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It is shown that a graph of large girth and minimum degree at least 3 share many 
properties with a graph of large minimum degree. For example, it has a contraction 
containing a large complete graph, it contains a subgraph of large cyclic vertex- 
connectivity (a property which guarantees, e.g., that many prescribed independent 
edges are in a common cycle), it contains cycles of all even lengths module a 
prescribed natural number, and it contains many disjoint cycles of the same length. 
The analogous results for graphs of large minimum degree are due to Mader 
(Math. Ann. 194 (1971), 295-312; Abh. Math. Sem. Univ. Hamburg 31 (1972), 
86-97), Woodall (J. Combin. Theory Ser. B 22 (1977), 274-278), Bollobis (Bull. 
London Math. Sot. 9 (1977), 97-98) and Hlggkvist (Equicardinal disjoint cycles 
in sparse graphs, to appear). Also, a graph of large girth and minimum degree at 
least 3 has a cycle with many chords. An analogous result for graphs of chromatic 
number at least 4 has been announced by Voss (J. Combin. Theory Ser. B 32 
(1982), 264-285). 

1, INTRODUCTION 

Several authors have established the existence of various configurations in 
graphs of sufficiently large connectivity (independent of the order of the 
graph) or, more generally, large minimum degree (see, e.g., [2, 91). A basic 
result of this type due to Mader [7] asserts that a graph of large minimum 
degree contains a subdivision of a large complete graph. Such investigations 
can be applied, for example, to graphs of large chromatic number or d- 
polytopal graphs. Large girth is, in a sense, a “dual property” of large edge- 
connectivity since a cycle in a planar graph corresponds to a minimal edge- 
cut in its dual graph and vice versa. Therefore, it seems natural also to 
search for configurations in graphs of minimum degree at least 3 and large 
fixed girth (independent of the order of the graph). Also, in several extremal 
problems in graph theory the extremal graphs are complete k-partite graphs 
and some extremal results may therefore change drastically if we restrict our 
attention to graphs of girth at least 5. 

129 
0095.8956/83 $3.00 

582b/35/2-4 
Copyright 0 1983 by Academic Press, Inc. 

Ail rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82291659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


130 CARSTEN THOMASSEN 

In this paper we first show that any graph of minimum degree at least 3 
and girth at least 4k - 3 can be contracted into a graph of minimum degree 
at least k. Combined with the above result of Mader [7], this shows that a 
graph of minimum degree at least 3 and large girth can be contracted into a 
large complete graph. On the other hand, we conjecture that, for each natural 
number k, there exists a natural number f(k) such that each graph of 
minimum degreef(k) contains a subgraph of minimum degree at least 3 and 
girth at least k. 

Mader [8] showed that any graph of minimum degree at least 4k contains 
a k-connected subgraph. As a counterpart to this we show that any graph of 
minimum degree at least 3 and girth at least 4k - 6 contains an induced 
subgraph which is a subdivision of a graph of minimum degree at least 3 and 
cyclic vertex-connectivity (a concept to be defined in Section 2) at least k 
and we show that in any graph of minimum degree at least 3 and cyclic 
vertex-connectivity at least 2k + ’ any k independent edges are in a common 
cycle analogous to a result of Woodall [ 121 and Haggkvist and Thomassen 
[6]. We apply the result on subgraphs of large cyclic vertex-connectivity to 
show that, for each natural number k, any graph of minimum degree at least 
3 and girth at least 2k+ ‘O contains cycles of all even lengths modulo k. The 
analogous result involving large minimum degree was obtained by Bollobas 
[ 11. Reference [lo] contains a common generalization of the results of 
Mader [7] and Bollobas [ 11. 

Finally, we illustrate in Section 6 (which is independent of the previous 
sections) the above remark on extremal problems for graphs of girth at least 
5 by investigating collections of disjoint cycles in graphs. If C is a shortest 
cycle in a graph and x is a vertex not in C, then x is joined to at most one 
vertex of C if C has length at least 5 and to at most two vertices of C if C 
has length 4. From this observation it follows that any graph of minimum 
degree at least 3k - 1 (resp. 2k, resp. k + 1) and girth at least 3 (resp. 4, 
resp. 5) has k disjoint cycles. The complete graphs and the complete bipartite 
graphs show that the first two assertions are best possible. The third 
assertion, however, is far from best possible. It turns out, surprisingly, that 
girth 5 and minimum degree 4 guarantees k disjoint cycles (provided, of 
course, that the graph has sufficiently many vertices). More precisely, any 
graph of minimum degree at least 4 girth at least 5 and order y1 has at least 
fi/lOO(log n)2 pairwise disjoint cycles of the same length. We use this to 
show that any graph of minimum degree at least 3k + 1 (and sufficiently 
large order) has k disjoint cycles of the same length. This extends a result of 
Haggkvist [ 5 1. 
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2. CYCLIC VERTEX-CONNECTIVITY 

Our terminology is essentially that of Bollobas [2]. In addition, we say 
that a collection of edges are (pairwise) independent if no two of them have 
an end in common, We shall also find it convenient to work with cyclic 
vertex-connectivity rather -than cyclic edge-connectivity (as defined in 
[2,p. 1431). We say that a a-connected graph is cyclically k-vertex-connected 
(k > 2) if it is not the union of two subgraphs G, and G, such that each of 
G, and G, has a cycle and / V(G,) f7 V(G,)/ <k - 1. Note that our definition 
implies that a cyclically k-vertex-connected graph has girth at least k and is 
cyclically k-edge-connected as well. Conversely, it is not difficult to show 
that a cubic cyclically k-edge-connected graph (of large order) is also 
cyclically k-vertex-connected and so the two types of cyclic connectivity are 
closely related. However, unlike the cyclic edge-connectivity, the cyclic 
vertex-connectivity may increase if we subdivide some edges of the graph as 
demonstrated by the complete graph of order 4 less one edge. Thus the cyclic 
vertex-connectivity is not a good measure of how connected a graph is when 
vertices of degree 2 are allowed but it turns out to be so for graphs of 
minimum degree at least 3 as we demonstrate in this paper. 

3. CONTRACTIONS OF GRAPHS OF LARGE GIRTH 

THEOREM 3.1. If G is a graph of minimum degree at least 3 and girth at 
least 2k - 3 (where k is a natural number >3), then G can be contracted into 
a multigraph H of minimum degree at least k such that no two vertices of H 
are joined by more than two edges. 

ProoJ If k = 3, we put H = G so assume that k > 4. We can also assume 
without loss of generality that G is connected. Now consider a partition of 
the vertex set of G into sets A i, A, ,..., A, such that /Ai] > k - 2 and G(A,) is 
connected for each i = 1, 2,..., m. Clearly such a partition exists with m = 1. 
Among all such partitions we choose one such that m is maximum. 

Let ri be a spanning tree of G(A,) for i = 1, 2,..., m. We first show that 
G(Ai) = Ti for each i = 1, 2,..., m. For if G(A,) has an edge e not in Ti, then 
Ti U {e} has a unique cycle Ci which has length at least 2k - 3 and hence Ti 
has an edge e’ such that Ti - e’ consists of two trees with vertex sets A(, Al 
respectively, each of cardinality at least k - 2. But then the partition 
A I,...rAi_,, A;, Al’, Ai+ 1 ,..., A, contradicts the maximality of m. 

We next show that no two trees Ti and Tj (1 < i < j < m) are joined by 
more than two edges. For if e, , e2, e3 are three edges joining lri and ri, then 
Ti U Tj U (e,, e2, e3} contains three internally disjoint paths P,, P,, P,. 
Since G has girth at least 2k - 3 we can assume that P, and P, both have 
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length at least k - 1. Now let A,! (resp. A:) be k - 2 consecutive internal 
vertices of P, (resp. PJ. Then each of the three sets A;, Af’ and (Ai U A,j)\ 
(AI U Af’) induces a connected subgraph of G of order at least k - 2 and by 
considering these sets instead of Ai and Aj we obtain a contradiction to the 
maximality of m. 

Now the graph H obtained by contracting each ri (i = 1, 2,..., m) into a 
vertex satisfies the conclusion of the theorem. 

Mader [7] demonstrated the existence of a function q(k) such that each 
graph of minimum degree at least q(k) contains a subgraph which can be 
contracted into a complete graph of order k. With this notation Theorem 3.1 
implies 

COROLLARY 3.2. If G has minimum degree at least 3 and girth at least 
4q(k) - 3, then G has a subgraph which can be contracted into a complete 
graph of order k. 

Corollary 3.2 shows that many types of graphs can be found in graphs of 
minimum degree at least 3 and large girth. For example, any graph of 
minimum degree at least 3 and girth at least 4q(3k) - 3 has k disjoint cycles. 
This result will be strengthened considerably in Section 6. If true, the 
following conjecture shows that results on graphs of large girth and 
minimum degree at least 3 can be applied to graphs of large minimum 
degree. 

Conjecture 3.3. For any natural numbers k, g there exists a natural 
number h(k, g) such that each h(k, g)-connected graph contains a k- 
connected subgraph of girth at least g. 

Conjecture 3.3 combined with the aforementioned result of Mader [S] on 
k-connected subgraphs in graphs of minimum degree 4k implies that any 
graph of minimum degree at least 4h(k, g) contains a subgraph of minimum 
degree at least k and girth at least g. Note that this subgraph (and also the 
subgraph in Conjecture 3.3) cannot always be chosen to be a spanning 
subgraph as shown by the complete bipartite graphs K,,,. For if b > 
ia(a - l), then any spanning subgraph of K,,, of minimum degree at least 2 
contains a cycle of length 4. 

Erdos [4] made a conjecture analogous to Conjecture 3.3 with chromatic 
number instead of connectivity. An equivalent version of that conjecture is 
that every graph of infinite chromatic number has, for each natural number 
g, a subgraph of infinite chromatic number and girth greater than g. The 
analogous conjecture with “infinite chromatic number” replaced by “infinite 
connectivity” was also made by Erdijs [4] and solved by the author [ 111 but 
that has no relation to Conjecture 3.3. 
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4. GIRTH, CYCLIC VERTEX-CONNECTIVITY, AND 
CYCLES THROUGH PRESCRIBED EDGES 

The following result is analogous to Mader’s result [ 8 ] that any graph of 
minimum degree 4k contains a k-connected subgraph. 

THEOREM 4.1. If G is a graph of minimum degree at least 3 and girth at 
least 4k - 6 (where k is a natural number >2), then G contains an induced 
subgraph H which can be described as a graph obtained from a cyclically k- 
vertex-connected graph H” of minimum degree at least 3 by inserting at most 
2k - 3 vertices of degree 2 on distinct edges. 

Proof For k = 2 we just let H be an endblock of G so we assume that 
k > 3. Among all induced subgraphs of G that contain a cycle and have at 
most 2k - 3 vertices of degree less than 3 we select one, say H, of smallest 
order. Then H is 2-connected. For if H is the union of two proper subgraphs 
H, and H, which have precisely one vertex in common, then either H, or H2 
contradicts the minimality of H. Also, H does not contain two adjacent 
vertices x, y of degree 2 for otherwise H - {x, y) contradicts the minimality 
of H. Since H has no cycle of length 3 or 4, H is a subdivision of a (unique) 
graph H* of minimum degree at least 3. 

It only remains to prove that H* is cyclically k-vertex-connected. Suppose 
(reductio ad absurdum) that H* is the union of two induced subgraphs HF 
and Hz none of which is a forest and such that 1 V(HT) n V(Hf)I < k - 1. 
Then HF and Hf correspond to two induced subgraphs H, and H,, respec- 
tively, of H which are subdivisions of Hf and Hc, respectively. Let A be the 
set of those vertices of V(H,) f’ V(H,) that have degree 2 in H. Let Hi = 
H, -A. If H’, has a cycle, then either Hi or H, contradicts the minimality 
of H. So we can assume that Hi is a forest. This forest has at most k - 1 
vertices of degree less than 2. But then it has at most k - 3 vertics of degree 
greater than 2 and, since H has at most 2k - 3 vertics of degree 2, it follows 
that H, has at most (k - 1) + (k - 3) + (2k - 3) vertices. Since H, has a 
cycle, G has girth at most 4k - 7. This contradiction proves the theorem. 

The next result (which will be used in Theorem 4.3 below) is of Menger 
type. 

PROPOSITION 4.2. If G has minimum degree at least 3 and is cyclically 
k-vertex-connected, k > 3, and A, B are disjoint vertex sets of G each of 
cardinality at least 2k - 3, then G contains a collection of k disjoint paths 
from A to B. 

ProoJ Suppose (reductio ad absurdum) that the proposition is false. By 
Menger’s theorem, the vertex set of G has a decomposition V(G) = A’ U 
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B’vS such that ISl<k-1, ALA’US, BGB’US, and G’ has no edge 
from A’ to B’. Since G is cyclically k-vertex-connected we can assume that 
A’ U S induces a forest F. Since IA / > 2k - 3 we have \A’ ( > k - 2 and 
hence F has at least k - 2 vertices of degree greater than 2 and at most k - 1 
vertices of degree less than ,3. But it is easy to see that no such forest exists. 
This contradiction proves the proposition. 

Proposition 4.2 is best possible in the sense that it becomes false if 2k - 3 
is replaced by 2k - 4. To see this we consider a cubic cyclically (2k - 2). 
vertex-connected graph (k > 4). We consider a shortest cycle and select two 
disjoint paths P, and P, of length k - 4 on this cycle such that no vertex of 
the graph is joined to both P, and P,. Then we let A (resp. B) consists of all 
vertices of P, (resp. Pz) and all their neighbours. Then IA / = 1 B / = 2k - 4 
and clearly there are no k disjoint paths from A to B. 

THEOREM 4.3. If A is a set of k independent edges in a cyclically 2k+‘- 
vertex-connected graph G of minimum degree at least 3, then G has a cycle 
through A. 

Proof (by induction on k). For k = 1,2 there is nothing to prove so we 
proceed to the induction step and assume that k > 3. We first consider the 
case where G has a path of length at most 2k connecting two ends ofA. Let 
P,: x0x1 ... x, be a shortest such path and let e, and e2 be the edges of A 
incident with x, and x, respectively. Then we let G’ denote the graph 
obtained from G - V(P,) by adding the edge eh between the ends of e, and e2 
not in P, and we put A’ = (A\{ e,, e2}) U {e;}. Any vertex which in G’ has 
degree 2 is adjacent to P, and hence G’ has no two adjacent vertices of 
degree 2 (for otherwise G would have a cycle of length at most m + 3). Since 
G’ has no 3-cycle or 4-cycle it follows that G’ is a subdivision of a graph G” 
of minimum degree at least 3. To each edge of G’ we associate in the 
obvious way an edge of G” and the edge set of G” corresponding to A’ is 
denoted A”. 

No three edges of A” are incident with the same vertex of G”. For if this 
were the case, then two of those edges would correspond to a subdivided 
edge and hence two vertices of distance 2 in G’ would be joined to P, and 
consequently G would have a cycle of length at most m + 4, a contradiction. 
By a similar argument, no three edges of A” form a path or cycle. So A” 
consists of disjoint paths of length 1 or 2. 

If A” consists of independent edges we put G”’ = G” and A”’ = A”. 
Otherwise, define G”’ and A”’ as follows: If A” contains two edges incident 
with the same vertex, then the two corresponding edges of A’ have distance 1 
from each other, i.e., m = 1. We then consider a maximal collection P,, P, , 
P ?,..., P, of pairwise disjoint paths of length 3 in G such that each Pi 
(1 < i < q) contains two edges of A and has an intermediate vertex joined to 
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an intermediate vertex of one of P,, P, ,..., Pi-r. In particular, V(P,) U 

V(P,) u - * * U V(P,) induces a connected subgraph T of G. Note that T has 
order at most 2k because its vertices are all endvertices of edges of A and 
hence T is a tree. For each Pi (0 < i < q) we delete the two intermediate 
vertices and add the edge e; between the endvertices. In the resulting graph 
each endvertex of T has unchanged degree and no two vertices of degree 2 
are adjacent because each vertex of degree 2 is adjacent in G to T and G has 
no cycle of length at most 2k + 2. Also, the resulting graph has no 3-cycle or 
4-cycle so it is a subdivision of a (unique) graph G”’ of minimum degree at 
least 3. We let A”’ consist of those edges of G”’ which correspond to edges 
of A (including the edges e;, e; ,..., e;) and we shall now apply the induction 
hypothesis to the pair G”‘, A”‘. The maximality of q easily implies that the 
edges of A”’ are pairwise independent. Note that IA”’ 1 < k - 1 and that the 
set S of intermediate vertices of the paths PO,..., P, has cardinality at most k. 

Suppose G”’ is not cyclically 2k-vertex-connected. Then it is the union of 
two induced subgraphs H,, H, none of which is a forest and such that 
1 V(H,) n V(H,)I < 2k. But then the induced subgraphs of G with vertex sets 
V(H,)U SU W and V(H,) U S U W, where W is the set of vertices of G 
corresponding to subdivided edges in H, n H, show that G is not cyclically 
2ki’-vertex-connected, a contradiction. (Note that / WI < 4 / V(H1) n V(H,)I 
since otherwise two of the edges corresponding to W would be incident with 
the same vertex and then G would have a cycle of length at most 2k + 3). 
This proves that G”’ has a cycle containing A”’ and this clearly corresponds 
to a cycle of G through A. 

So Theorem 4.3 is proved if the path P, exists. We can therefore assume 
that any path connecting the ends of two edges of A has length greater than 
2k. Consider an edge xy of A. Now we delete all those vertices from G which 
in G - y have distance less than k from x and we add all edges from x to the 
set D of those vertices which have distance (in G - y) k from x. We do this 
for each endvertex of each edge of A and obtain thereby a graph H. Since G 
has girth greater than 2k + 1, there are at least 2k vertices of distance k from 
x in G - y and x and y have no common neighbours in H. Consider another 
edge x’y’ of A. The set D’ of vertices which in G - y’ have distance k from 
x’ is disjoint from D because the distance from x to x’ is greater than 2k. By 
Proposition 4.2, G has a collection of k + 1 disjoint paths from D to D’ and 
thus H has k + 1 internally disjoint paths from x to x’. Now it follows from 
the result of [6] that H has a cycle through A and hence also G has a cycle 
through A. This completes the proof.* 

* Note added in proof: The above proof is inaccurate, since the k+ 1 paths from D to D’ 
are only edge-disjoint in H. Therefore we define H slightly differently: Instead of identifying 
all vertices of distance (in G-y) less than k from x we contract an appropriate tree with 
2k - 1 vertices including x2 and we use the fact that contracting an edge reduces the cyclic 
vertex-connectivity by at most one. 
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5. CYCLES MOD~JLO k AND CYCLES WITH MANY CHORDS 

If we exclude the existence of small cycles in a graph of minimum degree 
at least 3 (i.e., we require that the graph has large girth) then it turns out that 
certain types of large cycles are present. In this section we apply 
Theorem 4.1 to find a configuration in a graph of large girth and minimum 
degree at least 3 which implies that such a graph contains cycles of all even 
lengths modulo a fixed natural number k. The analogous result for graphs of 
large minimum degree is due to Bollobas [ 11. We also use the above 
configuration to find cycles with many chords. 

In Section 4 we derived some connectivity properties of graphs of large 
cyclic vertex-connectivity analogous to properties of graphs of large connec- 
tivity. If we delete a set of m vertices of a (k + m)-connected graph, then the 
resulting graph is k-connected. The analogous statement for graphs of given 
cyclic vertex-connectivity is not true since we may even be able to make the 
graph disconnected by deleting few vertices. However, we can prove the 
following (which we shall use in our main result of this section). 

PROPOSITION 5.1. If A is a set of m vertices in a cyclically (3k + m - 1). 
vertex-connected graph G (k > 2) of minimum degree at least 3 such that A 
induces a connected subgraph of G, then G -A is cyclically (3k - l)-vertex- 
connected. Furthermore, any two vertices of degree 2 in G -A have distance 
at least 3 in G -A and the unique graph G* of minimum-degree at least 3 of 
which G -A is a subdivision is cyclically 2k-vertex-connected. 

Pro05 If G -A is the union of two subgraphs H, and H, each of which 
contains a cycle and such that / V(H,) n Y(H,)( < 3k - 1, then G is the 
union of the subgraphs induced by V(H,)U A and V(H,)UA, a 
contradiction. Moreover, G -A is 2-connected. For if this were not the case, 
then G -A would have a vertex of degree 1 or 0. This vertex would be joined 
to at least two vertices of A and, since G(A) is connected, G would have a 
cycle of length at most m + 1, a contradiction. 

It follows that G -A is cyclically (3k - l)-vertex-connected. Since G has 
no cycle of length at most m + 3, there are no two vertices of degree 2 in 
G -A that have distance 1 or 2 in G -A. We prove by contradiction that 
G* is cyclically 2kvertexconnected. For if G* is the union of two 
subgraphs HT and HF such that ] V(H:) n V(Hf)/ < 2k - 1, and such that 
HT and Ht both contain cycles, then the corresponding subgraphs of G -A 
have at most 3k - 2 vertices in common which contradicts that G -A is 
cyclically (3k - 1)vertex-connected. 

THEOREM 5.2. Let G be a graph of minimum degree at least 3 and girth 
at least 2k(3 . 2k + k2 - 1) where k is an integer greater than one. Let d be 
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any natural number <k. Then G contains a path P with k vertices, a cycle C 
disjoint from P and k pairwise disjoint paths P, , P, ,..., P, of length d from P 
to C each of which has only its ends in common with PV C. 

ProoJ By Theorem 4.1, G contains a subgraph which is a subdivision of 
graph H of minimum degree at least 3 and cyclic vertex-connectivity at least 
3 . 2k + k* - 1 such that less than 2(3 s 2k + k2 - 1) edges of H are 
subdivided in G. Consider a shortest cycle C of H. For each. vertex x of C 
we choose a path P, of length d - 1 starting with x and an edge not in C. 
Then P, has only x in common with C and the paths P,, x E V(C), are 
pairwise disjoint. Now C corresponds to a cycle of G of length at least 
2k(3 . 2k + k* - 1) and hence C contains 2(3 . 2k + k* - 1) disjoint paths 
which in G correspond to paths of length k - 1. Since H has fewer than 
2(3 . 2k + k* - 1) subdivided edges at least one of these paths on C, say P, 
together with the paths P,, x E V(P), contain no subdivided edge. Now we 
delete from H the path P and the paths P,, where x E V(P) and by 
Proposition 5.1, the resulting graph is the subdivision of a cyclically 2kt ‘- 
vertex-connected graph H’ of minimum degree at least 3. For each vertex x 
of P we select in H’ an edge e, such that e, is incident with a vertex of H’ 
(or corresponds to a vertex of degree 2 in the graph obtained from H by 
deleting P and the paths P,, x E V(P)) which is adjacent in H to the 
endvertex of P, distinct from x. Then the edges e,, x E V(P), are independent 
in H’ and, by Theorem 4.3, H’ has a cycle containing all edges e,, x E V(P). 
This cycle corresponds to a cycle C of G and the proof is complete, 

THEOREM 5.3. If G is a graph of minimum degree at least 3 and girth at 
least 2(k2 + 1)(3 . 2k2+’ + (k2 + I)’ - l), then G contains cycles of all even 
lengths modulo k. 

ProoJ Let d be any natural number <k. We apply Theorem 5.2 with 
k* + 1 instead of k. Then we consider the k + 1 vertices of P such that the 
distance on P between any two consecutive ones is k and we consider the 
corresponding paths from P to C. As noted by Bollobas [I] the endvertices 
on C of two of these paths, say P, and P,, are connected on C by a path 
whose length is divisible by k. Now PUP, UP, U C contains a cycle of 
length 2d modulo k. 

By a more careful reasoning in Theorems 5.2 and 5.3 we can prove 
Theorem 5.3 under the weaker condition that G has girth 2kt lo. However, 
this is probably still far from best possible. In [ 121 Voss announced the 
result that any graph of chromatic number at least 4 and girth at least g > 4 
contains an even (resp. odd) cycle with at least 2(g’14)-1 chords. Theorem 5.2 
implies similar results with the condition on the chromatic number replaced 
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by the weaker condition that each vertex has degree at least 3. For example, 
we get immediately 

THEOREM 5.4. For each natural number k, there exists a natural number 
q(k) such any graph G of minimum degree at least 3 and girth at least q(k) 
contains a cycle C with k independent chords e, , e2,..., ek such that either any 
two of these chords cross one other or else, for each i = 2, 3,..., k - 1, e, 
partitions C into two segments Pi and Pi such that Pf contains all ends of 
e,, e2 ,..., eibl and no end of any of ei+l, eif2 ,..., ek. 

Outline of prooJ: By Theorem 5.2 (with d = l), G contains a cycle with 
many chords each having one end in the path P in Theorem 5.2. By 
Ramsey’s theorem, either many of these cross each other or else many of 
these are pairwise noncrossing. Since they all have one end in P they satisfy 
the assertion of Theorem 5.4. 

It is easy to see that the configuration in Therem 5.4 contains an even 
cycle with many chords (in fact, if m is any natural number and k is 
sufficiently large, then the configuration contains a cycle of length 2 module 
m and with at least m chords). Also Theorem 5.3 can be used to show that a 
2-connected non-bipartite graph of large girth contains an odd cycle with at 
least k chords. We shall not go into details since it is probably possible to 
obtain much more general results. Using the results in [lo] one can establish 
a number of results on cycles with many chords in graphs of large minimum 
degree. 

6. DISJOINT CYCLES OF THE SAME LENGTH 

In this section we refine methods of Haggkvist [5] to find disjoint cycles 
of the same length. It is well known and easy to prove that any graph of 
order n and minimum degree at least 3 contains a cycle of length less than 
2 log n (where log denotes the base 2 logarithm). We shall need a similar 
result where some vertices are allowed to have degree less than 3. 

LEMMA 6.1. If G is a graph of order n such that s vertices have degree 0 
or 1 and t vertices have degree 2 and such that 3s + 2t < n, then G has a 
cycle of length less than 8 log n. 

Proof (by induction on n). For n = 1, 2, 3, there is nothing to prove so 
we proceed to the induction step and assume that n > 4. If G has a vertex of 
degree zero we delete it and use induction. If G has a vertex x of degree 1 we 
consider the unique path P: xxlxz . .. xq+ i such that xq+ I has degree 1 or 
degree at least 3 in G and each x,, x2,..., x, has degree 2 in G. If xq+ 1 has 
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degree 1 in G we delete P and use induction. Otherwise, we delete P - xq+ , 
and use induction. 

So we can assume that G has minimum degree at least 2 and hence G is 
a subdivision of a multigraph H (possibly with loops) of minimum degree at 
least 3. If some edge or loop of H corresponds to a path or cycle of G of 
length at least 5 we delete the intermediate vertices of that path or cycle and 
use induction. So we can assume that each edge of H corresponds to a path 
of G of length at most 4. Since H has a cycle of length less than 2 log n, G 
has a cycle of length less than 8 log n. 

THEOREM 6.2. Let k be any natural number. If G is a graph of minimum 
degree at least 4, girth at least 5 and of order n such that n/(log n)” > 
213(k - l)‘, then G contains a collection of k pairwise disjoint cycles of the 
same length. 

ProoJ We let C, be a shortest cycle of G, C, a shortest cycle of G, = 
G - V(C,), C, a shortest cycle of G, = G, - V(C,), etc., until we get a graph 
G, with no cycle of length less than 8 log n. We claim that k of the cycles 
c, 3 c, ,..., C, have the same length. For suppose this were false and put 
H,=C,UC,U.-- UC,. Then m < 8(k - 1) log n and hence 

/ V(H,J < 8m log IZ < 64(k - l)(log n)‘. 

First, we combine this with the inequality of the theorem to olbtain an upper 
bound on the number of pairs of vertices of H,: 

$1 V(H,)/* < 2”(k - 1)2(log n)4 < n/4. 

Next, we note that G, has order greater than n - 64(k - I)(log n)* and, by 
Lemma 6.1, it has at least (n/3) - 22(k - l)(log n)’ vertices of degree less 
than 3. Each such vertex in G, is joined to at least a pair of vertices in H,, 
and the number of such vertices in G, exceeds the number of pairs of H,. 
Therefore, G, has two vertices with two common neighbours in H,, a 
contradiction to the assumption that G has girth at least 5. 

Theorem 6.2 is best possible in the sense that it becomes false if we allow 
G to contain 4-cycles (as demonstrated by the complete bipartite graphs 
K3.J and it becomes false if we allow vertices to have degree 3 as shown by 
a graph obtained from a cycle x0x,x2 ... x4,_, by adding four vertices yl, 
y,, y3, y, and joining yi to all xj for which j = i mod 4. This graph has 
minimum degree 3 and girth 6 and it has no five disjoint cycles. However, 
we can prove 

THEOREM 6.3. For each natural number k there exists a natural number 
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nk such that each graph of minimum degree at least 3, girth at least I and 
order at least nk contains k disjoint cycles of the same length. 

The proof of Theorem 6.3 is similar to that of Theorem 6.2 except we use 
Lemma 6.4 instead of Lemma 6.1. 

LEMMA 6.4. Let G be a graph of order n having s vertices of degree 0 or 
1 and at most t independent edges joining vertices of degree 2 in G. If 

9s + It < 12, 

then G has a cycle of length less than 12 log n. 

The proof of Lemma 6.4 is the same as that of Lemma 6.1 except we show 
that each edge of H corresponds to a path of length at most 6 in G. 

Using Theorem 6.2 we strengthen a result of Haggkvist [S]. 

THEOREM 6.5. For each natural number k, there exists a natural number 
mk such that any graph G of order n > mk and minimum degree at least 
3k f 1 contains a collection of k pairwise disjoint cycles of the same length. 

Proof. Let C,, C2,..., C, be a maximal collection of disjoint 3-cycles of G 
and C; , C; ,..., Cj a maximal collection of disjoint 4-cycles of G’ = G - 
(V(C,) u V(C,) u * * ’ U V(C,)). Then G” = G’ - (V(C;) U ... U V(C:)) 
has girth at least 5. We can assume that s < k - 1 and t < k - 1. Any vertex 
of G” is joined to at most two vertices of each Ci (1 < i < t) because of the 
maximality of s. Also, there cannot be k - t distinct vertices of G” each of 
which is joined to two or three vertices of k - t distinct 3-cycles among C, , 
C *,..., C,. Otherwise G would contain k disjoint 4cycles. This means that all 
vertices of G” (except possibly k - t - 1) are joined to at most 

2t+3(k-l-t)+t=3k-3 

vertices in V(C,) U V(C,) U .=. U V(C,) U V(C;) U . .. U V(C;). Hence all 
vertices (except possibly k - t - 1) have degree at least 4 in G”. Now the 
proof is completed by Theorem 6.2. In fact, for each E > 0 and k sufficiently 
large, mk can be chosen to be k2+‘. For if k is large then, by Theorem 6.2, 
any graph of order at least k2” and minimum degree at least 4 has 7k 
disjoint cycles of the same length. Now the graph G” may have k - 1 
vertices of degree less than 4. So in order to apply Theem 6.2, we consider 
five disjoint copies H,, H2, H,, H4, H, of G”, we form the union G”’ = 
H, U H, U H, U H, U H, and delete successively the vertices of degree one 
or zero in G”’ until we get a graph H of minimum degree at least 2. (Note 
that we delete fewer than ik vertices in each of H,, H2, H,, H,, H5 .) We 
add edges joining vertices of degree 2 or 3 in H in such a way that the new 
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edges form a cycle (of length >4 and such that the resulting graph H’ has 
minimum degree at least 4. Then H’ has order at least k*‘” (provided that k 
is large) and hence H has at least 7k disjoint cycles of the same length. At 
least k of these must be in the same Hi and hence in G. 

Corradi and Hajnal [3] proved that any graph of minimum degree at least 
2k and order at least 3k has k disjoint cycles. Perhaps even the following 
holds: 

Conjecture 6.6. For each natural number k there exists a natural number 
pk such that any graph of minimum degree at least 2k and order at least pk 
contains k disjoint cycles of the same length. 

The restriction of this conjecture to the case k = 2 was first made by 
Hlggkvist [5]. 
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