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The Dosepix hybrid pixel detector was designed for dosimetry and radiation monitoring applications. It
has three programmable modes of operation: photon counting mode, energy integration mode, and
dosimetry mode. The dosimetry mode measures the energy of individual X-ray photons and auto-
matically sorts events into pre-defined energy bins. The output is a histogram representing the measured
X-ray energy spectrum, permitting a dose reconstruction that accounts for the attenuation of photons at
each energy bin. This presents a potential radiation protection and dosimetry instrument in medical
radiodiagnostic practices, including high flux systems such as computed tomography (CT). In this paper,
we characterise the Dosepix chip by investigating the energy response and count rate capabilities when
coupled to a 300 pm silicon sensor under high fluxes of monochromatic synchrotron radiation. Under
nominal settings, the Dosepix detector can detect photons down to 3.5 keV, with an energy resolution of
16.5% FWHM for 8.5 keV photons and 8% FWHM for 40 keV photons. The chip can count up to 1.67 Mcps/
mm? of 40 keV photons whilst maintaining linear counting behaviour. This count rate range can be
further increased by changing the programmable operating settings of the detector, making it suitable for
a range of photon dosimetry applications.

© 2015 CERN for the benefit of the Authors. Published by Elsevier B.V. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction
1.1. The dosepix detector

The Dosepix hybrid pixel detector consists of an application
specific integrated circuit (ASIC) connected to a segmented semi-
conductor radiation sensor [1]. Both ASIC and sensor are seg-
mented into 16 rows by 16 columns of square pixels with 220 pm
pixel pitch. The ASIC and sensor were developed as two discrete
modules that were separately optimized and combined as a hybrid
detector assembly by bump-bonding. This hybridisation permits a
choice in appropriate sensor material depending on application.
For example, a high-Z (i.e. highly absorbing) sensor material such
as CdTe (Zcy=48, Z1.=52) would be well suited for the absorption
of energies typically used in medical CT (the maximum tube
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voltages, kVp, of medical CT scans typically generate X-ray spectra
up to 120 keV-140 keV). Silicon (Zs;=14) is a lower density
material that efficiently absorbs photon energies up to roughly
20 keV; Si can still be used to detect photons of much higher
energies but the absorption efficiency drops significantly. Never-
theless, due to the reliability and cost of silicon sensors, they are
useful for detector characterization, which is the goal of this work.
In this paper, we used a Dosepix detector assembly where the ASIC
was connected to a 300 pm silicon sensor with 12 rows of full-
sized 220 x 220 pm? pixels, and four special rows of reduced-area
55 x 55 pm? pixels.

Each Dosepix ASIC pixel contains an analogue frontend that
outputs a voltage pulse whose height and width are proportional
to the energy absorbed by the detector when an X-ray photon
impinges on the corresponding sensor segment. This voltage pulse
is compared to an analogue threshold voltage programmed to
correspond to a given energy during calibration. Measuring the
pulse width by counting the number of 100 MHz clock cycles

0168-9002/© 2015 CERN for the benefit of the Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).


https://core.ac.uk/display/82291537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.sciencedirect.com/science/journal/01689002
www.elsevier.com/locate/nima
http://dx.doi.org/10.1016/j.nima.2015.09.018
http://dx.doi.org/10.1016/j.nima.2015.09.018
http://dx.doi.org/10.1016/j.nima.2015.09.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2015.09.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2015.09.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2015.09.018&domain=pdf
mailto:erik.frojdh@cern.ch
http://dx.doi.org/10.1016/j.nima.2015.09.018

44 E. Fréjdh et al. / Nuclear Instruments and Methods in Physics Research A 804 (2015) 43-49

coincident with the time-over- threshold (TOT) signal gives a
digital value that represents the photon energy absorbed in the
sensor segment. In dosimetry mode, each pixel contains a 12-bit
TOT counter and sixteen 16-bit counters that correspond to indi-
vidually programmable digital thresholds. Since the chip contains
256 discrete channels, each with sixteen programmable thresh-
olds, the detector can theoretically output photon spectra quan-
tised in up to 3840 energy bins from 3.5 keV to roughly 1 MeV' (16
thresholds gives 15 bins + 1 overflow bin). Depending on the
photon fluence, the combined area of several pixels is typically
needed for each energy range in order to gather enough statistics
to output sensible spectra. In this work, we divided the 16 columns
into groups of four, and used four sets of digital thresholds to
provide X-ray spectra measurements sampled into 60 unique
energy bins. Because up to 65k hits per bin can be stored in the
memory of each pixel, the spectrum of an X-ray beam can be
measured in a single shot by the Dosepix detector (i.e. without the
need for time-consuming threshold scans).

1.2. Pulse pileup and count rate linearity in photon counting systems

Single photon processing hybrid pixel detectors, such as the
Dosepix detector, discretely process the signal from each detected
photon. The advantages of single photon processing (compared to
traditional energy integrating detectors) include the suppression
of false signals due to electronics noise, and the ability to measure
the energy of individual photons. The first point permits the
detection of low energy X-rays down to a few keV. The second
point is particularly important for X-ray dosimetry, as the
absorption efficiency of photons in sensor materials (such as sili-
con) and in tissue, depends on the photon energy. Since X-ray
tubes used in medicine output a broad energy spectra rather than
monochromatic radiation, it is necessary to know the energy of
the photons absorbed in a dosimeter in order to accurately cal-
culate the equivalent dose in tissue. On the other hand, the time to
process a pulse generated by an absorbed photon incurs a dead
time, which is a drawback to evaluating each photon discretely.
The Dosepix frontend can be described with the so-called
paralysable detector model with respect to pulse pileup [2],
which means that there can be an accumulation of multiple
photons being processed concurrently by a single pixel. In such a
system, individual photon events cannot be distinguished and this
distorts the energy response of the detection system. The count
rate linearity of a paralysable photon counting detector depends
on many factors, including the pixel active area and the pre-
amplifier reset current in the analogue frontend. Fig. 1 shows
pileup scenario simulations of the output of the Dosepix pre-
amplifier and analogue signal discriminator with various pre-
amplifier reset currents. Preamplifier output pileup occurs when
discrete input from the sensor arrives in intervals shorter than the
processing time of a single input, which is inversely proportional
to the preamplifier reset current. However, there is a practical
trade-off between pileup reduction and energy resolution, as
frontend noise increases with reset current and shorter pulses
increase quantisation error in TOT photon energy measurements.
The Dosepix frontend was designed for a nominal reset current of
2-3 nA, which can be programmed to a maximum value of
14.5 nA.

! It should be noted that the Dosepix ASIC should be connected to a thick and/
or high-Z sensor in order to efficiently absorb high energy photons.
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Fig. 1. Pileup scenario simulations of preamplifier and analogue discriminator
output pulses from monochromatic 40 keV photons on a Si sensor. When pileup
occurs, the outputs of several monochromatic photons are combined, distorting the
detector energy response leading not only to higher energy counts but also lower

energy counts if the next pulse sits on the undershoot of the previous pulse. Note:
The preamplifier output pulse is inverted in this frontend.

1.3. Outline

This paper evaluates the performance of a Dosepix detector
assembly equipped with a 300 pm silicon sensor. All experiments
were carried out at the TopoTomo beamline of the ANKA Syn-
chrotron Radiation Facility of the Karlsruhe Institute of Technology
at varying photon fluxes. The monochromatic energy spectrum
was provided by a double-multilayer monochromator ranging
between 6 and 40 keV with an energy resolution of AE/E=1072,

Following this introduction, the paper is divided into five main
content sections. Section 2 describes the simulation tools used to
simulate energy response and pile up performance. Section 3
reports the energy resolution of a Dosepix detector. Section 4
discusses the calibration of the detector using electronics noise
and monochromatic synchrotron radiation. Section 5 presents
high flux measurements with synchrotron radiation. The paper
will then conclude with a summary of the main values extracted
from the chip characterisation and comments on future work.

2. Simulations

Two different simulation tools were used in this work. For the
energy response of the detector presented in Fig. 4 the Geant4
extension geant4medipix [3] was used. This is a module that adds
charge transport in the sensor layer using a pixel weighting field
as well as a model for the pulse processing in the frontend. It also
provides an easy to use framework to set up the experiment
geometry and to vary the pixel and detector dimensions. Looking
at the results presented in Fig. 4 we observe more charge sharing
in the measurements than in the simulation. This discrepancy is
believed to come mostly from an underestimation of the charge
sharing in the simulations, which is consistent with results when
simulating other detectors in the Medipix family using the same
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software. A minor contribution could come from scattering from
the other detectors in the set-up since the measurements were
done using wide beam.

Although geant4medipix has an implementation of the pulse
processing it is a simplified model built on a convolution with a
preamplifier response function, and does not currently handle
multiple events at the same time. To simulate pulse pileup in the
front end the Analogue Design Environment from Virtuoso was
used with a model of Dosepix. This model gives a more complete
representation of the frontend. As input to the simulation square
pulses of 5ns, arriving randomly with the specified rate were
used. The results of the pileup simulations is included in the two
Figs. 6 and 7 and in Table 4.

3. Energy resolution of a dosepix detector with a 300 pm si
sensor

Electrical measurements of a bare Dosepix ASIC (i.e. without
sensor) were previously reported by Wong et al. [4]. Character-
ization using X-ray tubes, XRF and radioactive sources can be
found in the articles published by Ritter et al. [5] and Zang et al.
[6]. In this paper we discuss the energy resolution of a Dosepix
detector assembly consisting of the ASIC bump-bonded to a
300 pm Si sensor subject to monochromatic synchrotron radia-
tion. A set of digital-to-analogue-converters (DACs) in the chip
periphery programs the operational bias points of the pixel ana-
logue frontend circuits. The IKRUM? DAC selects the reset current
of the frontend preamplifier, which determines the time to return
the preamplifier output voltage to baseline, and also affects the
frontend gain (which in turn affects the equivalent noise charge)
[1]. In this work, we compare the Dosepix assembly performance
with IKRUM DAC settings of 15 and 60, which correspond to
preamplifier reset currents of 2.6 nA and 7.4 nA, respectively. The
remainder of the chip operation DACs were programmed to supply
each pixel frontend with 13.5 pW. Table 1 lists the equivalent noise
charge (ENC) of the frontend electronics based on these DAC set-
tings and based on the pixel area (the ENC depends in the frontend
input capacitance, which is a function of the sensor area).

Table 2 reports the energy resolution in terms of the full-width
at half maximum (FWHM) in TOT mode with a 100 MHz clock, of
monochromatic synchrotron radiation ranging from 8.5 keV to
40 keV, which was the range of energies available at the beamline.
There is a slight degradation in the energy resolution in the
reduced-area pixels due to charge sharing in the segmented
Sensor.

4. Energy calibration of the dosepix detector

The absorbed energy corresponding to the measured number
of TOT counts varies between pixels due to analogue threshold and
frontend gain mismatch [1]. Because the Dosepix detector sorts
events into energy bins directly during measurement, it is neces-
sary to pre-define the energy bins by determining the appropriate
set of programmable digital thresholds through energy calibration
of the Dosepix detector.

In order to set a low global analogue threshold (which also sets
the lower limit of the digital thresholds), we first performed an
analogue threshold equalisation procedure to minimise threshold
dispersion. We then followed the TOT calibration method devel-
oped for the Timepix ASIC of the Medipix2 Collaboration [8] to

2 The IKRUM current was named after Krummenacher, the designer of the
preamplifier architecture [7] on which the Dosepix frontend is based.

Table 1
Electronics noise of the Dosepix frontend (with 300 pm Si sensor) measured for the
two different pixel sizes.

IKRUM CENG TS (€7)

[Code] [nA] 220 x 220 pm? 55 x 55pm?
15 (2.6) 161 134

60 (7.4) 193 162

determine a TOT versus energy relationship for each pixel. Finally,
we used the dpxctrl software to calculate the set of digital
thresholds (in units of 100 MHz TOT counts) for each pixel based
on the TOT-to-energy relationship.

4.1. Analogue threshold equalisation

The total set of pixels has an inherent dispersion of the global
analogue threshold voltage due to transistor mismatch and voltage
drop along pixel columns. This dispersion limits the minimum
level at which the analogue threshold can be set, thereby limiting
the detection of soft X-rays. It also pushes the non-linear region of
the TOT-to-energy relationship (see Section 4.2) towards higher
energy ranges. The minimum analogue threshold is given by

THmin[keV] ~ 6€;/ (0% +02) 1)

where the average ionisation energy, €;, in silicon is approximately
3.62 eV at 300K [2]. To reduce the threshold dispersion, each
Dosepix frontend contains a programmable, in-pixel threshold
trimming DAC to locally tune the analogue threshold voltage.
Analogue threshold equalisation is the method to determine the
appropriate trim code for each pixel based on the local threshold
offset. It can be done using electronics noise, using programmable
charge injection into the frontend (i.e. analogue test-pulses), or
using a source of monochromatic ionising radiation. Table 3 pre-
sents the analogue threshold dispersion before and after threshold
tuning using electronics noise to calculate the appropriate trim
code for each pixel.

4.2. TOT-to-energy calibration

Fig. 2 shows the energy response of a single pixel with a
100 MHz TOT clock and analogue threshold of 5.5 keV for two
different IKRUM vales, measuring monochromatic synchrotron
radiation at the energies listed in Table 2. Note that the pre-
amplifier output pulses are much shorter with the higher reset
current.

The spread in the 256 curves corresponding to the calibration
curves of all the single pixels of the detector in Fig. 3 is due to
residual threshold offset and frontend gain variation (due to
transistor mismatch, voltage drop along pixel columns, and dif-
ferent input capacitances from the different pixel sizes). This
spread between pixels can then be corrected during regular
operation of the detector by programming unique digital thresh-
olds into each pixel, calculated based on their respective TOT
calibration curves.

The empirical surrogate function describing a TOT-to-energy
calibration curve is given by [8]:

c
f(X)=ﬂX+b—m 2

where x is the photon energy (i.e. horizontal axis), a is the slope of
the linear region, b is the y intercept of the linear region, and c/
(x—1t) describes the region below the knee. The dpxctrl software
extrapolates the calibration curve for each pixel and calculates the
appropriate TOT values of digital thresholds.
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Energy resolution of Dosepix assembly in TOT mode using a 100 MHz clock (with 300 pm Si sensor).

Energy Energy resolution, FWHM
Regular-sized, 220 x 220 pm? pixels Reduced-area, 55 x 55 pm? pixels
IKRUM =15 IKRUM =60 IKRUM =15 IKRUM =60
(keV) (keV) % (keV) % (keV) % (keV) %
8.5 143 16.8 217 25.5 1.70 20.0 2.29 26.9
10 1.66 16.6 217 21.7 1.88 18.8 1.69 16.9
15 240 16.0 235 15.7 2.28 15.2 211 141
20 2.81 14.0 291 14.6 2.86 14.3 3.22 161
25 2.90 11.6 3.17 12.7 2.96 11.8 339 13.5
35 312 8.92 3.62 10.3 3.18 9.08 4.04 11.5
40 3.18 7.95 3.79 9.48 3.56 8.90 4.53 11.3
Table 3 0.30
Analogue threshold dispersion of a Dosepix assembly (with 300 pm Si sensor). — S::gfth“gTOT
—— Simulation
IKRUM Trim code 0 x 0 in all pixels Optimized trim code per pixel 0.25
oem, TMS [€7] —
15 1013 26.6 g 020
60 1252 372 =
£
Threshold,;, [keV] 5 0.15
15 223 3.54 <
60 272 427 =
2 0.10
]
=
250 0.05
® Peaks lkrum 15
—— Fit lkrum 15 0.00
200 ® Peaks lkrum 60 10 20 30 40 50
= —— Fit Ikrum 60 Energy [keV]
£ Fig. 4. Measured spectrum in energy binned mode and single hit TOT mode using
g 150 IRKUM 15, compared with a simulation performed in geant4medipix [3].
S
® For the measurements in this work, we programmed the
(@) 0osepIxX detector wi equidistant ener 1ns Irom J5.5 Ke 0
o 10 D detect th 60 distant y bins from 5.5 keV t
5 64 keV, and an extended range of 5.5 keV to 150 keV to study
- .
ileup effects.
50 p p
4.3. Binned energy measurements from a calibrated detector
O . . .
5 10 15 20 25 30 35 40 45 To demonstrate the results of the detector calibration, Fig. 4
Energy [keV] shows the raw output of the Dosepix detector in a beam of

Fig. 2. TOT calibration curve for one pixel (8, 8) with IKRUM=15 (2.6 nA) and
IKRUM =60 (7.4 nA).
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Fig. 3. TOT calibration curves of all pixels in the matrix extrapolated to 90 keV to
highlight the gain spread (IKRUM=15).

monochromatic 40 keV photons. In this measurement, the digital
thresholds were programmed to define 60 unique energy bins
from 5.5 keV to 64 keV. The binned peak has a resolution of
4.3 keV FWHM. The slight degradation in energy resolution in
binning mode (compared to the resolution reported for raw TOT
counts in Section 3) is due to event quantisation in the discrete
bins. The counts below 40 keV are due to charge sharing in the
pixels, and the bump at 8 keV is from X-ray fluorescence of copper
from the bump bonds.

5. High flux measurements with monochromatic synchrotron
radiation

5.1. Count rate linearity

The count rate linearity for the Medipix3RX detector of the
Medipix3 Collaboration was previously reported by Fréjdh et al.
for silicon [9] and by Koenig et al. for CdTe [10]. Recently Zang
et al. [6] presented a count rate study of Dosepix for both detector
materials using a polychromatic spectrum . In this work, we fol-
lowed similar steps as for the Medipix3RX characterization to
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determine the count rate linearity of a Dosepix detector coupled to
a 300 pm Si sensor, counting the number of photons from
monochromatic synchrotron radiation beams of 17 keV, 30 keV,
and 40 keV. These energy points were selected as energies of
interest for quality assurance routines of mammography imaging
systems, and mean energies for the reference X-ray beam qualities
recommended by the International Electrotechnical Commission
(IEC) for medical imaging: RQR5 and RQR7 [11]. 40 keV was also
the highest beam energy available in our experimental setup. The
input photon flux was adjusted using Al filters and by using dif-
ferent parts of the non-homogeneous beam. The analogue
threshold was set to 5.5 keV and the chip operated in energy
binning mode with the lowest bin set at 0 TOT in all pixels. The
counts in this bin was then used for the count rate fit. Fig. 5 shows
the photon counting intensity profile of the beam at 40 keV and
low flux. Due to the limited statistics recorded in the four rows of
55 pm pitch pixels, the characterisation of the count rate linearity
will be based on results from the 12 rows of pixels with the
220 pm native pitch. From measurements with Medipix3RX [9]
we also do not expect a significant difference between the differ-
ent pixel sizes, except a factor 16 coming from the pixel area.

Figs. 6 and 7 shows the measured count rates with the Dosepix
detector placed in a beam of monochromatic 40 keV photons for
two values of IKRUM. The input count rate was calculated from the
region with linear response and represent the pulses that the chip
sees. The output count rate (i.e. the counts recorded by the
Dosepix electronics) follows the input count rate at low input
fluxes. For high input fluxes, the output count rate deviates from
the input count rate due to pulse pileup in the frontend. The
frontend simulations generally agrees well with the measure-
ments for the low IKRUM settings but shows longer dead-times for
the higher IKRUM settings. Still we see it as a valuable tool for
predicting pileup response in hybrid pixel detectors. Ideally the
detailed frontend simulation should be connected to a sensor
simulation (such as geant4medipix) to be provided with more
realistic input pulses.

These measurements were repeated for 30 keV and 17 keV
photons. To determine the photon processing dead-time, we used a
simple paralysable detector model to fit the recorded count rate m,
as a function of input count rate n, and extract the dead-time, 7 [2]:

m=ne " 3)
I 0.8
0.6
0.4

. I

Fig. 5. Relative intensity of the beam as measured by Dosepix at 40 keV. Note that
the low intensity in the top two and bottom two rows is due to the smaller
(55 x 55 pm?) pixels while the variations in the centre originates from the beam.
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Fig. 6. Recorded counts of 40 keV synchrotron radiation, using the 220 x 220 ym?
pixels with IKRUM = 15. The figures also includes the fitted dead time according to
Eq. (3) and simulated count rates using the method described in section.
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Fig. 7. Recorded counts of 40 keV synchrotron radiation, using the 220 x 220 pm?
pixels with IKRUM =60. Analogue threshold=5.5 keV. The figures also includes the
fitted dead time according to Eq. (3) and simulated count rates using the method
described in section.

We calculate the 10% deviation point (I o g) from linear response
using the fitted dead-time (7). This gives a figure of merit for the
rate that the chip can handle. At this point we observe a spectral
distortion and pileup counts but the overall shape of the spectrum
is intact. It is important to note that the maximum linear count
rate is based on the flux at the input of the electronics, which is
the flux absorbed by the sensor material. The actual incident flux
from the beam, Iporon , depends on the attenuation at the photon
energy [2]:

I= Iphowne_”t (4)

where, in the case of this work, y is the linear attenuation coef-
ficient of photons in silicon at a given energy, and t is the sensor
thickness (300 pm). Table 4 lists the dead-time, 10% deviation
point, and incident beam flux at the 10% deviation point for our set
of measurements. Simulations of the frontend are also presented
and include the case where IKRUM is the maximum program-
mable DAC code of 255 (14.5 nA).

5.2. Spectral response at high flux
Fig. 8 shows that, at low fluxes, the Dosepix detector correctly

measures the photopeak at 40 keV in energy binned mode. How-
ever at high fluxes, the photopeak moves towards lower energies
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and false high energy counts are recorded above the incident
photon energy due to pulse pileup in the analogue frontend.
Although we can model and correct for the deviation in count
rates in photon counting applications, we unfortunately cannot
recover from pileup distortions in the spectral response [9].

Table 4

Measurement and frontend simulation of processing dead-times (z) and count rate
at 10% deviation from linear. Ipporons is the actual number of incoming photons as
the 10% point calculated using Eq. (4).

Measurement with detector Frontend simulation

Energy IKRUM < loo Iphoton 7 loo
(keV)  (Code) (ps) (Mcp/mm?) (Mcp/mm?) (ps)  (Mcp/mm?)
17 15 123 177 4.99 134 1.62
60 050 435 123 082 265
255 - - - 0.64 3.40
30 15 129 1.69 19.7 127 171
60 0.53 411 47.8 0.89 245
255 - - - 0.71 3.07
40 15 13 1.67 38.8 140 155
60 0.61 3.57 83.0 0.93 234
255 - - - 0.73 2.98
000 INPUL count rate: 7.2e+03 counts/mm? /s
20000
15000
[2]
=
3
S8
10000
5000
0
10 20 30 40 50
Energy (keV)
18000  Nput count rate: 1.6e+06 counts/mm? /s
16000
14000
12000
£ 10000
e
=2
8 8000
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2000
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Energy (keV)

6. Conclusions and future work

We have characterised the energy response and high flux count
rate capabilities of a Dosepix detector coupled to a 300 pm Si
sensor . Because photon attenuation in semiconductor sensors as
well as biological tissue depend on photon energy, the spectral
information provided by Dosepix permits a means to reconstruct
dose that accounts for photon attenuation in each energy bin.
However, the processing dead-time required to compute the
energy of each absorbed photon on-chip limits the input fluxes
that the ASIC can handle. These limits have been characterised in
this work in order to provide a guideline on the appropriate use of
the Dosepix detector. Under nominal chip settings, the Dosepix
energy resolution in energy binning mode was measured to be
16.5% FWHM for 8.5 keV photons and 8% FWHM for 40 keV pho-
tons, and the maximum linear count rate was measured to be
1.67 Mcps/mm? for 40 keV photons.

The results presented in this chip characterisation paper indi-
cate that Dosepix could be a promising device for dosimetry
applications in the medical field, particularly since dosimeters are
not typically placed directly in beams and are therefore required to
detect lower fluxes than imaging detectors. The next step, there-
fore, is to use Dosepix in operational radio protection and dosi-
metry applications that can benefit from a detector that measures
X-ray energy spectra in a single acquisition, for example, the

: 2
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Fig. 8. Energy response measuring 40 keV photons at various measured input fluxes in the 220 x 220 um? pixels of the Dosepix detector using IKRUM=15. Note: These are
not results of threshold scans. The data shown here was measured in a single acquisition in energy binning mode using calibrated energy bins programmed from 5.5 keV to

64 keV in 60 bins.
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characterization of background scatter radiation in a radiological
room and dosimetric workplace study for the medical staff.
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