
Timed Specification For Web Services
Compatibility Analysis

Nawal Guermouche1

LORIA, INRIA Lorraine, Campus scientifique
BP 239, 54506 Vandoeuvre-Lès-Nancy

Olivier Perrin2

LORIA, INRIA Lorraine, Campus scientifique
BP 239, 54506 Vandoeuvre-Lès-Nancy

Christophe Ringeissen3

LORIA, INRIA Lorraine, Campus scientifique
BP 239, 54506 Vandoeuvre-Lès-Nancy

Abstract

Web services are becoming one of the main technologies for designing and building complex inter-enterprise
business applications. Usually, a business application cannot be fulfilled by one Web service but by co-
ordinating a set of them. In particular, to perform a coordination, one of the important investigations is
the compatibility analysis. Two Web services are said compatible if they can interact correctly. In the
literature, the proposed frameworks for the services compatibility checking rely on the supported sequences
of messages. The interaction of services depends also on other properties, such that the exchanged data
flow. Thus, considering only supported sequences of messages seems to be insufficient. Other properties
on which the services interaction can rely on, are the temporal constraints. In this paper, we focus our
interest on the compatibility analysis of Web services regarding their (1) supported sequences of messages,
(2) the exchanged data flow, (3) constraints related to the exchanged data flow and (4) the temporal re-
quirements. Based on these properties, we study three compatibility classes: (i) absolute compatibility, (ii)
likely compatibility and (iii) absolute incompatibility.

Keywords: compatibility analysis, Web services, temporal constraints.

1 Introduction

Web services are one of the main technologies adopted by organizations to build
their business applications. Generally, a Web service is a set of related functionali-

1 Email: Nawal.Guermouche@loria.fr
2 Email: Olivier.Perrin@loria.fr
3 Email: Christophe.Ringeissen@loria.fr

Electronic Notes in Theoretical Computer Science 200 (2008) 155–170

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.098
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82291564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Nawal.Guermouche@loria.fr
mailto:Olivier.Perrin@loria.fr
mailto:Christophe.Ringeissen@loria.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

ties that can be programmatically accessed through the Web. These functionalities
represent the different operations made available by the Web service and are de-
scribed in its service description using the WSDL standard language [10]. Autonomy
and heterogeneity of services induce several interoperability problems. The interop-
erability is the key for several issues such as the service composition which involves
the synthesis problem (i.e., how to coordinate the component services to fulfill a
given goal) [1]. In this context, the compatibility analysis plays a crucial role. This
analysis consists in checking if a client and a provider can properly interact.

The interaction between a client and a provider depends not only on func-
tionalities the provider can supply, but also on other properties representing
requirements of each of them. Hence, service descriptions must be augmented by
all the aspects that can represent the client’s and the provider’s requirements.
Such enriched descriptions are useful to keep services informed if they can interact
together by considering their requirements. For the best of our knowledge, all the
related compatibility checking frameworks consider only the supported messages
sequences [4,8]. Other works consider some forms of temporal constraints that
cannot express all the service’s temporal requirements [3].

Since the exchanged messages can involve data, considering only the supported
sequences of messages seems not sufficient. Thus, considering data flow in Web ser-
vices analysis, and especially in the compatibility analysis is important. Moreover,
to receive or send a message, a Web service may express some requirements. Among
these requirements, we focus on data and time related conditions. For example, a
service that allows us to book a flight ticket (TB service) can supply an electronic
ticket if the credit card number ccn of the client is valid. Moreover, the TB service
cannot send the electronical ticket before 60 minutes starting from the payment.

Regarding the temporal aspects, a service can have its own requirements asso-
ciated to its internal running. Such requirements are called internal constraints.
For example, if a client that books a flight ticket does not send its credit card
number (ccn) within 30 minutes, the service cancels. The internal constraints can
be, implicitly, mutually dependent. Thus implicit incompatibilities can arise. To
tackle this problematical issue, we propose to infer from the internal constraints,
the potential implicit constraints. Those inferred constraints can be exposed to the
other services, thus we call such constraints external constraints. For example, once
the client sends its ccn, the provider must supply the electronic ticket within 1 hour.

In this paper, we present a timed compatibility analysis framework that deals
with the implicit incompatibilities that can arise. In our approach, Web services
are modeled as finite state machines. This kind of formal representation has been
already used in a series of papers [9,3,5,15]. The model we consider in this paper
integrates multiple aspects to have a fine-grained abstraction of Web services [13].
Theses aspects are (a) operations, which can require input parameters and provide
output parameters, (b) message passing exchanged via channels able to hold at
most one message at a time, (c) data that are parameters of the messages and

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170156

operations, (d) constraints over these data, (e) temporal constraints, and (f) the be-
havior of Web services (which may involve multiple operations and message-passing
activities) is specified using guarded finite state transition systems. The data used
by Web services are managed via information systems. Services can get data by
exchanging messages or by reading the information systems. Furthermore, the
services can change the values of data in the information systems. This allows us to
deal with constraints over counters. For example, if the client provides a wrong ccn

successively three times, beyond the third attempt the system cancels. To express
such requirements, we may consider counters that can be incremented, decremented
or reset once a transition is triggered. To express temporal constraints, we rely on
clocks as defined in standard timed automata [2].

The paper first recalls the model we rely on in Section 2. Section 3 presents
the motivating example used to illustrate our model. The different forms of tem-
poral constraints we define are described in Section 4. In Section 5, we show how
we integrate the different forms of temporal constraints by extending to the Web
Services Timed Transitions Systems (WSTTS) [15]. In section 6, we present the
compatibility analysis process of Web services regarding their different constraints
(constraints over data and temporal constraints). Related work is introduced in
Section 7, and Section 8 concludes.

2 Overview

In this paper, we enhance with temporal constraints the model of Web services
automatic composition introduced in [13]. In the following section, we introduce
the model we proposed.

2.1 The model

In our earlier framework [13], Web services are represented as conversational au-
tomata. In these automata, the alphabet consists of actions and exchanges of mes-
sages. A message is either sent or received. An output message is denoted by !m,
whilst an input one is denoted by ?m. A message containing a list of parameters is
denoted by m(d1, . . . , dn), or m(d̄) for short. There are many papers dealing with
conversational automata to represent web services, including the Colombo model [6].
Our model extends the Roman model [7,5] by introducing communication and data
capabilities, and can be considered as an extension of the conversational model in-
troduced in [9], where data are exchanged via messages, and can be used to express
guards of transitions. An action a with a list of input parameters d1, . . . , dm and list
of output parameters d′1, . . . , d′n is denoted by a(d1, . . . , dm; d′1, . . . , d′m). Through-
out the paper, we only consider “well-formed” Web services, in which we assume
that, when a parameter is used, possibly in a guard, it has been previously initial-
ized. There are three ways to initialize a parameter: either it is the output of a
previous action, it is retrieved via a web service exchange of message, or via reading
the information system. Constraints used in guarded transitions can be defined

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170 157

as conjunctions of atomic formulas d �� val, where val is a possible value for the
parameter d, and �� is binary relation to compare the value of d and val.

Definition 2.1 A Web service Q is a tuple (S, s0, F, M, A, C, T) where S is a set
of states, s0 is the initial state, F is a set of final states (F ⊆ S), M is a set of
messages, A is a set of actions, C is a set of constraints, and the set of transitions
T ⊆ S × (M?! ∪A)×C × S, such that, from a source state, the service exchanges a
message or performs an action in A, with a constraint to reach a target state, where
M?! = {?m|m ∈ M} ∪ {!m|m ∈ M} is the set of input/output messages. An input
(resp. output) transition is a transition of the form (, ?m,) (resp. (, !m,)).

3 Motivating example

To illustrate our model, we consider a simple application for an online flight ticket
booking. This application is carried out by two Web services: the ticket booking
service (TB) and the payment by credit card service (PCC). The requester specifies
the destination (city) and the date of the travel. Then the TB service suggests a
list of tickets description (price, class, timing). The requester makes a choice, and
he/she provides a credit card number ccn to complete the booking. Then the TB
service invokes the (PCC) service to check the credit card number (ccn) validity in
order to guarantee the payment.

The TB service has several requirements such as:

(i) once TB service sends the description list of tickets, if the client does not
confirm the travel booking by providing his ccn in 1800 seconds, the ticket
booking is cancelled.

(ii) if the client provides a wrong ccn successively three times, beyond the third
attempt the system cancels.

(iii) if the client books a ticket during the Christmas holiday, i.e., in the period
[25 december, 05 january], TB service performs a rebate on the price of tickets.

To establish a conversation between the two services, requirements that are
strongly bound to temporal features must be checked. Thus, we believe that Web
services description interfaces (for example WSDL interface) must be enhanced by
time-related properties. The time-related properties can have several forms. In the
following sections, we detail the issues related to such properties.

4 Temporal constraints

From our point of view, each service can have time-related requirements to express
the internal process of the service. Such requirements are called internal constraints.
In order to establish an interaction between a client service and a provider service,
each one of them exposes to the other requirements that must be checked before ini-
tializing the interaction. Such exposed requirements are called external constraints.

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170158

�������	

������	����������

��

��

�����	�
��������

��

��	����������
�����	��

��

���������	�� �� �
��	�������!����	�

�"

���������	�& �� �
'��%$�	� *���+���� �

'����	���������	!
����

�)

������������������������������������

��
��

��	#���������%�,�����!
��	� ��

#	���
���	�#�����!��	��-!����	#!��,��+#�

��

.�/��

'����	�(�#���!����	#!
��,��+#�

�)�	#	���0�	���1	����+!��
�0�	���1	����+�

����0�	���1	����+2��
'����	�
�������!����	�

���.�3�4��#�

������,	�������

���+�����5�)��	�	,0	�!
�)�6�$��7��

�	0�	�����	�����	�

�8�9

'����	
��������	�

���.�:�4��#�

���	%��

�4

���

����0�	���1	����+;��
���	%��

��� ���

���%$�	� *���+���� �

�����	���������	!����

���

�<

����	,	����0�	���1	����+!��
�0�	���1	����+�

.�/��

'	%	��
���	��
���	��

�"

�����#	�����	����

���+���������5�)��	�	,0	�!
�)�6�$��7�

'����	
��������	�

Fig. 1. The online flight booking ticket.

4.1 Internal constraints

The internal constraints are specified when the Web service is designed. They
relate for example to the temporal requirements needed to exchange messages and
fulfill an operation. Especially, an internal constraint allows to express the fact
that triggering a transition may depend on other timed transitions. In our work,
we distinguish two kinds of internal constraints: (i) activation constraints that
correspond to the cancellation transitions and (ii) dependency constraints used to
specify requirements related to ordinary transitions (i.e., non-cancellation ones).

Example 4.1 To illustrate an activation constraint over a sequence of transitions,
we consider the requirement (i) of the motivating example which is: once the TB

service sends the description list of tickets, if the client does not confirm the travel
booking by providing his ccn in 1800 seconds, the tickets booking will be cancelled.

To model such feature, we use the standard clocks of timed automata [2]. As seen
in Fig. 1, we reset a clock x1 with the transition that sends the ticket description
(!ticketList(N, price, timing)), and we guard the transition that cancels the booking
with a temporal constraint x1 > 1800s.

Furthermore, an internal constraint can be specified over a period that can
be expressed via a global clock providing the absolute time. An example of such
constraints is presented by the requirement (iii): if the client books a ticket during
the christmas holiday, i.e., the period [25 december, 05 january], TB service
performs a rebate on the price of tickets. To be able to express such time-related
requirements, we propose to use temporal constraints over a global clock, which
cannot be reset in transitions.

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170 159

Let X be a set of clocks. The set of constraints over X, denoted Ψ(X), is defined
as follows:

true | x �� c | ψ1 ∧ψ2, where ��∈ {≤, <,=, �=, >,≥}, x ∈ X, and c is a constant.

The internal constraints can also have another form, such as depending on the
number of times 4 transitions can be triggered. Back to the requirement (ii) of
the motivating example, the system must cancel after the third wrong attempt
to provide the ccn. To consider such a feature in the Web services model, we
propose to enhance the Web services specification with constraints over counters.
To manage such constraints and for the sake of simplicity of the model, we propose
to consider counters as data that can be stored in the information system. Those
data (counters) can be incremented, decremented and reset.

To summarize, internal constraints are expressed via (1) local clocks used in
timed automata theory [2] to specify the relative period in which a transition must
be triggered, and (2) a global clock to specify the absolute date (or period) in which
a transition must be triggered, and (3) constraints over data such that constraints
over counters to specify the number of times in which a transition must be triggered.

The internal constraints related to the cancellation transitions are called acti-
vation constraints, whilst those related to non-cancellation transitions are called
dependency constraints.

4.2 External constraints

To initialize a conversation between a client service and a provider service, each one
can expose requirements that must be checked. As presented above, each service
has its internal constraints. So we propose to infer from those internal constraints
the external constraints, that can be exposed to the other services. For example,
we can infer from the internal constraints of the TB service, depicted in Fig. 1, that
TB cancels after at least 1800s.

In Section 6.2, we illustrate how we infer external constraints from internal ones,
and we will show the importance of the inference of the external constraints in the
compatibility checking.

An external constraint can be defined as: Once pre-conditions are satisfied, an
input/output message must be performed in a given period.

Definition 4.2 An external constraint e is a tuple (p, �, d), where � denotes an
input/output message in M?!, p is the pre-condition that must hold to perform
�, such that d is the period in which � can be performed. If � is an input (resp.
output) message, the external constraint is called an input (resp. output) external
constraint.

In the following, we restrict our attention to two forms of preconditions:

4 carrying out an operation or exchanging a message a specific number of times

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170160

• A precondition equals to true, which means that � must be performed in a period
starting from the invocation of the service (see Section 6.2.2).

• A precondition equals to an input/output message, which means that � must
be performed in a period starting from the exchange of this message (see Sec-
tion 6.2.1).

Example 4.3 The client can claim to receive the electronic ticket not later than
60 minutes after sending his ccn.

Once the CCN is sent (!ccnPayment(ccn)), the electronic ticket must be received
(?electT icket(ticket)) in 60 minutes ([0, 3600s]).

In this example, the related external constraint of the client is
(!ccnPayment(ccn), ?electT icket(ticket), [0, 3600s]).

To summarize, as shown in Fig. 2, we distinguish (1) internal constraints and
(2) external constraints. Internal constraints can be specified by (i) temporal
constraints and (ii) constraints over data. The temporal constraints can be
specified over local clocks and a global clock. The local clocks rely on standard
timed automata clocks [2], whereas, the global clock relies on an absolute time.
The constraints over data involve parameters of the exchanged messages, or
counters. The internal constraints specify the activation constraints (cancellation)
and dependency constraints (non-cancellation). The external constraints are
constraints exposed by the client and the provider service, that must be checked
before initializing the interaction. Those external constraints are inferred from the
internal constraints (see Section 6.2).

�������	���

��������������	��� ���������������	���

�����������
���	�����
����������

���������������	���

������������

����

����������

���	���	���������	���
���������	���������	���

Fig. 2. Constraints specification.

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170 161

5 Web services timed conversations

In this section, we show how we integrate temporal constraints presented above into
web service specifications. To this aim, we propose to extend Web Service Timed
Transition Systems (WSTTS) which are timed conversational automata [15]. A
WSTTS is a finite state machine equipped with a set of clock variables and transi-
tions guarded by constraints over clock variables. WSTTS use the standard form
of constraints used in timed automata [2]. To consider constraints presented pre-
viously, WSTTS are replaced by Extended Web Service Timed Transition Systems
(EWSTTS). In addition, in EWSTTS we include data capabilities used in our previ-
ous work [13], that are not considered in WSTTS. For the data management, we use
information systems which are relational structures. In the following, we introduce
the information systems and EWSTTS.

5.1 Information system

An information system is used to manage data. It is characterized by a set of
objects defined by a set of attributes that can change their values by performing
three atomic operations: add, update, and delete. Information can also be read.
These atomic operations are effects of actions performed by services. To enforce
constraints over counters, we consider a set of data that represent the counters.
The value of counters can be incremented, decremented or reset.

5.2 Extended Web Service Timed Transition Systems (EWSTTS)

EWSTTS introduces several aspects such that: (1) data flow capabilities, (2) con-
straints over data, (3) a global clock and (4) constraints over counters. Moreover,
in WSTTS there are no final states, whereas in the Extended WSTTS we propose
(EWSTTS), we consider final states (component F) as usual in timed automata. An
EWSTTS is a finite-state machine in which a transition performs an action having
an effect on the information system, send or receive a message. Services can get
data from the information systems. By sending and receiving messages, services
can also exchange data. An EWSTTS is equipped with a set of clocks and data
variables, and transitions are guarded by constraints over clock and data variables.
We consider two kinds of data: (i) parameters of messages/operations, and (ii)
counters that allow us to express constraints. Transitions are labeled by constraints
over data, timed constraints and resets of local clocks.

Definition 5.1 An EWSTTS is a tuple P = (S, s0, F, M, A, C, X, T) such that

• S is a set of states, s0 is the initial state and F ⊆ S is a set of final states.
• A is a set of actions.
• M is a set of messages.
• C is a set of constraints over data (including counters).
• X is the set of clocks (local clocks and a global clock).

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170162

• A set of transitions T ⊆ S× (M?! ∪A)×C ×Ψ(X)×2X\{g}×S, with an element
of the alphabet (action or an exchanged message), a constraint over data, a guard
over clocks, and the clocks, except the global clock (g), to be reset.

We define now the extended semantic of WSTTS [15]. The semantic of an
EWSTTS is defined using a transition relation over configurations made of a
state, a clock valuation and a data valuation. The clock valuation is a mapping
u : X → T from a set of clocks to the domain of time values. The data valuation
is a mapping v : D → V from a set of data D to the domain of data values. The
mapping u0 denotes the (initial) clock valuation, such that ∀x ∈ X\{g}, u0(x) = 0.
The mapping v0 denotes the (initial) data valuation.

A service remains at the same state s without triggering a transition when the
time increments, if there is no transition (s, a, c, ψX , Y, s′) such that the constraints c

over data, and the temporal constraints ψX are both satisfied, where ψX ⊆ Ψ(X). A
service moves from state s to state s′ by triggering a transition t = (s, a, c, ψX , Y, s′)
if the constraints c and ψX are satisfied.

Definition 5.2 (Semantic of EWSTTS)
Let P = (S, s0, F, M, A, C, X, T) be a EWSTTS. The semantic is defined as a

labeled transition (Γ, γ0,→), where Γ ⊆ S×VT ×VC is the set of configurations, such
that VT is a set of temporal valuations, VC is a set of data valuations, γ0 = (s0, u0, v0)
is the initial configuration, and → is defined as follows:

• Elapse of time: (s, u, v) tick→ (s, u + d, v)
• Location switch: (s, u, v) a→ (s′, u′, v′), if ∃t = (s, a, c, ψX , Y, s′) such that v ∧ c

and u ∧ ψX are satisfiable and ∀y ∈ Y, u′(y) = 0, ∀x ∈ X\Y, u′(x) = u(x), where
Y ⊆ X\{g}. Informally, v′ is obtained from v by updating data changed by a.

In our context, we assume that Location switch is applied eagerly: when both
Elapse of time and Location switch can be applied, Location switch is chosen. Notice
that a possible use of Elapse of time is to precede a Location switch in order to
represent the cost in time of an operation.

6 Compatibility analysis

Two Web services are said compatible if they can interact without been blocked.
In the literature, this may happen when a service is waiting for a message that
the other service does not send. The compatibility problem was studied in several
works [8,4,3,18]. In all these works, the Web services are modeled only by their
messages sequences. However, the compatibility analysis should not only rely on
the sequences of messages they can exchange. For example, two Web services can
support the same sequences of messages but if they do not involve the same data
flow, these services are incompatible.

To provide a compatibility checking framework that considers multiple aspects,
we model Web services using their sequences of messages, the parameters of the mes-

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170 163

sages, the constraints over their parameters, the actions, and the aforementioned
temporal constraints. By considering parameters of messages and constraints over
these parameters, two Web services (a provider and a client) can be not compati-
ble for many reasons: (1) the client (resp. the provider) waits for a message that
the provider (resp. the client) does not send, (2) the data flow of the input mes-
sages differs from the output message’s data flow, (3) the constraints over data or
(4) the temporal constraints corresponding to the output and input messages are
inconsistent i.e., they have disjoint sets of solutions.

Regarding the constraints over data, two services are compatible if their respec-
tive transitions that allow to send and receive the message are consistent. Thus, we
need to check if the transitions are consistent. We call this process the local con-
sistency checking of transitions. However, according to the temporal constraints,
performing a local consistency checking is not always adequate, since the constraints
of some transitions can have an impact on the triggering of other transitions. Thus,
we propose to infer external constraints that are implicit according to the internal
constraints. In the following, we explain the local consistency checking of transi-
tions. Then we show how and why the internal constraints are not sufficient for the
compatibility analysis of services.

6.1 Local consistency of transitions

Two Web services Q1 and Q2 are said compatible if each message sent by the ser-
vice Q1 (resp. Q2) is received by the service Q2 (resp. Q1). So the compatibility
checking relies on the consistency of the transitions that correspond to the pairs
(input message, output message). By considering constraints over data and tem-
poral constraints, we distinguish three classes of consistency of two transitions: (1)
absolute consistency, (2) likely consistency and (3) absolute inconsistency.

An output transition t1 of a service Q1 is said absolutely consistent with an input
transition t2 of a service Q2, if the solutions of constraints (temporal and over data)
of t1 are solutions of constraints of t2.

For instance, let us suppose a service Q1 that can send the message m within
the interval [20, 30s], and a service Q2 that can receive the same message within
the interval [10, 60s]. Since [20, 30] ⊆ [10, 60], once the message is sent, it will be
received. Now, consider that m can be sent in [10, 40s], but received only within
[10, 20s]. If m is sent at 30s, it cannot be received, and so for this value, transitions
are clearly inconsistent. On the other hand, if the message is sent at 10s, it will
be received. Hence, for some solution values the transitions are consistent and for
some others, they are not, i.e., they are likely consistent.

Definition 6.1 An output transition t1 = (s1, !m, c1, ψX1 , s
′
1) is (locally) absolutely

consistent with an input transition t2 = (s2, ?m, c2, ψX2 , s
′
2), denoted by t1 ⊆ t2

if Sol(c1) ⊆ Sol(c2) and Sol(ψX1) ⊆ Sol(ψX2), where Sol(ci) denotes the set of
solutions of the constraint ci related to the data and Sol(ψXi) denotes the set of
solutions of the temporal constraint ψXi .

t1 is likely consistent with t2, denoted t1 � t2 if t1 � t2 and Sol(c1)∩Sol(c2) �= ∅

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170164

and Sol(ψX1) ∩ Sol(ψX2) �= ∅.
t1 is absolutely inconsistent with t2 if Sol(c1) ∩ Sol(c2) = ∅ or Sol(ψX1) ∩

Sol(ψX2) = ∅

6.2 External constraints inference

To analyze the compatibility of two Web services, checking the local consistency of
internal constraints related to pairs (input message, output message) of services is
not always sufficient to detect incompatibilities. In fact, the temporal constraints
of some transitions of a service can have an impact on other transitions of the same
service. To handle this problem, we suggest to verify if the internal constraints
of the service are mutually dependent. To do this, we propose to infer from the
internal constraints all the potential constraints, called external constraints, since
they will be exposed to check if they satisfy the exposed requirements of the client
service.

To illustrate such a situation, let us use the fragments of two services Q1 and
Q2 depicted in Fig. 3. According to Definition 6.1, the two transitions (s1, ?m1, x <

10, s2) and (q3, !m1, q4) are likely consistent, since solutions of x < 10 are non-
disjoint with the message sending ones. However, these transitions are problematic
since Q1 must receive the message m1 before 10s, whilst Q2 cannot reach the state
q3 before 20s, i.e., it cannot send m1 before 20s. As a consequence, the service Q1

cannot receive it, i.e., Q1 and Q2 are incompatible.
So, using constraints inference, we can deduce the two external constraints:

(i) service Q1: from the receipt of the message m0 until receiving m1, there is at
most 10s,

(ii) service Q2: between the sending of m0 and the sending m1, there is at least
20s.

Formally, the two external constraints are:
(?m0, ?m1, [0, 10])
(!m0, !m1,[20, 20 + t)) where t is the time related to the run-time process.
Once we get the two external constraints, we check if their periods are consis-

tent. In the example [20, 20 + t′) ∩ [0, 10] = ∅, the two transitions are absolutely
inconsistent, hence the two services are incompatible.

�� �� ��
�� �� �� �� ��

��	� �
�� ��	� ����

��
��� ��������

��������
���

��

��

��

Fig. 3. Absolutely incompatible services.

Two inferred constraints (external constraints) are absolutely consistent if the

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170 165

period to send the message is included in the period to receive it. However, when
the sending period is not included in the receiving period but the two periods have
some common values, we say that constraints are likely consistent. When the two
periods are disjoint, we say that the two constraints are absolutely inconsistent.

Definition 6.2 Let p1, p2 two pre-conditions such that (p1 = p2 = true), (p1 =
?m′, p2 =!m′) or (p1 =!m′, p2 =?m′). An output external constraint e1 = (p1, !m, d1)
is absolutely consistent with an input external constraint e2 = (p2, ?m, d2), denoted
e1 ⊆ e2 if d1 ⊆ d2. e1 is likely consistent with e2, denoted e1 � e2 if e1 � e2 and
d1 ∩ d2 �= ∅. e1 is absolutely inconsistent with e2 if d1 ∩ d2 = ∅

Inference of external constraints can be done via: (i) synchronization over mes-
sages or (ii) reference to a common clock. In the following, we explain each of
them.

6.2.1 Synchronization over messages
The inference based on the synchronization over a message can be explained using
the example of the two Web services depicted in Figure 3. In the service Q1, the
clock x is reset when the message m0 is received, i.e., in the transition (s0, ?m0, x, s1).
On the other hand, the clock y of service Q2 is reset when the message m0 is
sent, i.e., in the transition (q0, !m0, y, q1). Such transitions are called rendez-vous
synchronizing transitions, in which we can say that x ≡ y. Having a rendez-vous
synchronizing transition, we could detect that, once the message m0 is sent, the
service Q2 can reach the state q3 at least 20s, i.e., it can send the message m1 after
20s. Since the service Q1 can receive the message m1 at most in 10s, thus the two
services are not compatible because their conversation will fail.

6.2.2 Global duration
When there is no rendez-vous synchronizing transition, let us assume that both
services are started simultaneously. In this particular case, the idea is to infer the
required period to send and receive a message. As illustrated in Fig. 4, once the
service Q1 receives the message m0, it must receive the message m1 within 20s.
The service Q2 has no constraint on the transition (q2, !m1, q3) that enables to send
the message m1. Once the service Q2 performs the operation a(d0; d1), it must
perform the operation c(d2; d3) within the next 10s. The message m1 is sent before
performing the operation c(d1; d3), hence we can infer that the message is sent before
10s. Then, the external constraints we can infer respectively for the service Q1 and
the service Q2 are (true, ?m1, [0, 20s]) and (true, !m1, [0, 10s])

As it can be seen, [0, 10s] ⊆ [0, 20s], hence we can deduce that the two services
are compatible.

6.3 Web services compatibility classes

As seen in Fig. 5, the compatibility of services can be checked using three steps. The
local consistency allows to detect incompatibilities of Web services regarding their
constraints over data (step 1). Since the local consistency checking is insufficient

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170166

�� �� �� �� �� �� �� ��

��	� �
��� ��	� �
���

������ �������	
������	���

�� ��

������	

Fig. 4. An absolute compatibility.

to detect temporal incompatibilities, the external constraints must be inferred from
internal constraints (step 2). By considering all the inferred constraints, we check
if services are compatible regarding their temporal constraints (step 3).

������������	
���
	

������

������

	
����������������

������������������

�����������	
���
	

	
����������������

������������������

��������� ���������

��������	

������

�����������������

������

Fig. 5. Compatibility checking process.

According to our notions of consistency for external constraints and transitions,
we consider three classes of compatibility for Web services: (i) absolute compatibility,
(ii) likely compatibility, and (iii) absolute incompatibility.

Definition 6.3 Let Q1 and Q2 be two web services having T1 and T2 as respec-
tive sets of input/output transitions, and let E1 and E2 be their respective sets of
external constraints.

Q1 and Q2 are absolutely compatible if the following holds (for i, j ∈ {1, 2}, i �= j):

• ∀ti ∈ Ti, ∃tj ∈ Tj such that ti ⊆ tj ,
• ∀ei ∈ Ei,∃ej ∈ Ej such that ei ⊆ ej ,

Q1 and Q2 are likely compatible if Q1 and Q2 are not absolutely compatible and
the following holds (for i, j ∈ {1, 2}, i �= j):

• ∀ti ∈ Ti,∃tj ∈ Tj such that ti ⊆ tj or ti � tj ,
• ∀ei ∈ Ei, ∃ej ∈ Ej such that ei ⊆ ej or ei � ej ,

Q1 and Q2 are absolutely incompatible if one of the following holds (for i, j ∈
{1, 2}, i �= j):

• ∃ti ∈ Ti, � ∃tj ∈ Tj such that ti ⊆ tj or ti � tj ,
• ∃ei ∈ Ei, � ∃ej ∈ Ej such that ei ⊆ ej or ei � ej ,

One can notice that the different classes of compatibility are disjoint and cover
all the possible cases.

Our approach consists in analyzing the internal behavior of web services to infer
external constraints used for checking the compatibility of services. We are studying

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170 167

methods for the inference of external constraints, and this will allow us to implement
the compatibility checking presented in this section.

In the future, we want to apply the compatibility analysis framework for the
composition problem. A compatibility checking algorithm will allow us to syn-
thesize a composition by verifying the compatibility of services according to their
constraints.

7 Related work

The research field on the compatibility analysis for interoperability applications is
very active. A lot of works have been published on automatic service mechanisms,
using automata as a formal presentation [8,4,3,18,15,16]. The fundamental issue
addressed by all these works is the same: given two services, are they able to
interact?

In [8], the authors consider the sequence of messages that can be exchanged be-
tween two Web services. According to our approach, we consider also the data flow
and constraints over these data. Furthermore, we consider temporal constraints.

Similarly to [8], the approach presented in [4] also considers only sequences
of messages. The work presented in [4] has been extended with temporal con-
straints [3,18].

In [3], the temporal constraints enable to trigger transitions after an amount of
time. The lack of the model presented in [3] is that the activation constraints can
only be expressed over one transition. To go beyond such requirements, in this paper
we proposed to consider the standard clocks used in timed automata [2], to express
activation constraints that cannot be expressed in [3], such that having an activation
constraint over a sequence of transitions. Contrary to our work, there is no data flow
considerations, external constraints and constraints over counters. In the same area
in [18] several important aspects such that data flow and temporal requirements
as the external constraints, constraints over the global clock and counters are not
considered.

In [12], the authors deal with analyzing and verifying properties of composite
Web services specified as multiple BPEL processes. The properties are expressed via
the temporal logic LTL [17]. The services are specified using an automaton-based
formalism, where services are specified by the messages they can exchange asyn-
chronously and the data flow. So, [12] investigates an approach that analyzes some
given properties in a given composition, whilst we are interested in the compatibility
analysis needed to build a composition.

Another work presented in [15] deals with modeling temporal requirements in
a given composition. This work allows to express the same kind of constraints as
in [18]. However, this model does not consider data flow, external constraints and
constraints over counters and more generally constraints over data. Moreover, this
work does not consider the compatibility analysis.

In the same vein, the authors of [11] propose to use timed automata to check
the timed properties of a given composition. Thus they translate the descriptions

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170168

written in WSCI-WSCDL [14] into timed automata. In this paper, we are interested
in checking the compatibility of services, which is a key feature to synthesize a
composition, whilst [11] deals with the problem of verifying a given composition.

8 Conclusion and Perspectives

In this paper, we have presented an approach to deal with the automatic com-
patibility checking of Web services by considering their operations, messages,
data associated to messages, together with conditions on these data and temporal
constraints. We have defined two forms of constraints: (i) internal constraints
used to model the service and (ii) external constraints inferred from internal ones.
The inference of external constraints allows to detect some implicit constraints
that can be used to show the incompatibility of services. The internal constraints
can be local or global. Our notion of local clock is identical to the one used in
timed automata [2]. We use a global clock to specify constraints that relies on
absolute dates. As the global clock relies on the absolute time, thus it is never
reset. The internal constraints can express activation and dependency conditions.
Moreover, we consider data capabilities that allow us to specify guards. Then, in
order to analyze the compatibility of services by considering these properties, we
have proposed to extend the notion of WSTTS [15].

Our future work consists in studying how to infer automatically external con-
straints, and then to integrate compatibility checking mechanisms into a framework
for the composition of Web services modeled as conversational automata [13].

References

[1] G. Alonso and F. Casati. Web services and service-oriented architectures. In Proceedings of the 21st
International Conference on Data Engineering (ICDE). IEEE Computer Society, 2005.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235,
1994.

[3] B. Benatallah, F. Casati, J. Ponge, and F. Toumani. On temporal abstractions of web service protocols.
In The 17th Conference on Advanced Information Systems Engineering (CAiSE ’05). Short Paper
Proceedings, 2005.

[4] B. Benatallah, F. Casati, and F. Toumani. Analysis and management of web service protocols. In
Conceptual Modeling - ER 2004, 23rd International Conference on Conceptual Modeling, volume 3288
of LNCS, pages 524–541. Springer, 2004.

[5] D. Berardi. Automatic Service Composition. Models, techniques and tools. PhD thesis, La Sapienza
University, Roma, 2005.

[6] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, and M. Mecella. Automatic composition of
transition-based semantic web services with messaging. In Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages
613–624. ACM, 2005.

[7] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Automatic composition of e-
services that export their behavior. In Service-Oriented Computing - ICSOC 2003, First International
Conference, Trento, Italy, December 15-18, 2003, Proceedings, volume 2910 of LNCS, pages 43–58.
Springer, 2003.

[8] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are two web services compatible? In
Technologies for E-Services, 5th International Workshop, TES 2004, Revised Selected Papers, volume
3324 of LNCS, pages 15–28. Springer, 2005.

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170 169

[9] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new approach to design and analysis
of e-service composition. In Proceedings of the international conference on World Wide Web, WWW
2003, pages 403–410, 2003.

[10] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services description language
(wsdl) 1.1. http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.

[11] G. Diaz, J.-J. Pardo, M.-E. Cambronero, V. Valero, and F. Cuartero. Verification of web services
with timed automata. In Proceedings of the International Workshop on Automated Specification and
Verification of Web Sites (WWV 2005), volume 157 of ENTCS, pages 19–34, 2005.

[12] X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web services. In Proceedings of the 13th
international conference on World Wide Web, WWW 2004, New York, NY, USA, May 17-20, 2004,
pages 621–630, 2004.

[13] N. Guermouche, O. Perrin, and C. Ringeissen. A mediator based approach for services composition.
INRIA-LORIA Research Report, 2007.

[14] N. Kavanzas and al. Web service choreography description language (wscdl) 1.0.
http://www.w3.org/TR/ws-cdl-10/.

[15] R. Kazhamiakin, P. K. Pandya, and M. Pistore. Timed modelling and analysis in web service
compositions. In Proceedings of the The First International Conference on Availability, Reliability
and Security, ARES, pages 840–846. IEEE Computer Society, 2006.

[16] A. Muscholl and I. Walukiewicz. A lower bound on web services composition. In Proceedings of
Foundations of Software Science and Computation Structures (FOSSACS), volume 4423 of LNCS,
pages 274–287. Springer, 2007.

[17] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer
Science, pages 46–57. IEEE, 1977.

[18] J. Ponge. A new model for web services timed business protocols. In Atelier (Conception des systèmes
d’information et services Web), SIWS-Inforsid, 2006.

N. Guermouche et al. / Electronic Notes in Theoretical Computer Science 200 (2008) 155–170170

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/ws-cdl-10/

	Introduction
	Overview
	The model

	Motivating example
	Temporal constraints
	Internal constraints
	External constraints

	Web services timed conversations
	Information system
	Extended Web Service Timed Transition Systems (EWSTTS)

	Compatibility analysis
	Local consistency of transitions
	External constraints inference
	Web services compatibility classes

	Related work
	Conclusion and Perspectives
	References

