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Abstract

The pion scalar radius is given by〈r2
S
〉 = (6/π)

∫ ∞
4M2

π
ds δS(s)/s2, with δS the phase of the scalar form factor. Below̄KK

threshold,δS = δπ , δπ being the isoscalar, S-waveππ phase shift. At high energy,s > 2 GeV2, δS is given by perturbative
QCD. In between I argued, in a previous letter, that one can interpolateδS ∼ δπ , because inelasticity is small, compar
with the errors. This gives〈r2

S
〉 = 0.75 ± 0.07 fm2. Recently, Ananthanarayan, Caprini, Colangelo, Gasser and Leut

(ACCGL) have claimed that this is incorrect and one should have insteadδS � δπ − π ; then〈r2
S
〉 = 0.61± 0.04 fm2. Here I

show that the ACCGL phaseδS is pathological in that it is discontinuous for small inelasticity, does not coincide with
perturbative QCD suggests at high energy, and only occurs because these authors take a value forδπ (4m2

K
) different from

what experiment indicates. If one uses the value forδπ (4m2
K

) favoured by experiment, the ensuing phaseδS is continuous,
agrees with perturbative QCD expectations, and satisfiesδS � δπ , thus confirming the correctness of my previous estim
〈r2

S
〉 = 0.75± 0.07 fm2.

 2005 Elsevier B.V.

1. Introduction

The quadratic scalar radius of the pion,〈r2
S〉, is defined via the scalar form factor,FS,π :

(1.1)FS,π (t) �
t→0

FS,π (0)

{
1+ 1

6

〈
r2
S

〉
t

}
,

where

(1.2)
〈
π(p)

∣∣[muūu(0) + mdd̄d(0)
]∣∣π(p′)

〉 = (2π)−3FS,π (t);
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the (charged) pion states are normalized to〈π(p)|π(p′)〉 = 2p0δ(p − p′), andt = (p − p′)2. To one loop in chiral
perturbation theory (ch.p.t.),〈r2

S〉 is related to the important coupling constantl̄4 by

(1.3)
〈
r2
S

〉 = 3

8π2f 2
π

{
l̄4 − 13

12

}
.

fπ � 93 MeV is the decay constant of the pion.
An evaluation of〈r2

S〉 was given some time ago by Donoghue, Gasser and Leutwyler[1]; we will refer to this
paper as DGL. These authors found (we quote the improved result from the second paper in Ref.[1])

(1.4)
〈
r2
S

〉
DGL = 0.61± 0.04 fm2, l̄4 = 4.4± 0.2.

The error comes from experimental errors and the estimated higher order corrections.
As noted in Ref.[2], one can obtain the scalar radius from the sum rule

(1.5)
〈
r2
S

〉 = 6

π

∞∫
4M2

π

ds
δS(s)

s2
,

whereδS(s) is the phase ofFS,π (s), andMπ is the charged pion mass. At low energy,δS(s) = δπ (s), whereδπ (s)

is the phase shift forππ scattering with isospin zero in the S wave. This equality holds with good accuracy
the opening of theK̄K threshold, ats = 4m2

K ; for mK we take the average kaon mass,mK = 496 MeV. At high
energy,s > 2 GeV2, one can use the asymptotic estimate that perturbative QCD indicates forδS(s) (see below)
and, between these two regions, what was considered in Ref.[2] a reasonable interpolation, viz.,δS(s) ∼ δπ (s).
One then finds,

(1.6)
〈
r2
S

〉 = 0.75± 0.07 fm2, l̄4 = 5.4± 0.5.

This is about 2σ above the DGL value, Eq.(1.4).
The integral in(1.5) up to s = 4m2

K can be evaluated in a fairly unambiguous manner, and the contributi
the high energy region,s > 2 GeV2, although evaluated with different methods, is found similar in Refs.[1–3].
The conflictive contribution is that of the intermediate region,

(1.7)

2 GeV2∫
4m2

K

ds
δS(s)

s2
.

In fact, very recently Ananthanarayan, Caprini, Colangelo, Gasser and Leutwyler[3], that we will denote by AC-
CGL, have challenged the result of Ref.[2]. Their main objection is that the Fermi–Watson final state interac
theorem doesnot guarantee thatδπ (s) andδS(s) are equal, even if inelasticity is negligible; it only requires t
they differ in an integral multiple ofπ :

(1.8)δS(s) � δπ (s) + Nπ.

At ππ threshold, bothδS andδπ vanish, henceN = 0 here. Belows = 4m2
K , continuity guarantees that theN

in (1.8) still vanishes, as assumed in Ref.[2]. For 1.7 GeV2 � s � 2 GeV2 inelasticity is also compatible wit
zero. However, since this is separated from the low energy region by the region 2mK < s1/2 � 1.2 GeV, where
inelasticity isnot negligible, one can haveN �= 0. Actually, ACCGL conclude that

(1.9)δS(s) � δπ (s) − π, 1.1 GeV� s1/2 � 1.42 GeV.

According to ACCGL, this brings the value of〈r2
S〉 back to the DGL number in(1.4).

The remark of ACCGL leading to(1.8) is correct. Nevertheless, we will here show that their conclusion(1.9) is
wrong. In fact, arguments of



F.J. Ynduráin / Physics Letters B 612 (2005) 245–257 247

ect er-
for

dices.

nd

ne

ually
(A) Continuity of δS(s) when the inelasticity goes to zero;
(B) The value experiment indicates for the quantityδπ (4m2

K);
(C) The value SU(3) ch.p.t. implies for the real part of theK̄K scattering length andδπ (4m2

K); and, finally,
(D) The matching with the phase expected from perturbative QCD at high virtuality,

all imply that the numberN in (1.8)vanishes, therefore substantiating the claims of Ref.[2].
It should also be noted that the error analysis of DGL and ACCGL must be incomplete. With a corr

ror analysis, and even starting from their assumptions, DGL and ACCGL should have obtained a value〈r2
S〉

compatible with that in Ref.[2], within errors. This is also discussed below.

2. Some definitions

Since we will only consider the S wave for isospin zero, we will omit isospin and angular momentum in
We define a matrix for the partial wave amplitudes for the processesππ → ππ,ππ → K̄K(= K̄K → ππ), and
K̄K → K̄K :

(2.1)f =
(

fππ→ππ fππ→K̄K

fππ→K̄K fK̄K→K̄K

)
=

(
ηe2iδπ −1

2i
1
2

√
1− η2ei(δπ+δK)

1
2

√
1− η2ei(δπ+δK) ηe2iδK −1

2i

)
.

Below K̄K threshold, the elasticity parameter isη(s) = 1; aboveK̄K threshold1 one has the bounds 0� η � 1.
We will also use a K-matrix representation off:

(2.2)f = {
Q−1/2K−1Q−1/2 − i

}−1
, Q =

(
q1 0
0 q2

)
,

qa are the momenta,q1 = √
s/4− M2

π , q2 =
√

s/4− m2
K .

We may diagonalizef and find theeigenphases, δ(±),

f = C{gD − i}−1CT,

(2.3a)gD =
(

cotδ(+) 0

0 cotδ(−)

)
, C =

(
cosθ sinθ

−sinθ cosθ

)
.

We will defineδ(+) to be the eigenphase that matchesδπ : δ(+)(4m2
K) = δπ (4m2

K). Then,

tanδ(±) = T ± √
T 2 − 4∆

2
, sinθ =

{
1

2

T + √
T 2 − 4∆ − 2q1K11

+√
T 2 − 4∆

}1/2

, T = q1K11 + q2K22,

(2.3b)∆ = q1q2 detK.

This holds (nearK̄K threshold) whenK11 > 0. ForK11 < 0, the(±) signs should be exchanged in the right-ha
side of the expression for tanδ(±), and the square roots in the expression for sinθ get a minus sign. Near̄KK

threshold, sinθ andδ(−)(s) vanish withq2. If inelasticity were zero (η = 1) the channels would decouple and o
would haveC = 1 andδ(+) = δπ , δ(−) = δK .

Thephaseof theππ → ππ amplitude will play an important role in the subsequent discussion. We will act
use the phaseφπ defined by

fππ→ππ =
{+|fππ→ππ |eiφπ , 0� φπ � π,

−|fππ→ππ |eiφπ , π � φπ � 2π.

1 In the present Letter we will neglect coupling ofππ to states other than̄KK , for energies below 1.42 GeV.
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This definition has to be adopted to agree with the standard definition of the phase (shift)δ for a purely elastic
amplitude, given byf = sinδeiδ , so thatf = ±|f |eiδ with the(±) signs as forφπ above.

Using(2.1)one gets a simple expression for the tangent ofφπ :

(2.4)tanφπ =
{

1+ 1− η

2η

(
1+ cot2 δπ

)}
tanδπ .

For ease of reference, we also give here the expressions of phase shift and inelasticity in terms of the K-

(2.5a)tanδπ =




q1|q2|detK+q1K11
1+|q2|K22

, s � 4m2
K,

1
2q1[K11+q2

2K22detK]
{
q2

1K2
11 − q2

2K2
22 + q2

1q2
2(detK)2 − 1

+
√

(q2
1K2

11 + q2
2K2

22 + q2
1q2

2(detK)2 + 1)2 − 4q2
1q2

2K4
12

}
, s � 4m2

K ;

(2.5b)η =
√

(1+ q1q2 detK)2 + (q1K11 − q2K22)2

(1− q1q2 detK)2 + (q1K11 + q2K22)2
, s � 4m2

K.

The connection with the scalar form factor of the pion comes about as follows. We form a vectorF with FS,π

and the form factor of the kaon,FS,K , and define the vectorF′ by

(2.6a)F′ = CTQ1/2F, F =
(

FS,π

FS,K

)
.

Then two-channel unitarity implies that

(2.6b)
FS,π = q

−1/2
1

{
(cosθ)

∣∣F ′
1

∣∣eiδ(+) + (sinθ)
∣∣F ′

2

∣∣eiδ(−)}
,

FS,K = q
−1/2
2

{
(cosθ)

∣∣F ′
2

∣∣eiδ(−) − (sinθ)
∣∣F ′

1

∣∣eiδ(+)}
.

NearK̄K threshold or for small inelasticity,δS � δ(+) � φπ .

3. The partial wave amplitudes from the experiment of Hyams et al.

We will here follow DGL and ACCGL and take the partial wave amplitudes as measured by Hyams et[4],
although later we will also discuss other sets ofππ scattering data, as well as data[5] onππ → K̄K . Hyams et al.
give three representations for their data: an energy-independent phase shift analysis that yields the valu
phase shiftδπ (s), and of the elasticity parameterη(s), from ππ threshold tos1/2 � 1.9 GeV; an energy-depende
parametrization of the K-matrix that interpolates these data in the whole range; and a second parametriza
a constant K-matrix that represents the data aroundK̄K threshold.

For the second, Hyams et al. write (Eq. (12a) and Table 1 in Ref.[4])

(3.1)Kab(s) = αaαb/(s1 − s) + βaβb/(s2 − s) + γab,

where

s
1/2
1 = 0.11± 0.15, s

1/2
2 = 1.19± 0.01,

α1 = 2.28± 0.08, α2 = 2.02± 0.11, β1 = −1.00± 0.03, β2 = 0.47± 0.05,

(3.2)γ11 = 2.86± 0.15, γ12 = 1.85± 0.18, γ22 = 1.00± 0.53.

The numbers here are in the appropriate powers of GeV.
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In the energy range around̄KK threshold, 0.9 GeV� s1/2 � 1.1 GeV, Hyams et al.[4, p. 148]find that their
data may be represented by a constant K-matrix with

(3.3)K11 = 1.0± 0.4 GeV−1, K12 = −4.4± 0.3 GeV−1, K22 = −3.7± 0.4 GeV−1.

The sign ofK12 is undefined. We have chosen in(3.3) a sign opposite to that of Hyams et al.[4], to agree with
what the same authors get from the energy-dependent K-matrix; see below, Eq.(3.4). This is somewhat differen
from what(3.2)gives atK̄K threshold: evaluatingK(s) with the central values in(3.2)one finds

(3.4)K11
(
4m2

K

) = −0.17 GeV−1, K12
(
4m2

K

) = −4.0 GeV−1, K22
(
4m2

K

) = −2.7 GeV−1.

Before starting with the actual analyses it is perhaps convenient to remark that what follows fromexperiment
is theenergy-independentset of phase shifts and elasticity parameters. The energy-dependent representa
model dependent. This is particularly true of(3.1), where one makes the choice of a specific functional form;
results vary somewhat if using other parametrizations.

4. The phase φπ

We will here consider the value of the phaseφπ(s) that follows from the experimental analysis given abo
Althoughφπ(s) is different from the quantitiesδS(s) andδ(+)(s), which are the ones that intervene in the evalua
of the scalar form factor, they follow the same pattern. This was noted by ACCGL, who discussφπ in detail to
illustrate their conclusions onδS , and, indeed, it can be verified without too much trouble with the formula
Section2: explicitly for δ(+) and to first order inq2 or in ε for δS (the exact result for the last requires solving t
coupled integral equations).

The advantage ofφπ is that it is given by the simple equation(2.4) in terms of the observable quantitiesδπ , η.
This will allow us to simplify the discussion enormously; in particular, it will let us use simple parametriza
of δπ , η aboveK̄K threshold, which is the region where there is disagreement between the evaluation of R[2]
and DGL, ACCGL. This simplification is unnecessary in the sense that the results are almost identical to w
finds with the full K-matrix (that we will present later); but it permits us to exhibit, with great clarity, both
mechanisms at work and the issues involved.

To calculateφπ around and abovēKK threshold we take

(4.1)δπ (s) = π + d(s) + q2

s1/2
c(s), η(s) = 1− ε(s)

and approximate, for 0.95 GeV� s1/2 � 1.35 GeV,

(4.2)d(s) = d0 = const, c(s) = c0 = const, ε(s) =
(

ε1
q2

s1/2
+ ε2

q2
2

s

)
M2 − s

s
, M = 1.5 GeV.

In the region immediately below̄KK threshold we replaceq2 by |q2| in (4.1).
The energy-independent set of data in Ref.[4] are well fitted with the numbers2

(4.3)c0 = 5± 1, ε1 = 6.4± 0.5, ε2 = −16.8± 1.6,

and we will leave the value ofd0 (which is small) free for the moment. It will turn out that a key quantity in
analysis is the phase shift atK̄K threshold,δπ (4m2

K), and we want to be able to vary this.

2 We have actually followed the fit of Ref.[6], which takes into account other data sets and is slightly below, both forδπ andε, from what
Hyams et al. give, at the upper energy range.
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f.
Fig. 1. The phasesδπ (s) (continuous line) andφπ (s) (dashed line) corresponding to a Type I solution. Note that, belowK̄K threshold
δπ (s) = φπ (s), henceφπ (s) shows a very pronounced spike ats = 4m2

K
. The asymptotic phase (to be defined below)δas. is represented

by the thick gray line.

4.1. The phaseφπ of DGL, ACCGL

The authors of Refs.[1,3] take the K-matrix of Hyams et al.[4], with the central values as given in(3.2). What
is important for us here is that this implies that the central value ofδπ (4m2

K) is less than 180◦:

(4.4a)δπ

(
4m2

K

) = 175◦.

To reproduce this, we have to taked0 in (4.2)negative and equal to

(4.4b)d0 = −0.087.

Care has to be exercised when crossing the energys0 at whichδπ (s) equalsπ , which, with(4.3)and(4.4b), occurs
at s1/2

0 = 992.6 MeV,

δπ

(
s0 = (992.6 MeV)2) = π,

and where(2.4) is singular. For the moment, we will tackle this by starting belows0 and requiring continuity
of the phaseφπ(s) acrosss0. This we will call a solution ofType I, and is like what ACCGL find; indeed, th
corresponding values ofδπ (s), φπ(s), shown inFig. 1, are practically identical to those in theFig. 1 in ACCGL in
the relevant region, around and aboveK̄K threshold. As can be seen in both figures, in the regions1/2 ∼ 1.35 GeV,
where inelasticity is negligible,δπ (s) andφπ(s) differ by π . δS(s) andδ(+)(s) are very similar toφπ(s) and thus
also differ byπ from δπ (s).

This is the key remark of ACCGL: the phasesδπ (s) andφπ(s), δS(s) arenot equal aboves1/2 ∼ 1.1 GeV, but
rather one has

δS(s) � δ(+)(s) � φπ(s) � δπ (s) − π, s1/2 � 1.1 GeV.

This accounts for the difference between the results of Refs.[1,3] (DGL, ACCGL) and my previous results[2] for
the integral(1.7), hence for the different values of the scalar radius.

The situation, however, is not as simple as ACCGL seem to believe. First of all, theinelasticitygiven in Ref.[4]
is much overestimated. After that paper was written, a number of experiments have appeared[5] in which the cross
sectionππ → K̄K was measured. Since there are no isospin-2 waves inππ → K̄K scattering, and theππ − K̄K

coupling is very weak for P, D waves, it follows that measurements of the differential cross section forππ → K̄K

give directly 1−η2 with good accuracy. On the other hand,ππ scattering experiments like those of Hyams et al.[4]
only measure theππ → ππ cross section, so thatη is obtained less precisely here: not only theππ cross section
depends on bothδπ , η, but other waves (notably S2, P and D0) interfere. Thus, these more recent,ππ → K̄K

based, experimental values[5] for η are much more reliable than the older ones, in particular than those of Re[4].
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Fig. 2. Fit to theI = 0, S-wave inelasticity and phase shift between 950 and 1400 MeV, from Ref.[6] (so that the formula used forδ(0)
0 ≡ δπ

is slightly different from(4.1)), and data from Refs.[4,5,8,11]. The shaded bands correspond to 1σ variation in the parameters of the fits. Th
fit to the phase shift corresponds tod0 = 0. The difference between the determinations ofη from ππ → ππ (PY from datain the figure) and
from ππ → K̄K (PY alternative) is apparent here.

The value of the inelasticity the experiments in Ref.[5] give is about athird of what (4.3) indicates:η can be
fitted with [6]

(4.5)ε1 = 2.4± 0.2, ε2 = −5.5± 0.8.

The difference is shown graphically inFig. 2.
If we now use(4.5) instead of(4.3) to calculateφπ(s), keepingδπ (s) fixed, a surprising result occurs:φπ(s)

doesnot become closer toδπ (s) above the points0; on the contrary, it moves closer toδπ − π . In fact, one can
decrease the inelasticity to zero,ε(s) → 0, keepingδπ (s) fixed, and one finds that

φπ(s) → δπ (s), s1/2 < s
1/2
0 = 992.6 GeV,

(4.6)φπ(s) → δπ (s) − π, s1/2 > s
1/2
0 = 992.6 GeV.

That is to say: contrary to physical expectations, the limit of zero inelasticity does not coincide with inela
zero for, if we setε(s) ≡ 0, thenδπ (s) andφπ(s) should be identical. This phenomenon was noticed by ACC
who, however, failed to attach to it the due importance. As a matter of fact, the situation is even more comp
as will be shown below: if we leaveη fixed but varyd0 in (4.2) across zero to a positive number, however sm
the resultingφπ is not continuous whend0 crosses zero: it jumps byπ .

What is the reason for this peculiar behaviour ofφπ ? It is not difficult to identify: Eq.(2.4)doesnot determine
φπ , but only its tangent. Thus,φπ is only fixed up to a multipleNπ . N may be set to zero below the points0 where
δπ (s) crossesπ , by requiring thatφπ(4m2

K) = δπ (4m2
K) and continuity above this. However, Eq.(2.4)shows that

tanφπ(s) is discontinuouswhens crossess0. Therefore, we may well addπ to theφπ(s) of the Type I solution
found above, in the regions > s , since this does not change its tangent. We then find what we call a solut
0
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Fig. 3. The phasesδπ (s) (continuous line) andφπ (s) (dashed line) corresponding to a solution of Type Id. The spike that appeared inFig. 1 is
now accompanied by a jump ofφπ (s), at s = s0.

Type Id(d for discontinuous), depicted inFig. 3. In this case,φπ(s) is not continuous acrosss0, but does tend3 to
δπ (s), for all values ofs, when the inelasticity tends to zero. It is also continuous (in the mean) ford0 around zero.
ACCGL appear to be unaware of the existence of solutions of Type Id.

It is not clear which of the two solutions, Type I or Type Id, should be considered correct: both types look
In fact, we will show that both Type I and Type Id are, with all probability, spureous solutions, artifacts due
use of the parametrization(3.1), (3.2)over too wide a range, and with too little experimental information.

4.2. The correctφπ

We next repeat the calculations of the previous section, but we will now assume thatδπ (4m2
K) is larger thanπ ,

so thatd0 is positive. To get this it is sufficient to alter a little the parameters in(3.2). For example, if we move onl
one parameter by 1σ , just replacing in(3.2)

(4.7)α1 → 2.20= 2.28− 0.08,

thenδπ (4m2
K) becomes 185◦. Note thatδπ (s) is almost unchanged by this, as may be seen by comparingFigs. 1

and 4. The only important effect of the change in(4.7) is to pushδπ (4m2
K) from a bit below to a bit above 180◦;

but then, this is a key point, as we will see.
A value forδπ (4m2

K) above 180◦ follows also fors1 = 0, γ11 = 3.0 (as in Ref.[7]), which values are both les
than 1σ off the central values in(3.2). In fact, a valueδπ (4m2

K) > 180◦ can already be obtained with only a12σ

change,

α1 → 2.24= 2.28− 0.04.

Thus, a valueδπ (4m2
K) > 180◦ is perfectly compatible with the energy-dependent parametrization of Hyams

Eqs.(3.1), (3.2), when errors are taken into account.
We will use(4.7) for simplicity in the discussion and will thus repeat the calculations with

(4.8)δπ

(
4m2

K

) = 185◦, d0 = +0.087.

In the present case, and as is obvious from(2.4), φπ(s) is never singular and it staysaboveδπ (s), up to the energy
s1/2 ∼ 1.3 GeV whereδπ (s) crosses 3π/2, remaining close to it afterwards.4

This property is actually quite general, not tied to the specific approximations(4.2), (4.8), and depends onl
on the fact thatδπ (s) is an increasing function ofs and thatδπ (4m2

K) > π . This is all we need forφπ . To get the

3 To be precise, one should remark that this limit appliesin the mean; the isolated points0 remains singular. Convergence in the me
however, is sufficient to ensure convergence of integrals involvingφπ .

4 In fact, over the whole range, the difference betweenφ andδ is smaller than the experimental errors of the last: compareFigs. 2 and 4.
π π
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Fig. 4. The phasesδπ (s) (continuous line) andφπ (s) (dashed line) corresponding to the solution of Type II. As inFig. 1, the thick gray line is
the asymptotic phaseδas..

Fig. 5. The phasesδπ (s) (continuous lines) andδ(+)(s) (dashed lines) evaluated in the K-matrix formalism, Eq.(3.1), with the central values o
the parameters given in(3.2) (Type I) or(4.7), Type II. (The two lines forδπ correspond also to(3.2), (4.7).) The asymptotic phaseδas. (thick
gray line) is also shown.

analogous property forδ(+), δS we also require that detK(4m2
K) < 0, something that is amply satisfied with t

parameters of(3.2), (3.3)or, more generally, if, as implied by SU(3) ch.p.t., one has tanδK < 0 nearK̄K threshold
(see below).

A set of phases with these properties we will call a solution ofType II. In the specific case(4.8) we find the
δπ (s), φπ(s) depicted inFig. 4. Note thatδπ (s) andφπ(s) are near each other all the time, as one expects physi
since the inelasticity is small; this is particularly important in view of the results of Ref.[5]. Unlike what happened
in solutions of Type I, or Type Id, the phaseφπ(s) is now a smooth function both ofε(s) and ofs.

These results are not new. They were amply discussed more than thirty years ago, in connection with th
phasesδ(±)(s), by the present author in Ref.[7]. There it was noted that, by going from the values of the K-ma
parameters in(3.2) to values like those in(4.7), the eigenphaseδ(+)(s) changes from a fast decrease above
K̄K threshold, diverging fromδπ (s) by ∼ π (as doesφπ in a solution of Type I, seeFig. 1), to increasing above
K̄K threshold with increasings, staying close, but a bit above,δπ (s) (again, as doesφπ in a solution of Type II,
Fig. 4). The reader may compare ourFigs. 1, 4here with Fig. 2 in Ref.[7]. In Ref. [7] the M-matrix (M = K−1)
parametrization of experimental data of Protopopescu et al.[8] is also considered, and the same phenomeno
observed (Fig. 1 in Ref.[7]).

We give inFig. 5 the eigenphasesδ(+) corresponding to Type I and Type II solutions. Hereδπ , as well as the
eigenphaseδ(+), are evaluated with the K-matrix formalism, Eq.(3.1). For Type I we took the parameters(3.2);
for Type II, those in(4.7). OurFig. 5here agrees with the corresponding parts of Figs. 1, 2 in Ref.[7].
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5. The value of δπ (4m2
K)

As is obvious from the previous discussion, a key quantity in this analysis is theππ phase atK̄K threshold,
δπ (4m2

K). If this is smaller thanπ , we have a situation of Type I; if, on the contrary,δπ (4m2
K) > π , we have a

solution of Type II and, in particular, we can approximate

δS(s) � δ(+)(s) � φπ(s) � δπ (s),

as was done in Ref.[2].
It should be clear that the parametrization(3.1), (3.2) is not a good guide to find the value ofδπ (4m2

K). Not
only δπ (4m2

K) crosses 180◦ when varying the parameters in(3.2) within their errors (as we have shown befo
but, more to the point,(3.1) was devised to furnish anapproximaterepresentation ofδπ (s), η(s) in the whole
range 4M2

π to 1.92 GeV2. This may easily create local distortions; and, in fact, such distortions are expecte
inelasticity of Ref.[4] is overestimated, as proven by the more precise measurements of Ref.[5]: this will influence
the phaseδπ above 1 GeV, hence, via the parametrization, aroundK̄K threshold. Such a distortion also occurs
the evaluation of Au et al.[9], who make a fit toη andδπ , based on data of Ref.[4], over the whole energy rang
which fit leads to a value ofδπ (4m2

K) smaller than 180◦: see Fig. 4 in Ref.[9]. We certainly need something mo
precise in the vicinity of theK̄K threshold, sinceδπ (4m2

K) is so nearπ .
For this we have several possibilities: the constant K-matrix fit aroundK̄K threshold of Hyams et al.[4];

the energy-independent analysis of this same reference; the results of other experiments; or certain th
arguments. As for the first, if we take the valuesKab in (3.3), obtained from a fit to data from 0.9 GeV to 1.1 Ge
we find

(5.1)δπ

(
4m2

K

) = 205± 8◦,

3σ above 180◦. A value above 180◦ is, of course, also found if interpolating the energy-independent ana
of Ref. [4]. The data of Protopopescu et al.[8] are not sufficiently precise to discriminate whetherδπ (4m2

K)

is below or above 180◦: for some of the solutions in Ref.[8], δπ (4m2
K) is below, and for others above 180◦,

but in all cases, the errors cover the value 180◦. However, a value clearly above 180◦ is found if extrapolating
downward the experimental results of Ref.[10] (the phase shift is only measured fors1/2 > 1 GeV). This gives5

δπ (4m2
K) = 203± 7◦, including estimated systematic errors. A valueδπ (4m2

K) > 180◦ is also found in all five
solutions of Grayer et al.[11]: cf. Fig. 31 there. Finally, Kamiński et al.[11] find δπ (4m2

K) = 190± 25◦. The
experimental information thus clearly favours a valueδπ (4m2

K) > 180◦, and hence a solution of Type II.
There are two other independent, theoretical arguments in favour of a solution of Type II. The first is ba

chiral SU(3) calculations: unitarized SU(3) ch.p.t. produces central values ofδπ (4m2
K) above 190◦ (with a value

around 200◦ favoured; see, for example, Ref.[12]). Moreover, in Type II solutions, with the parameters in(4.7),
one has a real part of thēKK scattering lengthar(K̄K) � −0.46M−1

π , in agreement with the unitarized curre
algebra (ch.p.t.) result that givesar(K̄K) � −0.5M−1

π .
The second, more serious indication, is that the phaseδS(s) � φπ(s) for Type II solutions joins smoothly th

result furnished by the perturbative QCD evaluation ofδS(s), while a Type I solutionδS(s) lies clearly below. We
now turn to this.

5 For the favoured solution in Ref.[10] which, incidentally, is the one with values ofη(s) more compatible with measurements based

ππ → K̄K . For other solutionsδ (4m2 ) is even larger, except for one that yields a value near 180◦.
π K
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6. The phase δS(t) at large t from QCD

Using the evaluations in Ref.[13] it is easy to get that, to leading order in the QCD couplingαs , one has

(6.1)FS,π (t) = 4π[m2
u(ν

2) + m2
d(ν2)]CF αs(ν

2)

−3t
I,

where, neglecting quark and pion masses,

(6.2)I = 1

2

{ 1∫
0

dξ
Ψ ∗(ξ, ν2)

1− ξ

1∫
0

dη
Ψ (η, ν2)

(1− η)2
+

1∫
0

dξ
Ψ ∗(ξ, ν2)

(1− ξ)2

1∫
0

dη
Ψ (η, ν2)

1− η

}
.

Hereν2 is the renormalization point andΨ is the partonic wave function of the pion, defined by

(2π)3/2〈0|S:d̄(0)γλγ5Dµ1 · · ·Dµnu(0):∣∣π(p)
〉 = in+1pλpµ1 · · ·pµn

1∫
0

dξ ξnΨ
(
ξ, ν2).

The Dµ are covariant derivatives, andS means symmetrization. The functionΨ is the same that appears in t
evaluation of the vector form factor, and thus[13]

(6.3)Ψ
(
ξ, ν2) �

ν→∞ ξ(1− ξ)6
√

2fπ .

If we input(6.3)into (6.2)we get a divergent result. This divergence may be traced to the fact that we have ne
quark and pion masses, and may be cured by defining the form factor not for external momentap2 = p′2 = 0, but
with p2 = p′2 = t0, t0 being a fixed number; for example, we could taket0 = M2

π . Then we chooseν2 = −t (for
spaceliket) and find the asymptotic behaviour

(6.4)FS,π (t) �
t→∞

48π[m2
u(−t) + m2

d(−t)]CF f 2
παs(−t) log(−t/t0)

−t
→ C[m2

u(−t) + m2
d(−t)]f 2

π

−t

with C = 576π2CF /(33− 2nf ), andnf is the number of quark flavours, that we take equal to three.
Unfortunately, the value of the constantC is changed when higher order corrections are included. These ha

same structure as(6.4), with higher powers[αs(−t) log(−t/t0)]n which are not suppressed at larget . Therefore,
the constantC gets contributions from all orders of perturbation theory with the result that the final va
unknown. However, it is very likely that the structure[(Constant)×∑

m2
i (−t)/t] remains. This is sufficient to ge

a prediction for the asymptotic phase:

(6.5)δS(s) �
s→∞ δas.(s) = π

{
1+ 2dm

log(s/Λ2)

}
, dm = 12

33− 2nf

.

HereΛ is the QCD parameter; in our calculations here we have allowed it to vary in the range 0.1 GeV2 � Λ2 �
0.35 GeV2. δas.(s) is the phase plotted inFigs. 1, 4, 5, where it is seen very clearly that it is consistent with Typ
solutions, but not with the Type I solution of ACCGL.

7. Conclusions

There are other methods for finding directlyl̄4, of which we only mention two. One can evaluate on the lattice
dependence of the quark condensate on the quark masses[14]; or one can fit̄l4 to the experimentalππ scattering
lengths and effective range parameters obtained from experimental data[6], using ch.p.t. to one loop[15]. The
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results are summarized below, where we also repeat the results of Refs.[1–3]:

(7.1)l̄4 =




4.4± 0.2 (Refs.[1,3]),
5.4± 0.5 (Ref.[2]),
4.0± 0.6 (lattice calculation, Ref.[14]),
7.2± 0.7 (fitting a

(I)
l , b

(I)
0 , b1, Ref. [15]).

This is inconclusive; lattice calculations are known to suffer from large systematic errors, and the number fo
from the fit to experimental data is affected by higher order corrections, which the evaluation in Ref.[15] does not
take into account. We have to fall back on our previous discussion, involving the phase of the scalar form f

In this case, and as we have shown, we have two types of solution: Type I, that occurs whenδπ (4m2
K) < π ,

and Type II, whenδπ (4m2
K) > π . The correctness of a solution of Type I, which is the one used in the evalua

of DGL, ACCGL is very unlikely: the experimental indications[4,10,11]favour valuesδπ (4m2
K) > π . Moreover,

in Type I solutions one has a discontinuous phaseφπ , when the inelasticity tends to zero. Type I solutions a
exhibit a phaseφπ which is not continuous whenδπ (4m2

K) moves aroundπ . Finally, Type I solutions give a phas
δS(s) rather different from what perturbative QCD suggests, Eq.(6.5), at larges. We think that Type I solutions ar
spureous, unphysical solutions, which appear only because one tries to fit, with too simple a formula, and
enough experimental information, the whole energy range fromππ threshold to 1.9 GeV, which distorts the resu
in the region ofK̄K threshold. This last conjecture is confirmed by the evaluations of Moussallam[16]. This author
uses, like DGL, ACCGL, fits that represent the quantitiesδπ andη over the whole energy range; in particular, t
fit of Au et al. [9]. Such parametrization givesδπ (4m2

K) � 173◦, hence a Type I solution and thus, not surprising
Moussallam finds a value for〈r2

S〉 similar to that of DGL.
Although this is not very important, because the very starting point of DGL, ACCGL (a Type I solutio

unlikely to be correct, one may question the methods of error analysis of these authors. As we discussed
valueδπ (4m2

K) > 180◦ is obtained if replacingα1 → 2.28− 0.04, i.e., moving only1
2σ off the central value in the

fits of Hyams et al.[4, Eq. (3.2)]. Variation within errors of their parameters should have taken DGL, ACCGL
Type II solution and, therefore, their error for〈r2

S〉 should have comprised the value found with a Type II solut
With a complete error analysis DGL, ACCGL should have got6 〈r2

S〉 = 0.61+0.21
−0.04 fm2.

For a Type II solution, on the other hand, the value ofδπ (4m2
K) > π agrees with what experiment indicate

the phasesφπ(s), δ(+)(s) andδS(s) are continuous both ins and when the inelasticity goes to zero; and the ph
δS(s) agrees well with what perturbative QCD suggests at larges. We conclude that a situation of Type II is b
far the more likely to be correct, thus confirming the validity of the approximations in Ref.[2]; in particular, the
estimate

(7.2)
〈
r2
S

〉 = 0.75± 0.07 fm2.

A last question is whether one can improve on the evaluation in Ref.[2]. This is very unlikely, for the contribu
tion of the region 4m2

K � s � 2 GeV, Eq.(1.7). First of all, the incompatibility of the central values forη in analyses
based onππ → ππ scattering[4,10,11]with what one finds inππ → K̄K experiments[5], implies that the phas
δπ obtained fromππ → ππ scattering must be biased. And, secondly, to find the eigenphasesδ(±) and mixing
angleθ which are necessary to disentangle the form factorsFS,π , FS,K (cf. Eq.(2.6)), one requires, as discussed
detail in Ref.[7], experimental measurements of thethreereactionsππ → ππ,ππ → K̄K, K̄K → K̄K . Failing
this, we are only left with approximate evaluations, like those in Ref.[2].

6 Note that the converse is not true, in the sense that we donot have to enlarge the errors to encompass the DGL number: while it is true
theparametrization(3.1), (3.2)is compatible with both a solution of Type I and one of Type II, we have shown in Section5 that theexperimental
data point clearly toδπ (4m2

K
) > 180◦, hence a solution of Type II, that SU(3) ch.p.t. calculations also indicate a solution of Type II and, fi

in Section6, we have argued that only a solution of Type II is compatible with the asymptotic behaviour indicated by perturbative QCD
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