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Abstract

Quantum electrodynamic (QED) effects that shift the binding energies of hydrogenic energy levels have been exp
terms of a semi-analytic expansion in powers ofZα and ln[(Zα)−2], whereZ is the nuclear charge number andα is the fine-
structure constant. For many QED effects, numerical data are available in the domain of highZ where theZα expansion fails. In
this Letter, we demonstrate that it is possible, within certain limits of accuracy, to extrapolate theZα-expansion from the low-Z
to the high-Z domain. We also review two-loop self-energy effects and provide an estimate for the problematic nonloga
coefficientB60.
 2003 Published by Elsevier B.V.
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1. Introduction

The subject of the current Letter is the investigat
of QED radiative corrections in bound hydrogenli
systems which provide one of the most string
and accurate available tests of quantum field the
and are amenable to high-precision spectroscopy
which the determination of fundamental constant
based [1]. The purpose of this investigation is twofo
first, to demonstrate that theZα-expansion which is
inherently valid only at smallZ, can be extrapolate
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Open access under CC BY licen
by “deferred” Padé approximants to the domain
high Z, albeit with a certain loss of accuracy
the theoretical predictions. The second purpose
to provide a brief review of logarithmic two-loo
higher-order binding corrections to the Lamb sh
of hydrogenic states. The calculation of these effe
has recently been completed [2,3], but results h
been provided only for the total effect which is t
sum of the two-loop self-energy, two-loop vacuu
polarization and combined effects. For a compari
to numerical calculations which are currently bei
pursued [4], it is helpful to analyze the coefficien
that relate to specific sets of gauge-invariant diagra
This second purpose is actually a prerequisite
carrying out the extrapolation of the two-loop se
  se.
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energy from low to highZ, wherefore we commenc
this Letter with the endeavour of providing som
“mini-review” of the two-loop hydrogenic energ
shifts.

2. Brief review of two-loop hydrogenic energy
shifts

We use natural Gaussian units withh̄ = c = ε0 = 1
and e2 = 4πα, as it is customary for QED bound
state calculations. The two-loop radiative shift of
hydrogenic S state, within theZα-expansion, reads

(1)�E
(2L)
SE =

(
α

π

)2

(Zα)4 m

n3H(Zα),

where

H(Zα) = B40 + (Zα)B50

(2)

+ (Zα)2{B63 ln3(Zα)−2 + B62 ln2(Zα)−2

+ B61 ln(Zα)−2 + B60
} + · · · ,

and the ellipsis denotes higher-order terms.
This section is a brief review of the known two-loo

coefficientsB40, B50, B63, B62 andB61. The Feynman
diagrams which contribute to the two-loop bound-st
energy shifts are shown in Fig. 1.

For S states, the contributions toB40 can be
evaluated by considering the form-factor approa
described, e.g., in Sections VIII.B.1–VIII.B.3 of [5
or in Section 1 of [6]. Detailed information about th
F ′

1(0) form factor slope and the magnetic form fac
F2(0) attributable to the different sets of diagram
(2LSE) and (SVPE) shown in Fig. 1 are given
Eqs. (16), (17) and (18) of Ref. [6].

We recall the followingn-independent results fo
theB40-coefficients of S states,

B
(2LSE)
40 (nS)

= −163

72
− 85

36
ζ(2) + 9 ln(2)ζ(2) − 9

4
ζ(3)

(3a)= 1.409244,

(3b)B
(SVPE)
40 (nS) = − 7

81
+ 5

36
ζ(2) = 0.142043,

(3c)B
(SEVP)
40 (nS) = −82 = −1.012346,
81
Fig. 1. The Feynman diagrams that contribute to the two-l
QED energy shifts of hydrogenic bound states fall quite natur
into three separately gauge invariant categories: (i) the two-
self-energy effects (2LSE), which are historically the most pr
lematic, (ii) the vacuum-polarization insertion into the virtual ph
ton line of the one-loop self-energy (SVPE), and (iii) diagrams
volving both the self-energy and the one-loop vacuum polariza
on the one hand and pure two-loop vacuum-polarization correct
on the other hand, summarized here as the set (SEVP). The d
line denotes the bound-state electron propagator, i.e., includin
Coulomb interactions.

(3d)

B40(nS) = −2179

648
− 20

9
ζ(2) + 9 ln(2)ζ(2) − 9

4
ζ(3)

= 0.538941.

Note that the distribution ofB40-contributions among
the different sets of diagrams in Fig. 1 [notably (2LS
and (SVPE)] is different from the separation into
“self-energy” correction (Eq. (A.24) of [1]) and
“magnetic moment contribution” (Eq. (A.25) of [1]
We also recall that the first treatment of the lead
two-loop self-energy coefficientB40 was completed
in [7].
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The evaluation of the relativistic correctionB50
due to the two-loop self-energy has represente
considerable challenge [8,9]. Diagrams involving
closed fermion loop were studied in [10,11]. It mig
be useful to point out that the contribution of t
diagram (SVPE) is the sum of the contribution labe
EII andEV in Ref. [10]. The coefficients read:

(4a)B
(2LSE)
50 (nS) = −24.2668(31),

(4b)B
(SVPE)
50 (nS) = −0.1571,

(4c)B
(SEVP)
50 (nS) = 2.8677,

(4d)B50(nS) = −21.5562(31).

These results are in agreement with the data prese
in Eqs. (A.28), (A.29) of [1].

The coefficients of sixth order inZα have recently
been analyzed in [2] (see also the references ther
The triple logarithmB63 originates exclusively from
the set (2LSE). The diagrams of the set (SEV
have been calculated in Section VII of [2], and t
results for the double and single logarithms originat
from these diagrams can be obtained by adding
contributions labeledE1

VP andE2
VP in Ref. [2], and the

additional logarithm implicitly contained in Eq. (40
ibid. which is proportional toB(SEVP)

40 . The diagram
(SVPE) generates only a single logarithm given
B

(SVPE)
40 /2 (again consider Eq. (40) of Ref. [2]). I

total, the results read as follows:

(5)B63(nS) = B
(2LSE)
63 (nS) = − 8

27
= −0.296296.

The total result forB62 as well as itsn-dependence
were obtained in Refs. [2,12–14]. Here, we give
formulas for the particular sets of diagrams shown
Fig. 1, for the casen = 1 as well as the difference to
state of generaln:

(6a)B
(2LSE)
62 (1S) = 16

27
− 16

9
ln(2) = −0.639669,

B
(2LSE)
62 (nS)

(6b)

= B
(2LSE)
62 (1S) + 16

9

(
3

4
+ 1

4n2
− 1

n
− ln(n)

+ Ψ (n) + C

)
,

(6c)B
(SVPE)
62 (nS) = 0,

(6d)B
(SEVP)
62 (nS) = 8

45
= 0.177778,

(6e)B62(1S) = 104

135
− 16

9
ln2 = −0.461891,

(6f)

B62(nS) = B62(1S) + 16

9

(
3

4
+ 1

4n2
− 1

n
− ln(n)

+ Ψ (n) + C

)
,

where Ψ denotes the logarithmic derivative of th
gamma function, andC = 0.577216. . . is Euler’s
constant. The formulas forB61 are a little more
involved,

B
(2LSE)
61 (1S)

= 127069

32400
+ 875

72
ζ(2) + 9

2
ζ(2) ln2− 9

8
ζ(3)

− 152

27
ln2+ 40

9
ln2 2+ 4

3
N(1S)

(7a)= 49.731651,

B
(2LSE)
61 (nS)

= B
(2LSE)
61 (1S) + 4

3

[
N(nS) − N(1S)

]

+
(

80

27
− 32

9
ln2

)

(7b)×
(

3

4
+ 1

4n2 − 1

n
− ln(n) + Ψ (n) + C

)
,

(7c)B
(SVPE)
61 (nS) = − 7

162
+ 5

72
ζ(2) = 0.071022,

(7d)B
(SEVP)
61 (1S) = − 401

2025
+ 16

15
ln2 = 0.541332,

B
(SEVP)
61 (nS)

(7e)

= B
(SEVP)
61 (1S) − 32

45

(
3

4
+ 1

4n2 − 1

n
− ln(n)

+ Ψ (n) + C

)
,
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B61(1S) = 39751

10800
+ 110

9
ζ(2) + 9

2
ζ(2) ln2

− 9

8
ζ(3) − 616

135
ln2+ 40

9
ln2 2+ 4

3
N(1S)

(7f)= 50.344005,

B61(nS)

= B61(1S) + 4

3

[
N(nS) − N(1S)

]

+
(

304

135
− 32

9
ln2

)

(7g)×
(

3

4
+ 1

4n2 − 1

n
− ln(n) + Ψ (n) + C

)
.

The results forN(nS) taken from [3] read

N(1S) = 17.855672(1),

N(2S) = 12.032209(1),

N(3S) = 10.449810(1),

N(4S) = 9.722413(1),

N(5S) = 9.304114(1),

N(6S) = 9.031832(1),

N(7S) = 8.840123(1),

(8)N(8S) = 8.697639(1).

The slightly shifted results forN(1S) also explains a
discrepancy in an intermediate step of the calcula
of radiative corrections to the muonium hyperfi
splitting [15,16].

3. Extrapolation of the Zα-expansion

We start our consideration with the one-loop se
energy which is the dominant radiative correction
hydrogenlike bound systems. We write the (real p
of the) one-loop self-energy shift�E

(1L)
SE as

(9)�E
(1L)
SE = α

π
(Zα)4 m

n3F(Zα),

whereF(Zα) is a dimensionless quantity which d
pends on the principal quantum numbern, the total
electron spin+ angular momentumj and the electron
orbital angular momentuml, and of course on the pa
rameterZα.
The semi-analytic expansion ofF(Zα) about
Zα = 0 for P states and states with higher angular m
menta gives rise to the expression [21],

F(Zα) = A40 + (Zα)2[A61ln(Zα)−2 + A60
] + · · ·

(10)(l � 1),

where the ellipsis again denotes omitted higher-o
terms. TheA60 coefficient has proven to be by far th
most difficult to evaluate [22–26], and for 2P stat
results have become available recently [17,18].

The semi-analytic expansion (10) is generally
sumed to converge to the functionF(Zα) for low Z,
at least in an asymptotic sense. This is confirmed
recent numerical evaluations [27,28] for S and P sta
and the successful consistency check with availa
analytic results [17,26]. In many cases, an asympt
expansion valid a priori for small expansion param
ter Zα can be extrapolated to large coupling, if it
combined with a suitable convergence acceleratio
resummation method (the latter in the case of a
vergent input series [29]). The logarithms in Eq. (1
make a power series expansion aboutZα = 0 im-
possible. However, an extrapolation is still possible
we expand aboutZα = α 
= 0 and use the fact tha
the nonperturbative functionF(Zα), in the range of
small Z, is very well represented by the first term
in its asymptotic expansion, as suggested by Fig
of Ref. [27]. The logarithms in (10), when expand
aboutZα = α, give rise to an infinite power serie
in the variableg = (Z − 1)α. We proceed as fol
lows: for all radiative corrections studied in the sequ
we start from the semi-analytic expansion and t
into account all known coefficients. We then expa
in g and evaluate the diagonal[2/2]-Padé approxi-
mant to the resulting power series (for the definit
and a comprehensive discussion of Padé approxim
we refer to [30]). This could be characterized a “d
ferred” approximant which is evaluated only after o
has “advanced” to the pointZ = 1 from the “starting
point” Z = 0 (or equivalentlyZα = 0). Formally, the
semi-analyticZα-expansion is performed about th
point Z = 0. In re-expanding the perturbation ser
about a different point in the complex plane, we follo
ideas outlined in [31] which were originally applied
the problem of calculating the autoionization width
atomic resonances in an external electric field.
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The choice of the[2/2]-Padé approximant is mot
vated by the paradigm of finding a compromise
tween the necessity to harvest the information c
tained in the logarithms, which give rise to power s
ries terms of arbitrarily high order, and at the sa
time to avoid spurious singularities which may be
curred when the degree of the Padé approximan
increased to an excessively high order. The[2/2]-
deferred Padé approximant aboutZ = 1 to the func-
tion F (see also Eq. (3) of [32]) has five paramet
p0, . . . , p2, q1, . . . , q2,

(11)[2/2]F (g) =
∑2

i=0 pig
i

1+ ∑2
j=1 qjgj

,

which are determined by the requirement that
power series expansion of[2/2]F (g) about g = 0
reproduce the power series expansion ofF(Zα) with
Zα = α + g, also aboutg = 0, up to the orderO(g4).
As discussed in [30], this condition alone defin
the Padé approximant uniquely. The “one” in t
denominator of (11) is the so-called Baker conventi

Because we do not observe a factorially diverg
alternating-sign pattern in theg-expansion, we do no
employ the delta transformation [29, Chapter 8] wh
has proven to be superior to Padé approximant
a number of applications where factorial divergen
is observed (e.g., [32]). We rely on the robust Pa
approximants, while stressing that it may be poss
to find better extrapolation algorithms that harvest
analytic structure of (10) and give rise to logarithm
termsnaturally. As yet, we have been unable to fin
such algorithms.

Figs. 2, 3 show that the extrapolated semi-anal
expansions have a somewhat better agreement
medium and high-Z numerical data than the know
terms of theZα-expansion alone. We observe th
the high-Z results for the energy correction given
the irreducible set of two-loop self-energy insertio
into the bound electron propagator (see Ref. [4])
only be made consistent with our extrapolatedZα-
expansion if we assume that the coefficientB60(1S1/2)

is negative and rather large in magnitude.

4. Conclusions

We have presented a “mini-review” of recent tw
loop self-energy calculations [2,3,12] in Section
Fig. 2. Extrapolation of the semi-analyticZα-expansion of the
one-loop self-energy (10) to the range of high nuclear cha
via “deferred” [2/2]-Padé-approximants for the 2P3/2-state as
described in the text. The analytic coefficientsA40, A61 and
A60 in Eq. (10) are taken from Refs. [17,18]. The extrapola
semi-analyticZα-expansions are closer to the numerical data
high Z than the “raw”Zα-expansion. Numerical data at highZ are
taken from Refs. [19,20].

Fig. 3. Extrapolation of the two-loop self-energy. Analytic da
are taken from Section 2 (see the (2LSE)-parts of Eqs. (3)–
Numerical data are found in Ref. [4]. Much better agreem
between numerical and analytic data is achieved for negativeB60.

clarifying the distribution of sixth-order (inZα) two-
loop binding corrections to the Lamb shift over the
of diagrams shown in Fig. 1. Results for the two-lo
coefficients, including excited S states, are provide
Eqs. (3)–(8). The distribution of the logarithmic co
rections over distinct sets of diagrams needs to be c
ified in order to allow for an accurate comparison
numerical calculations which are currently being p
sued [4]. In Section 3, we present a crude extrap
tion scheme for the extrapolation of theZα-expansion
from low Z to highZ. The scheme follows ideas ou
lined in [31] and is based upon an expansion in
variableg whereg is defined asZα = α +g. The “de-
ferred” Padé approximant is then evaluated in term
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the variableg, i.e., after the coupling parameterZα

has acquired the valueα 
= 0, “starting” fromZα = 0.
This deferment circumvents the problems introdu
by the logarithms in Eqs. (2) and (10); however,
stress here that it would be highly desirable to find b
ter extrapolation algorithms that harvest the anal
structure of (2) and (10) and give rise to logarithm
terms naturally. Although the extrapolation schem
has problems (in some cases, we observe spur
poles in the Padé approximant at medium-Z values),
we have observed rather consistent improvement
the “raw” Zα-expansion with this scheme for a num
ber of states and QED effects which we studied us
the “deferred” Padé-extrapolation scheme. Details
be presented elsewhere. Based on our extrapolatio
the two-loop effect in Fig. 3, we would like to advan
the tentative estimateB60(1S1/2) ≈ −100(50).
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