl group does for re-
ductive groups. The unit group of a Renner monoid R is a Weyl group W . The symmetric inverse
semigroup is a traditional example of Renner monoids; more examples can be found [17,18].

1.1. ∼-Conjugacy classes

The ∼-conjugacy in a monoid has been studied intensively with many useful results. It is well
known that two elements in a symmetric inverse semigroup Rm , called a rook monoid in combi-
natorics, are conjugate if and only if they have the same cycle-link types [20]. A one-to-one cor-
respondence between conjugacy classes in a symplectic rook monoid and (symplectic) partitions is
established in [1], with precise formulas for calculating the number of conjugacy classes and formu-
las for computing the order of each class given. For a reductive monoid M , Putcha [24] showed that
there exist affine subsets M1, M2, . . . , Mk such that every element of M is conjugate to an element
of some Mi . Furthermore, he gave a necessary and sufficient condition for two elements in Mi to
be conjugate. Note that elements in different Mi and M j may be conjugate. He then described pre-
cisely the conjugacy of elements in Mi and M j with i �= j [25]. Renner [28] investigated properties
of conjugacy classes of semisimple elements in reductive monoids. Carter gave a complete descrip-
tion of conjugacy classes in the Weyl group [2,3]; Humphreys summarized different developments of
conjugacy for semisimple algebraic groups [9].

In this paper, we first investigate the ∼-conjugacy classes of a Renner monoid R using parabolic
subgroups of the Weyl group W . To be specific, let Λ be a cross section lattice of M . We obtain that
every element in R is conjugate to an element ue for some u ∈ W and e ∈ Λ. Let W (e) and W∗(e)
be the centralizer and stabilizer of e ∈ Λ in W , respectively (for definitions, see Section 2.3 below).
Denote by W /W∗(e) the set of left cosets of W∗(e) in W and let W (e) act on W /W∗(e) by conju-
gation. We show in Theorem 3.4 that if u, v ∈ W , then two elements ue, ve ∈ R are conjugate if and
only if uW∗(e) and vW∗(e) are in the same orbit. As a consequence, there is a one-to-one correspon-
dence between the conjugacy classes and all the orbits (Corollary 3.5). This leads to a formula for
calculating the number of conjugacy classes in R (Corollary 3.6). As examples, we describe in detail
the conjugacy classes in some J -irreducible Renner monoids of type A2, B2, and G2.

The study of ∼-conjugacy classes in Renner monoids reveals many important features of their
structures and representations. One useful result in group representation theory is that the number
of the usual group conjugacy classes in a finite group is equal to the number of irreducible rep-
resentations of the group over an algebraically closed field with characteristic not a factor of the
order of the group. However, this is not the case for Renner monoid representation theory. Indeed,
there are usually more ∼-conjugacy classes than irreducible representations. For example, the rook
monoid

R2 =
{(

0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)}

has 5 ∼-conjugacy classes but 4 irreducible representations over an algebraically closed field of char-
acteristic zero [19,31].

A natural question is how to define a new conjugacy relation different from the above in Renner
monoids such that the number of corresponding conjugacy classes equals the number of irreducible
representations?
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1.2. Semigroup conjugacy and an analogue of Munn conjugacy

There are many elegant results about semigroup conjugacy in the literature. Lallement studied it
for free semigroups [16]. Ganyushkin and Kormysheva showed that two elements in the symmetric
inverse semigroup are conjugate if and only if they have the same stable rank and the restrictions
to their stable images, respectively, have the same cycle type (see [5]). Ganyushkin and Mazorchuk
described this conjugacy in detail in Chapter 6 of [6]. Kudryavtseva investigated the conjugacy in
regular epigroups with useful results [12]. Kudryavtseva and Mazorchuk investigated semigroup con-
jugacy, action conjugacy, and character conjugacy for different semigroups in [13]. They showed that
semigroup conjugacy and action conjugacy (see Section 2.1 for definitions) coincide for any inverse
epigroups, and that semigroup conjugacy and character conjugacy are the same in regular epigroups
with finite D-classes. They studied conjugacy in Brauer-type semigroups and semigroups of square
matrices in [14,15].

Munn [21,22] obtained the characters of irreducible representations of the symmetric inverse
semigroup Rm , which implicitly introduced the so-called Munn conjugacy (see Definition 4.3).
Solomon [31] made this conjugacy explicit, denoted by ≈. Two elements in Rm are Munn conjugate
if and only if they have the same cycle types [6,22,31]. Thus Munn conjugacy is equal to semigroup
conjugacy in Rm . Recently, the representation theory of Munn and Solomon has been generalized to
Renner monoids [19], showing that the irreducible representations of a Renner monoid are completely
determined by those of the parabolic subgroups of the Weyl group. Steinberg developed a represen-
tation theory of finite inverse semigroups with many useful applications [32]; his results are deeper
and wider.

In this paper we find an analogue of Munn conjugacy for a Renner monoid R by embedding it
into some symmetric inverse semigroup determined by the vertices of a polytope associated to R (see
Section 4.1 for more details). We then prove that the number of Munn conjugacy classes in R equals
the number of the irreducible representations of R over an algebraically closed field of characteristic
zero (Theorem 4.17).

What is the connection between Munn conjugacy and semigroup conjugacy in R? We show that
these two conjugacy relations are equal. So the analogue of Munn conjugacy provides a new descrip-
tion of semigroup conjugacy for R (Theorem 4.4). We go even further: in a Renner monoid Munn
conjugacy, character conjugacy, action conjugacy, and semigroup conjugacy are all the same (Corol-
lary 4.5).

In the rest of the paper, Section 2 provides necessary facts and background information. Section 3
describes the ∼-conjugacy classes of Renner monoids R . Section 4 introduces an analogue of Munn
conjugacy for R and finds its connection with the representation theory of R .

2. Preliminaries

Let S be a semigroup and σ ∈ S . Denote by Hσ the H-Green relation on S (see [4,7,6] for Green
relations). An element σ ∈ S is a group-bound element if there exists a positive integer k such that
σ k lies in a subgroup of S . If every element of S is group-bound, we call S an epigroup, which is
also named as a group-bound semigroup or strongly π -regular semigroup in the literature. Every finite
semigroup is an epigroup; so is the full matrix monoid consisting of all square matrices over a field.
Let σ ∈ S be group-bound such that Hσ k is a group whose identity element is denoted by eσ . It
follows from Lemma 1 of [12] that the identity element eσ is well defined. By Corollary 1 of [12] we
have σ eσ = eσ σ and σ eσHeσ . The element σ eσ is called the invertible part of σ .

A semigroup is an inverse semigroup if every element has a unique inverse. Let S be an inverse
semigroup with the natural partial order on S1 given by σ � τ if and only if there is an idempotent
e ∈ S such that τ = σ e (see also Chapter 5 of [7]). An inverse semigroup with unit group G is said
to be factorizable if for each σ ∈ S there is g ∈ G such that σ � g . The following result is given by
Theorem 3 of [12] and will be useful in Section 4.

Theorem 2.1. Let S be a factorizable inverse epigroup and σ ,τ ∈ S. Then σ ≡ τ if and only if σ eσ ∼ τeτ .
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2.1. Action conjugacy and character conjugacy

We define action conjugacy and character conjugacy in a semigroup, and refer the reader to [13]
for more details. These two conjugacies will be compared with Munn conjugacy in Section 4. Let S
be an inverse epigroup. Define a partial action of S1 on S by

σ · x =
{

σ xσ−1, if σ−1σ � ex;
undefined, otherwise.

It follows from Lemma 1 in [13] that if σ ,τ ∈ S1 and x ∈ S then τσ · x is defined if and only if σ · x
and τ · (σ · x) are both defined, in which case τσ · x = τ · (σ · x).

We call x, y ∈ S primary action conjugate if there is σ ∈ S1 for which y = σ · x or x = σ · y. This
relation is reflexive and symmetric, but not necessarily transitive. Its transitive closure is called action
conjugacy.

Two elements x, y in a semigroup S are referred to as character conjugate if for every finite-
dimensional complex representation φ of S we have χφ(x) = χφ(y), where χφ is the character of φ.

2.2. Renner monoids

Every linear algebraic monoid is an epigroup [23, Theorem 3.18]. A linear algebraic monoid M
over an algebraic closed field is an affine algebraic variety together with an associative morphism
from M × M to M and an identity element 1 ∈ M . An irreducible algebraic monoid is a linear alge-
braic monoid whose underlying affine variety is irreducible; equivalently, M is not the union of two
proper closed nonempty subsets. The unit group of M , consisting of all invertible elements in M ,
is an algebraic group. An irreducible algebraic monoid is reductive if its unit group is a reductive
group.

Let M be a reductive algebraic monoid, T ⊆ G a maximal torus of the unit group G , B ⊆ G a Borel
subgroup with T ⊆ B , N the normalizer of T in G , N the Zariski closure of N in M . Then N is a unit
regular inverse monoid which normalizes T , so R = N/T is a monoid and

R = N/T ⊇ N/T = W , the Weyl group.

Definition 2.2. The monoid R is called the Renner monoid of M .

The Renner monoid R is a finite factorizable inverse monoid, and hence an epigroup. The unit
group of R is a Weyl group. The idempotents in R are exactly those in T , the Zariski closure of T
in M . Moreover,

M =
∐
r∈R

BrB, disjoin union

and if s is a simple reflection then BsB · BrB ⊆ BsrB ∪ BrB .

2.3. Cross section lattice

Denote by E(T ) = {e ∈ T | e2 = e} the set of idempotents in T . Partially order this set by defining

e � f ⇔ f e = e = ef .

Then E(T ) is a lattice with e ∧ f = ef . The sublattice of E(T ) given below

Λ = {
e ∈ E(T )

∣∣ Be = eBe
}
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is called the cross section lattice of M and R . It is a useful concept, since

M =
∐
e∈Λ

GeG and R =
∐
e∈Λ

W eW , disjoint unions.

Furthermore, if e, f ∈ E(T ) then e � f ⇔ GeG ⊆ G f G ⇔ W eW ⊆ W f W .
Let W act naturally on E(T ) by conjugation. The cross section lattice Λ is a transversal of the

orbits of this action. Each orbit is a conjugacy class of E(T ) under W .

2.4. Type map and J -irreducible monoids

The type map can be considered a monoid analogue of the Coxeter graph in Lie theory. It
plays a crucial role in determining the cross section lattice for a reductive monoid. Especially, for
J -irreducible monoids, it provides a combinatoric approach to precisely finding out the cross section
lattice. A reductive monoid M with zero 0 is called J -irreducible if Λ \ {0} has a unique minimal
element.

Let V be a Euclidean space and let r : W → GL(V ) be the usual reflection representation of the
Weyl group W . Along with this goes the fundamental Weyl chamber C ⊆ V and the corresponding
set of simple reflections S = {sα | α ∈ 	} ⊆ W , where 	 is the set of simple roots of G relative to T .
Note that W is generated by S , and C is a fundamental domain for the action of W on V . See [8,11]
for details.

Definition 2.3. The type map λ : Λ → 2	 is defined by λ(e) = {α ∈ 	 | sαe = esα}.

Let λ∗(e) = {α ∈ 	 | sαe = esα �= e} and λ∗(e) = {α ∈ 	 | sαe = esα = e}. Then λ(e) = λ∗(e)
∐

λ∗(e).
We define parabolic subgroups of W determined by λ(e), λ∗(e) and λ∗(e), respectively,

W (e) = Wλ(e), W ∗(e) = Wλ∗(e), W∗(e) = Wλ∗(e).

Then W (e) = {w ∈ W | we = ew} and W∗(e) = {w ∈ W | we = ew = e}. We call W (e) the centralizer
of e in W and W∗(e) the stabilizer of e in W . The following results are standard from Putcha [23]
and Renner [29].

Proposition 2.4. Let e, f ∈ E(R) and w ∈ W .

1. If we = f (or ew = f ), then e = f .
2. we = e if and only if ew = e. Moreover, W∗(e) = {w ∈ W | we = e}.
3. If e ∈ Λ, then W∗(e) is a normal subgroup of W (e) ∼= W ∗(e) × W∗(e).

Let G0 be a simple algebraic group and ρ : G0 → GL(V ) be an irreducible rational representation
over an algebraically closed field K . Then

M = K ∗ρ(G0)

is a J -irreducible monoid, called the J -irreducible monoid associated with ρ . Let μi (1 � i � l) be the
fundamental dominant weights of G0 of type X , where X = Al, Bl, Cl, Dl, E6, E7, E8, F4 and G2.

Definition 2.5. The J -irreducible monoid associated with μi is called the i-th basic monoid of
type X ; its Renner monoid is referred to as the i-th basic Renner monoid of type X .

The theorem below is a summary of Corollary 4.11 and Theorem 4.16 of [26], and we use the
bracket notation 〈μ,α〉 as in p. 16 of [29].
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Theorem 2.6. Let M be the J -irreducible monoid associated with a highest weight representation with high
weight a dominant weight μ and let J0 = {α ∈ 	 | 〈μ,α〉 = 0}. Then:

1. λ∗(Λ \ {0}) = {X ⊆ 	 | X has no connected component that lies entirely in J0}.
2. λ∗(e) = {α ∈ J0 \ λ∗(e) | sαsβ = sβ sα for all β ∈ λ∗(e)}, for e ∈ Λ \ {0}.

3. ∼-Conjugacy classes in Renner monoids

Two elements σ , τ in a Renner monoid R are conjugate, denoted by σ ∼ τ , if τ = wσ w−1 for
some w ∈ W . Denote by W /W∗(e) the set of left cosets of W∗(e) in W , and let

D∗(e) = {
w ∈ W

∣∣ l(wsα) = l(w) + 1 for all α ∈ λ∗(e)
}
.

Then D∗(e) is a set of left coset representatives of W /W∗(e), and each w ∈ D∗(e) has a minimal
length in wW∗(e). If λ∗(e) = ∅, then W∗(e) = 1 and D∗(e) = W .

Lemma 3.1. Each element in a Renner monoid R is conjugate to an element in {we | w ∈ D∗(e)} for some
e ∈ Λ.

Proof. Let r be an element in R . Then r = uev , where u, v ∈ W and e ∈ Λ. So r = v−1 vuev . Thus, r is
conjugate to vue. Let element w ∈ D∗(e) be the left coset representative of the coset vuW∗(e). Then
we = vue, and hence r is conjugate to we. �

Let W e = {we | w ∈ W } for e ∈ Λ. The above lemma leads to the following corollary.

Corollary 3.2. Each element in a Renner monoid is conjugate to an element in W e for some e ∈ Λ.

Lemma 3.3. No element of W e1 is conjugate to an element of W e2 for different idempotents e1, e2 ∈ Λ.

Proof. Assume that two elements ue1, ve2 (u, v ∈ W and e1 �= e2) are conjugate. Then there exists
an element w ∈ W such that

wue1 w−1 = ve2.

Thus (v−1 wuw−1)we1 w−1 = e2. It follows from Proposition 2.4 that we1 w−1 = e2. Since the cross
section lattice is a transversal of the conjugacy classes of E(T ) under W , we have e1 = e2, which
contradicts the assumption. �

Define a group action of W (e) on W /W∗(e) by

w · uW∗(e) = wuw−1W∗(e),

where w ∈ W (e) and u ∈ W . This action is well defined since W∗(e) is a normal subgroup of W (e).

Theorem 3.4. Let e ∈ Λ and W /W∗(e) be the set of left cosets of W∗(e) in W . Two elements ue, ve in W e
are conjugate if and only if the two cosets uW∗(e) and vW∗(e) are in the same W (e)-orbit in W /W∗(e).

Proof. Let u, v ∈ W . If there exists w ∈ W such that wuew−1 = ve, then

(
v−1 wuw−1)(wew−1) = e.
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It follows from Proposition 2.4 that wew−1 = e and v−1 wuw−1 ∈ W∗(e). Therefore, w ∈ W (e) and
wuw−1W∗(e) = vW∗(e), that is, uW∗(e) and vW∗(e) are in the same W (e)-orbit in W /W∗(e). The
argument can be reversed. �

The following results are corollaries of Theorem 3.4.

Corollary 3.5. There is a one-to-one correspondence between the conjugacy classes of a Renner monoid and
the orbits of the above action of W (e) on W /W∗(e) where e runs through Λ.

Corollary 3.6. Let ne be the number of W (e)-orbits in W /W∗(e). Then the number of the conjugacy classes
in a Renner monoid is

∑
e∈Λ ne.

Example 3.7. Let M be the J -irreducible algebraic monoids associated with an irreducible represen-
tation ρ of a simple algebraic group of type A2, B2 and G2, respectively, such that 〈ρ,α1〉 �= 0 and
〈ρ,α2〉 �= 0. Then M is a canonical monoid with J0 = {α ∈ 	 | 〈ρ,α〉 = 0} = ∅. Note that 	 = {α1,α2}
and S = {sα1 , sα2}. Write s1 = sα1 and s2 = sα2 , once and forever. By Theorem 2.6,

Λ \ {0} ∼= {∅, {α1}, {α2}, {α1,α2}
}
.

So Λ = {0, e0, e1, e2,1} with e0 the minimal nonzero idempotent. The conjugacy classes of the Renner
monoid of M are summarized as follows.

If X = A2, then R has 18 conjugacy classes with representatives

{0, e0, s1e0, s2e0, s1s2e0, s2s1e0, s1s2s1e0, e1,

s1e1, s2e1, s1s2e1, e2, s1e2, s2e2, s1s2e2,1, s1, s1s2}.

If X = B2, then R has 26 conjugacy classes with representatives

{0, e0, s1e0, s2e0, s1s2e0, s2s1e0, s1s2s1e0, s2s1s2e0,−e0,

e1, s1e1, s2e1, s1s2e1, s2s1s2e1,−e1, e2, s1e2, s2e2,

s1s2e2, s1s2s1e2,−e2,1, s1, s2, s1s2,−1}.

If X = G2, then R has 35 conjugacy classes with representatives

{
0, e0, s1e0, s2e0, s1s2e0, (s1s2)

2e0,−e0, (s2s1)
2e0, s2s1e0, s2s1s2e0,

(s2s1)
2s2e0, (s1s2)

2s1e0, s1s2s1e0, e1, s1e1, s2e1, s1s2e1, (s1s2)
2e1,

−e1, s2s1s2e1,−s1e1, e2, s1e2, s2e2, s1s2e2, (s1s2)
2e2,−e2,

s1s2s1e2,−s2e2,1, s1, s2, s2s1, (s2s1)
2,−1

}
.

We show a detailed calculation for case G2; the other two cases are similar. The Weyl group W
of type G2 is isomorphic to the dihedral group of order 12 generated by two elements s1s2 and s2,
where s1 and s2 are the simple reflections such that (s1s2)

6 = s2
2 = 1 and s2(s1s2)s−1

2 = (s1s2)
−1. The

elements of W are (s1s2)
k , (s1s2)

ks2, for 0 � k � 5, and we have the relation s2(s1s2)
k = (s1s2)

−ks2
and (s1s2)

3 = −1. Thus

W = {
1, s1s2, (s1s2)

2,−1, (s1s2)
4, (s1s2)

5, s2, s1, (s1s2)s1, (s1s2)
2s1,−s1, s2s1s2

}
.
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If e = 0, it determines the conjugacy class consisting of 0 only.
If e = e0, by Theorem 3.4 D∗(e0) contributes 12 classes with representatives ue for u ∈ W . Indeed,

W (e) = W∗(e) = 1 and D∗(e) = W . Each element of D∗(e) gives rise to a conjugacy class containing
a single element.

If e = e1, it follows from Theorem 3.4 that D∗(e1) gives rise to 8 conjugacy classes with repre-
sentatives: e1, s1e1, s2e1, s1s2e1, (s1s2)

2e1, −e1, s2s1s2e1, −s1e1. In fact, in this case, W (e) = {1, s1},
W∗(e) = ∅, and D∗(e) = W ∼= W /W∗(e). Notice that each of 1, s1, (s1s2)

3, −s1 is in an orbit consist-
ing of a single element. Also, s1s2 and s2s1 are in one orbit; (s1s2)

2 and (s1s2)
4 = (s2s1)

2 are in an
orbit; s2 and s1s2s1 are in the same orbit; s2s1s2 and (s1s2)

2s1 are in one orbit.
If e = e2, then by symmetry of the Dynkin diagram of G2 we see that D∗(e2) provides 8 conjugacy

classes with representatives: e2, s1e2, s2e2, s1s2e2, (s1s2)
2e2, −e2, s1s2s1e2, −s2e2.

If e = 1, then W∗(e) = 1 and D∗(e) = W (e) = W , which is isomorphic to the dihedral group with
12 elements. So W has 6 conjugacy classes (cf. [10, Chapter 5]) with representatives: 1, s1, s2, s2s1,
(s2s1)

2, −1.

Example 3.8. We now let R be the first basic Renner monoid of type X , where X = A2, B2 or G2.
Then 	 = {α1,α2} and S = {s1, s2}. By Theorem 2.6,

Λ \ {0} = {∅, {α1}, {α1,α2}
}
.

So Λ = {0, e0, e1,1} with e0 the minimal nonzero idempotent. We list the following results without
showing the details.

If X = A2, then R has 10 conjugacy classes with representatives

{0, e0, s1e0, e1, s1e1, s2e1, s1s2e1,1, s1, s1s2}.

If X = B2, then R has 15 conjugacy classes with representatives

{0, e0, s1e0,−e0, e1, s1e1, s2e1, s1s2e1, s2s1s2e1,−e1,1, s1, s2, s1s2,−1}.

If X = G2, then R has 19 conjugacy classes with representatives

{
0, e0, s1e0,−s1e0,−s2e0, e1, s1e1, s2e1, s1s2e1, (s1s2)

2e1,

−e1, s2s1s2e1,−s1e1,1, s1, s2, s1s2, (s1s2)
2,−1

}
.

4. Munn conjugacy and its connections to representations

We plan to generalize Munn conjugacy on rook monoids Rm to any Renner monoid R and then
investigate the connection of this conjugacy with representations of R .

4.1. Embedding a Renner monoid into a rook monoid

Closely connected with a reductive monoid M is a polytope P [23,29]. For simplicity, we call
P the polytope associated with the Renner monoid R of M , if there is no confusion. Denote by
V (P ) = {1, . . . ,m} the set of all vertices of P . A subset K ⊆ V (P ) is regarded as a face of the poly-
tope if it is the set of vertices of a face of P . Let F(P ) be the face lattice of P . For any K ∈ F(P ),
define

eK (i) =
{

i if i ∈ K ,

undefined if i /∈ K .
(1)
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By convention, e∅ = 0, and eV (P ) is the identity map. It follows from [23] that

E(R) = {
eK

∣∣ K ∈ F(P )
}
.

The conjugation action of W on E(R) induces an action of W on F(P ) as follows. For w ∈ W and
J , K ∈F(P ),

w J = K , if we J w−1 = eK . (2)

If e ∈ E(R) and e = eL , let F(e) = {wL | w ∈ W } be the orbit of L under W .
Lemma 3.2 of [19] shows that, for any σ ∈ R , there exist w, w1 ∈ W and unique faces I , J of P

such that σ = e J w = w1eI . For any i ∈ I , let σ(i) denote the image of i under σ . The product of
τ ,σ ∈ R is regarded as τσ (i) = τ (σ (i)) if i ∈ I(σ ) and σ(i) ∈ I(τ ). Then

σ = e J weI (3)

is a map of I onto J . Thus R is a submonoid of Rm .

Definition 4.1. The face I is called the domain of σ and will be denoted by I(σ ); the face J is called
the range of σ and will be denoted by J (σ ).

Clearly if w ∈ W then I(w) = J (w) = V (P ).

4.2. Munn conjugacy

To obtain the desired result that the number of conjugacy classes of any Renner monoid R equals
the number of its inequivalent irreducible representations, we develop an analogue of Munn conju-
gacy relation for Renner monoids. For σ ∈ R , let I◦(σ ) be the set of i ∈ I(σ ) such that σ k(i) is defined
for all k � 1, that is,

I◦(σ ) =
∞⋂

k=0

I
(
σ k).

Then I◦(σ ) ⊆ I(σ ) and σ fixes I◦(σ ). Let

σ ◦ = σ |I◦(σ ),

the restriction of σ on I◦(σ ). For example, if the Renner monoid is the rook monoid R6 and σ : 1 �→
5 �→ 6 �→ 1 and 2 �→ 4 with σ(3), σ(4) undefined, then I◦(σ ) = {1,5,6} is a subset of the domain
{1,2,5,6} of σ , and σ ◦ : 1 �→ 5 �→ 6 �→ 1.

Lemma 4.2. Let σ ∈ R. Then σ ◦ is an element of R.

Proof. It follows from the definition of σ ◦ that the range J (σ ◦) of σ ◦ is the same as the range
of σ k for some k � 1. Thus J (σ ◦) is a face of P , since the range of σ k ∈ R is a face of P . Notice
that the domain I(σ ◦) of σ ◦ is equal to J (σ ◦). Then eI(σ ◦) ∈ R . Let σ = weI for some w ∈ W . Then
σ ◦ = σ |I(σ ◦) = weI(σ ◦) ∈ R . �
Definition 4.3. Let W be the unit group of R . Then two elements σ ,τ ∈ R are called Munn conjugate,
denoted by σ ≈ τ , if there exists w ∈ W such that w−1σ ◦w = τ ◦ . Munn conjugacy class of σ is
denoted by [σ ].
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Two elements in the rook monoid Rm are Munn conjugate if and only if they have the same cycle
pattern [22]. There are 7 Munn conjugacy classes in R3 with representatives: 0, (1)[2][3], (1)(2)[3],
(12)[3], (12)(3), (123), 1.

Theorem 4.4. Munn conjugacy and semigroup conjugacy coincide in a Renner monoid.

Proof. Let σ = weI(σ ) ∈ R , where w ∈ W and I(σ ) is the domain of σ . Write I = I(σ ). Then we
have

σ 2 = weI weI = w2ew−1(I)eI = w2eI∩w−1(I).

Let k be the smallest positive integer for which wk(I) = I . Then

I◦(σ ) = I ∩ w(I) ∩ · · · ∩ wk−1(I).

Thus σ k = wkeI◦(σ ) = eI◦(σ )wk ∈ Hσ k with the identity element eI◦(σ ) . So the invertible part of σ
is σ eI◦(σ ) = weI(σ )eI◦(σ ) = weI◦(σ ) = σ ◦ . It follows from Theorem 2.1 and Definition 4.3 that Munn
conjugacy coincides with semigroup conjugacy in R . �

We would like to point out that the result in Theorem 4.4 can also be deduced from results
in [13]. In fact, we can prove directly that Munn conjugacy coincides with action conjugacy in R .
Indeed, if σ ,τ ∈ R are Munn conjugate, then there is w ∈ W such that w · σ ◦ = wσ ◦w−1 = τ ◦ . But
eσ · σ = eσ σ eσ = σ eσ = σ ◦ . It follows that (weσ ) · σ = τ ◦ . Notice that eτ · τ = τ ◦ . Thus σ and τ are
action conjugate. On the other hand, if σ and τ are primary action conjugate, then (without loss of
generality) there is α ∈ R such that α−1α � eσ and α · σ = τ . Following the line of [13], we obtain
that σ ◦ and τ ◦ are semigroup conjugate. Thanks to Corollary 6 in [12] and Theorem 2.1, we see that
σ and τ are Munn conjugate. It follows easily that if σ and τ are action conjugate, then they are
Munn conjugate, since action conjugacy is the transitive closure of the primary action conjugacy and
Munn conjugacy is an equivalence relation.

Corollary 4.5. The action conjugacy, character conjugacy, Munn conjugacy, and semigroup conjugacy are all
the same in a Renner monoid.

Proof. The result follows from Corollary 5 of [13], since the Renner monoid is a finite inverse
monoid. �
Corollary 4.6. Two idempotents are in the same Munn conjugacy class if and only if they are ∼-conjugate with
each other.

Note that Theorem 4.4 also provides an algorithm to calculate Munn conjugacy classes in R . We
give an example below.

Example 4.7. Let R be the first basic Renner monoid of type A2. Then R is isomorphic to the rook
monoid R3, and its unit group is the Weyl group generated by two simple reflections s1 and s2. The
cross section lattice of R is Λ = {0, e0, e1,1} with e0 the minimal nonzero idempotent. By Exam-
ple 3.8, there are 10 ∼-conjugacy classes in R , with representatives

{0, e0, s1e0, e1, s1e1, s2e1, s1s2e1,1, s1, s1s2}.
Their corresponding invertible parts are

{0, e0,0, e1, s1e1, e0,0,1, s1, s1s2},
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and hence R has 7 Munn conjugacy classes

{0, e0, e1, s1e1,1, s1, s1s2}.
Similarly, since the first basic Renner monoid of type B2 has 15 ∼-conjugacy classes

{0, e0, s1e0,−e0, e1, s1e1, s2e1, s1s2e1, s2s1s2e1,−e1,1, s1, s2, s1s2,−1},
a simple calculation yields that the Renner monoid has 9 Munn conjugacy classes

{0, e0, e1, s1e1,1, s1, s2, s1s2,−1}.

4.3. Projections of R into its parabolic subgroups

Directly generalizing Solomon [31], we now define a projection from R to W ∗(e), where e ∈ Λ.
Recall that we use P to denote the polytope associated with E(R).

Proposition 4.8. Let K , L be two faces of P . If K and L are in the same W -orbit and the relative interior
of L intersects the closure of the fundamental Weyl chamber, then there exists a unique element w ∈ W with
shortest length such that w(L) = K .

Proof. It suffices to prove the uniqueness of such element with shortest length. If K = L, then w = 1.
Now, suppose that K �= L. Let W L be the parabolic subgroup of W that fixes L. Since the relative
interior of L intersects the closure of the fundamental Weyl chamber, W L is a standard parabolic
subgroup. Let W L = {u ∈ W | l(uv) = l(u) + l(v) for all v ∈ W L}. Each element w ∈ W has a unique
decomposition w = uv where u ∈ W L and v ∈ W L , and

l(w) = l(u) + l(v). (4)

Assume w(L) = w1(L) = K for w, w1 ∈ W such that w and w1 with shortest length. Then w, w1 ∈
W L and w−1

1 w ∈ W L . Hence, w = w1x for some x ∈ W L , and l(w) = l(w1)+ l(x) by (4). Thus w = w1,
since l(w) = l(w1) forces x = 1. �

Let e ∈ Λ and L be the unique face of P for which e = eL . Then the intersection of the relative
interior of L and the closure of the fundamental Weyl chamber is not empty. It follows from Proposi-
tion 4.8 that for any face K in the orbit of L under the action (2) there is w ∈ W with the shortest
length such that wL = K and weL w−1 = eK . Hence

μK = weL

is an element of R and maps L to K . Similarly, μ−
K = w−1eK ∈ R is a map of K onto L and

μK μ−
K = weL w−1eK = eK . (5)

We now introduce the projection from R = ∐
e∈Λ W eW to W ∗(e) for every e ∈ Λ. If σ = e J ueI ∈

W eW , define

p(σ ) = μ−
J σμI . (6)

Then p(σ ) maps L to L, and p(σ )e = ep(σ ) by (ii) of Lemma 3.3 in [19], that is, p(σ ) ∈ W (e). But
then p(σ ) = ep(σ ) forces p(σ ) ∈ eW (e). However, eW (e) = W ∗(e); we have p(σ ) ∈ W ∗(e). It follows
from (5) that σ = μ J μ

−
J σμIμ

−
I = μ J p(σ )μ−

I . If σ ∈ W , then p(σ ) = σ ∈ W .
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Lemma 4.9. If σ ,τ , τσ ∈ W eW and J (σ ) = I(τ ), then p(τσ ) = p(τ )p(σ ).

Proof. Write I = I(σ ), J = J (σ ), and K = J (τ ). Then τ = eK w1e J and σ = e J weI for some
w1, w ∈ W . It follows that τe J σ = eK w1e J weI = τσ . So p(τ )p(σ ) = μ−

K τμ J μ
−
J σμI = μ−

K τe J σμI =
μ−

K τσμI = p(τσ ). �
4.4. Connections to representations

Definition 4.10. Let σ ∈ R . If σ ◦ ∈ W eW for some e ∈ Λ, then e is referred to as the subrank of σ .

Lemma 4.11. Let σ ,τ ∈ R.

(i) If σ ∼ τ then σ ≈ τ .
(ii) All elements in [σ ] have the same subrank.

(iii) If e = eL ∈ Λ for some L ∈F(P ) and σ ∈ W ∗(e), then σ ◦ = σ and I◦(σ ) = L.

Proof. For (i), since σ and τ are conjugate, we have w−1σ w = τ for some w ∈ W . Hence w−1σ ◦w =
τ ◦ , in other words, σ ≈ τ . Result (ii) is straightforward from Definitions 4.3 and 4.10. As for (iii),
notice that σ ∈ eW (e) = W (e)e. We obtain that σ = eσ e = eLσ eL . Thus (iii) follows. �
Lemma 4.12. Let σ ∈ R with subrank e ∈ Λ. Then [σ ] meets one and only one parabolic subgroup of the form
{W ∗( f ) | f ∈ Λ}. Specifically, [σ ] meets W ∗(e).

Proof. Let I be the domain of σ ◦ . Then σ ◦ = w1eI ∈ W eW for some w1 ∈ W . Let L be the unique
face of P such that e = eL . It follows from (ii) of Lemma 3.3 in [19] that I is in the orbit of L under
the action (2), and so wL = I for some w ∈ W . Thus p(σ ◦) = μ−

I σ ◦μI = (eL w−1)σ ◦(weL). We have

p
(
σ ◦) = w−1σ ◦w. (7)

But p(σ ◦)◦ = p(σ ◦), since p(σ ◦) ∈ W ∗(e). We see that p(σ ◦) ∈ [σ ]∩ W ∗(e). The uniqueness of W ∗(e)
follows from the fact that all the elements of [σ ] have the same subrank e ∈ Λ. �

The equality (7) implies the result below.

Corollary 4.13. If σ ∈ R, then [σ ] = [p(σ ◦)].

Lemma 4.14. If σ ∈ R has subrank e ∈ Λ, then [σ ] ∩ W ∗(e) = p(σ ◦), the ∼-conjugate class of p(σ ◦)
in W ∗(e).

Proof. It suffices to show that if x ∈ [σ ] ∩ W ∗(e), then x is conjugate to p(σ ◦) in W ∗(e). Clearly
σ ◦ = u−1x◦u for some u ∈ W , since x ∈ [σ ]. Now p(σ ◦) = w−1σ ◦w for some w ∈ W by (7). However,
x◦ = x due to x ∈ W ∗(e). Thus

p
(
σ ◦) = ep

(
σ ◦)e = ew−1u−1xuwe.

Note that ew−1u−1, x, uwe ∈ W eW , J (uwe) = I(x), and J (x) = I(ew−1u−1). In view of Lemma 4.9,
we have

p
(
σ ◦) = p

(
ew−1u−1)p(x)p(uwe)

= p(uwe)−1xp(uwe), (8)

where p(uwe) ∈ W ∗(e). It follows that [σ ] ∩ W ∗(e) ⊆ p(σ ◦). The reverse inclusion is easily seen. �
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Corollary 4.15. Let σ ,τ ∈ W ∗(e), where e ∈ Λ. Then σ ∼ τ in W ∗(e) if and only if σ ≈ τ in R.

Proof. It is straightforward from Lemma 4.14. �
Theorem 4.16. The number of Munn conjugacy classes of a Renner monoid R equals the total number of all
∼-conjugate classes of W ∗(e) for all e ∈ Λ.

Proof. It follows from Lemma 4.14 that Munn conjugate classes of R that meet W ∗(e) are indexed by
conjugate classes of W ∗(e) for e ∈ Λ. Thanks to Lemma 4.12 and R = ∐

e∈Λ W eW , the desired result
follows. �
Theorem 4.17. The number of inequivalent irreducible representations of a Renner monoid R over an alge-
braically closed field of characteristic zero equals the total number of Munn conjugacy classes in R.

Proof. Theorem 3.2 of [19] shows that the full set of inequivalent irreducible representations of R
over a field of characteristic zero is completely determined by a full set of inequivalent irreducible
representations of W ∗(e) for all e ∈ Λ. On the other hand, from group representation theory, the
number of irreducible representations of W ∗(e) is the same as the number of the conjugate classes
of W ∗(e). The result we want follows from Theorem 4.16. �
Corollary 4.18. Let p(r) be the number of partitions of r for 0 � r � m. Then the number of Munn conjugacy
classes of the symmetric inverse semigroup Rm is

m∑
r=0

p(r).

Proof. It follows form [31, Theorem 2.24] that there is a one-to-one correspondence between the set
of inequivalent irreducible representations of Rm and the set of all the partitions of r with 0 � r � m.
The desired result follows from Theorem 4.17. �

In a sequel paper we will investigate the relationship between conjugacy classes of a finite inverse
monoid and its representations.
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