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Abstract

The pion scalar radius is given uyg) = (6/7) fmz ds 85(s)/s2, with 85 the phase of the scalar form factor. Beldik

threshold,sg = 8z, 8x being the isoscalar, S-waver phase shift. At high energy, > 2 Ge\Z, §g is given by perturbative
QCD. In between | argued, in a previous letter, that one can interpdlate 5, because inelasticity is small, compared
with the errors. This give$r§) = 0.75+ 0.07 fm?. Recently, Ananthanarayan, Caprini, Colangelo, Gasser and Leutwyler
(ACCGL) have claimed that this is incorrect and one should have insigads,; — =; then (r§) =0.614 0.04 fm?. Here |
show that the ACCGL phasy is pathological in that it is discontinuous for small inelasticity, does not coincide with what
perturbative QCD suggests at high energy, and only occurs because these authors take a Sga(uezfp) different from
what experiment indicates. If one uses the valueatp(r4m§() favoured by experiment, the ensuing phageds continuous,
agrees with perturbative QCD expectations, and satisfies 6, , thus confirming the correctness of my previous estimate,
(r2) =0.75+0.07 fi?.

0 2005 Elsevier B.V. Open access under CC BY license,

1. Introduction

The quadratic scalar radius of the pio}ré), is defined via the scalar form factdfs

1
Fsx() = FS,n(O){1+ é(ré)t}, (1.1)
where
(7 (p)|[muitu(0) + madd ()] |7 (p")) = (27) ~3Fs » (1); (1.2)
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the (charged) pion states are normalizedtop) |7 (p')) = 2pos(p — p’), ands = (p — p’)2. To one loop in chiral
perturbation theory (ch.p.t. )xs ) is related to the important coupling constanby

3 [~ 13
2
=——1l4——1. 1.3
<rS> 87T2f7$ { 4 12} ( )
f» =93 MeV is the decay constant of the pion.

An evaluation of(ré) was given some time ago by Donoghue, Gasser and Leutfijtewe will refer to this
paper as DGL. These authors found (we quote the improved result from the second papeflip Ref.

(r3)e =0.61£0.04 P,  I;=44£0.2. (1.4)

The error comes from experimental errors and the estimated higher order corrections.
As noted in Ref[2], one can obtain the scalar radius from the sum rule

/ ds 252 85(” (1.5)

4M2

whereds(s) is the phase ofs - (s), andM; is the charged pion mass. At low energy(s) = &, (s), wheres, (s)

is the phase shift forr 7 scattering with isospin zero in the S wave. This equality holds with good accuracy up to
the opening of the&X K threshold, ak = 4m§(; for mx we take the average kaon massg; = 496 MeV. At high
energy,s > 2 Ge\?, one can use the asymptotic estimate that perturbative QCD indicatés(for(see below)

and, between these two regions, what was considered ifRed.reasonable interpolation, vidg(s) ~ 8 (s).

One then finds,

(r§)=0.75+0.07 P,  [4=54+05. (1.6)

This is about 2 above the DGL value, Eq1.4).
The integral in(1.5)up tos = 4m§< can be evaluated in a fairly unambiguous manner, and the contribution of

the high energy region, > 2 Ge\2, although evaluated with different methods, is found similar in Ri@fs3].
The conflictive contribution is that of the intermediate region,

2 GeV
/ ds 85(2‘9). 1.7)
S

In fact, very recently Ananthanarayan, Caprini, Colangelo, Gasser and Leuf@}yltrat we will denote by AC-
CGL, have challenged the result of REf]. Their main objection is that the Fermi—Watson final state interaction
theorem doesot guarantee that, (s) andds(s) are equal, even if inelasticity is negligible; it only requires that
they differ in an integral multiple of :

85(s) ~ 87 (s) + N. (1.8)

At . threshold, botlsg and s, vanish, henceV = 0 here. Belows = 4m§(, continuity guarantees that theé
in (1.8) still vanishes, as assumed in REf]. For 17 GeV? < s < 2 Ge\? inelasticity is also compatible with
zero. However, since this is separated from the low energy region by the regipn<2/?2 < 1.2 GeV, where
inelasticity isnot negligible, one can haw¥ # 0. Actually, ACCGL conclude that

85(5) 8 (s) — 7, 1.1 GeVx 52~ 1.42 GeV. (1.9)

According to ACCGL, this brings the value ()fé) back to the DGL number ifiL.4).
The remark of ACCGL leading t(1.8)is correct. Nevertheless, we will here show that their conclugidd) is
wrong. In fact, arguments of
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(A) Continuity of 85(s) when the inelasticity goes to zero;

(B) The value experiment indicates for the quan&@;ﬂm%{);

(C) The value SU(3) ch.p.t. implies for the real part of #i& scattering length anél, (4m§(); and, finally,
(D) The matching with the phase expected from perturbative QCD at high virtuality,

all imply that the numben in (1.8) vanishes, therefore substantiating the claims of [2¢f.

It should also be noted that the error analysis of DGL and ACCGL must be incomplete. With a correct er-
ror analysis, and even starting from their assumptions, DGL and ACCGL should have obtained a vaiéb for
compatible with that in Ref2], within errors. This is also discussed below.

2. Some definitions

Since we will only consider the S wave for isospin zero, we will omit isospin and angular momentum indices.
We define a matrix for the partial wave amplitudes for the processes> nn,nm — KK(= KK — nx), and

KK — KK:
eor—1 1/ (5746
f_<f7171%7r71 fﬂﬂ—>l€K> ( ”T 3 1—7726'( +K)>
B ; 20Kk 1 .

% /1 — n2e Gx+3k) ne?’s

Jfarskk JRk—Fkk
Below K K threshold, the elasticity parametenj&) = 1; abovek K threshold one has the bounds<Q7 < 1.
We will also use a K-matrix representationfof

f=jQ i o= (4 0), 22

qq are the momentay, = /s/4— M2, g2 =/s/4— m%.

We may diagonalizé and find thesigenphases ™,

B (cota(” 0 ) C—< cosd sin@) (2.30)
9o = 0 cots™ )’ ~\—sing cos /)’ '

We will defines™ to be the eigenphase that matchgss ™ (4m2.) = 8, (4m2 ). Then,

&) T +VT2—4A sin@_{1T+s/T2—4A—2q1Kll
=D . e

(2.1)

tand

12
, T =q1K11+ q2K22,
2 +/T2 - 4A }
A = qig2detK. (2.3b)

This holds (neak K threshold) wherk11 > 0. ForK11 < 0, the(+) signs should be exchanged in the right-hand
side of the expression for tafi), and the square roots in the expression fo®siet a minus sign. Neak K
threshold, si ands)(s) vanish withg.. If inelasticity were zeros = 1) the channels would decouple and one
would haveC = 1 ands™P) =6, §(7) = §¢.

Thephaseof therw — 7w amplitude will play an important role in the subsequent discussion. We will actually
use the phase¢, defined by

{+|fnn%nn|ei¢”, 0< ¢r <,
_|f7Z7Z—>7T7T|é¢H1 7 < ¢ <21,

TAT—>TT —

Linthe present Letter we will neglect couplingofr to states other thak K, for energies below .42 GeV.
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This definition has to be adopted to agree with the standard definition of the phases($bifg purely elastic
amplitude, given byf = sinse?, so thatf = +| f|€® with the () signs as fok,, above.
Using(2.1) one gets a simple expression for the tangent,af

1-—
tang, = {1+ 2—77 (1+cots,) } tans; . (2.4)
Ui
For ease of reference, we also give here the expressions of phase shift and inelasticity in terms of the K-matrix:
q1lqz|detk+q1 K11 2
Tiigkz 0SSk
1 252 212 2.2 2
tandy =\ 2q1[K11+42K22detk] {‘11 K11 — q5K5 +q1q5(detk)” — 1 (2.5a)

+ @3RG+ a3K3, + aa3(det)2 + 12 — 4g2g3K | 5> am;

s > 4m?. (2.5b)

(1+ q1g2detk)? + (q1K11 — g2K22)?
(1— q1q2detk)2 + (g1 K11 + q2K22)%’

The connection with the scalar form factor of the pion comes about as follows. We form a Feaitbr F
and the form factor of the kaoi¥s x, and define the vectd¥ by

F
F = CTQUeF, F=(S“). (2.62)
Fs k
Then two-channel unitarity implies that
Fsx =q; "*{(cos)| F}|&*"” + (sing)| Fy| &}, .60
Fs.x = g5 "*{(cos0)| Fj|&®” — (sing)| F|&* ).

NearK K threshold or for small inelasticitgs ~ ) ~ ¢,,.

3. Thepartial wave amplitudes from the experiment of Hyamset al.

We will here follow DGL and ACCGL and take the partial wave amplitudes as measured by Hyampigt al.
although later we will also discuss other setsraf scattering data, as well as d§on 7w — K K. Hyams et al.
give three representations for their data: an energy-independent phase shift analysis that yields the values of the
phase shiff,, (s), and of the elasticity parametg¢s), from 7z threshold tas'/2 ~ 1.9 GeV; an energy-dependent
parametrization of the K-matrix that interpolates these data in the whole range; and a second parametrization with
a constant K-matrix that represents the data aratiidthreshold.

For the second, Hyams et al. write (Eq. (12a) and Table 1 in[Rpf.

Kap(s) = atqatp /(51— 5) + BaPp/ (52— 5) + Vab, (3.1)
where

57/=011+015  s/°=119+001

@1 =228+008  a;=202+0.11, B1=—-100+003  fp=047+0.05

y11=286+015  y1,=185+018  y2=100+053 (3.2)

The numbers here are in the appropriate powers of GeV.



F.J. Yndurain / Physics Letters B 612 (2005) 245-257 249

In the energy range arourdK threshold, ® GeV< s1/2 < 1.1 GeV, Hyams et al4, p. 148]find that their
data may be represented by a constant K-matrix with

K11=1.0+0.4 GeV 2, Kip=—4.4+0.3GeV?, Kop=—3.7+0.4GeV ™. (3.3)

The sign ofK12 is undefined. We have chosen(B3) a sign opposite to that of Hyams et ], to agree with
what the same authors get from the energy-dependent K-matrix; see beld{8,4qThis is somewhat different
from what(3.2) gives atK K threshold: evaluating (s) with the central values i(8.2) one finds

K11(4m%) = —0.17 GeV1, K1p(4m%) = —4.0 GeV 1, Kop(4m%) = —2.7 Gev. (3.4)

Before starting with the actual analyses it is perhaps convenient to remark that what followsxjpenment
is theenergy-independersiet of phase shifts and elasticity parameters. The energy-dependent representations are
model dependent. This is particularly true(8f1), where one makes the choice of a specific functional form; the
results vary somewhat if using other parametrizations.

4. Thephase ¢,

We will here consider the value of the phagg(s) that follows from the experimental analysis given above.
Although¢y, (s) is different from the quantitiess (s) ands‘) (s), which are the ones that intervene in the evaluation
of the scalar form factor, they follow the same pattern. This was noted by ACCGL, who disgcussdetail to
illustrate their conclusions ofig, and, indeed, it can be verified without too much trouble with the formulas of
Section2: explicitly for §*) and to first order iry, or in € for 85 (the exact result for the last requires solving two
coupled integral equations).

The advantage af,; is that it is given by the simple equati@¢®.4) in terms of the observable quantitigs, 7.

This will allow us to simplify the discussion enormously; in particular, it will let us use simple parametrizations
of 8, n aboveK K threshold, which is the region where there is disagreement between the evaluation[8f Ref.

and DGL, ACCGL. This simplification is unnecessary in the sense that the results are almost identical to what one
finds with the full K-matrix (that we will present later); but it permits us to exhibit, with great clarity, both the
mechanisms at work and the issues involved.

To calculatep,, around and abov& K threshold we take

8y (5) =7 +d(s) + s%c(s), n(s) =1 — e(s) (4.1)
and approximate, for.05 GeV< s1/2 < 1.35 GeV,

q2 M? —s
d(s) = do = const c(s) = co=const €(s) = W +er—= , M=15GeV. (4.2)
S

In the region immediately below K threshold we replacg by |g2| in (4.1).
The energy-independent set of data in Réf.are well fitted with the numbets

co=5=+1, €1=6.4+0.5, €2=—16.8+1.6, (4.3)

and we will leave the value afo (which is small) free for the moment. It will turn out that a key quantity in the
analysis is the phase shift &tK threshold (4m§(), and we want to be able to vary this.

2 We have actually followed the fit of Ref6], which takes into account other data sets and is slightly below, both fande, from what
Hyams et al. give, at the upper energy range.
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as

Fig. 1. The phases, (s) (continuous line) and (s) (dashed line) corresponding to a Type | solution. Note that, befta threshold
87 (s) = ¢ (s), henceg, (s) shows a very pronounced spike sat= 4m§(. The asymptotic phase (to be defined beldgay is represented
by the thick gray line.

4.1. The phase, of DGL, ACCGL

The authors of Refg1,3] take the K-matrix of Hyams et g{], with the central values as given (&.2). What
is important for us here is that this implies that the central valuiy (34m§<) is less than 180

8z (4m%) =175 (4.42)
To reproduce this, we have to taégin (4.2) negative and equal to

do = —0.087. (4.4b)

Care has to be exercised when crossing the engratwhichs,; (s) equalst, which, with(4.3)and(4.4b), occurs

atsy’> = 9926 MeV,

8 (s0 = (9926 MeV)?) = =,

and whereg(2.4) is singular. For the moment, we will tackle this by starting belgwand requiring continuity
of the phasep, (s) acrosssg. This we will call a solution ofType | and is like what ACCGL find; indeed, the
corresponding values &f; (s), ¢, (s), shown inFig. 1, are practically identical to those in tiég. 1in ACCGL in
the relevant region, around and abd¥& threshold. As can be seen in both figures, in the regiéh~ 1.35 GeV,
where inelasticity is negligibles; (s) andg, (s) differ by 7. 85(s) ands™*) (s) are very similar tap, (s) and thus
also differ byx from 8, (s).

This is the key remark of ACCGthe phases; (s) andé, (s), 8s(s) arenotequal abovel/? ~ 1.1 GeV, but
rather one has

85(8) =8P () ~ pr(5) =8, (s) —m, sY2>1.1GeV.

This accounts for the difference between the results of Ref3]. (DGL, ACCGL) and my previous resulfg] for
the integral(1.7), hence for the different values of the scalar radius.

The situation, however, is not as simple as ACCGL seem to believe. First of ahdlasticitygiven in Ref.[4]
is much overestimated. After that paper was written, a number of experiments have affpgiarethich the cross
sectiontmr — K K was measured. Since there are no isospin-2 waves in> K K scattering, and ther — K K
coupling is very weak for P, D waves, it follows that measurements of the differential cross section fork K
give directly 1— 52 with good accuracy. On the other hamd scattering experiments like those of Hyams ef4jl.
only measure thex — w7 cross section, so thatis obtained less precisely here: not only the cross section
depends on both,, n, but other waves (notably S2, P and DO0) interfere. Thus, these more recent, K K
based, experimental valugs for n are much more reliable than the older ones, in particular than those d#Ref.
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Fig. 2. Fit to thel =0, S-wave inelasticity and phase shift between 950 and 1400 MeV, from[&e&fo that the formula used fdéo) =68z

is slightly different from(4.1)), and data from Ref44,5,8,11] The shaded bands correspond ¢ovhriation in the parameters of the fits. The
fit to the phase shift correspondsdg = 0. The difference between the determinationg éfom =7 — =z (PY from datan the figure) and
from 7w — K K (PY alternativg is apparent here.

The value of the inelasticity the experiments in H&}. give is about ahird of what (4.3) indicates:n can be
fitted with [6]

€1=24+02, e=-55+08. (4.5)

The difference is shown graphically iig. 2

If we now use(4.5) instead of(4.3) to calculatep, (s), keepings, (s) fixed, a surprising result occurs;, (s)
doesnot become closer té,, (s) above the poinkg; on the contrary, it moves closer 8¢ — 7. In fact, one can
decrease the inelasticity to zeeds) — 0, keepings, (s) fixed and one finds that

$r(s) = 82(s), Y% <s5/°=9926 GeV,
b (s) > 82(s) — 7, 542> 5t/*=9926 GeV. (4.6)

That is to say: contrary to physical expectations, the limit of zero inelasticity does not coincide with inelasticity
zero for, if we sek(s) =0, thens, (s) and¢, (s) should be identical. This phenomenon was noticed by ACCGL
who, however, failed to attach to it the due importance. As a matter of fact, the situation is even more complicated,
as will be shown below: if we leave fixed but varydp in (4.2) across zero to a positive number, however small,
the resultingp,; is not continuous whedy crosses zero: it jumps by.

What is the reason for this peculiar behaviouggf? It is not difficult to identify: Eq(2.4) doesnot determine
¢y, but only its tangent. Thus), is only fixed up to a multipléVz. N may be set to zero below the poigtwhere
8 (s) crossesr, by requiring thatp, (4m§() =5, (4m§<) and continuity above this. However, Hg.4) shows that
tang, (s) is discontinuousvhens crossesg. Therefore, we may well add to theg, (s) of the Type | solution
found above, in the region> sg, since this does not change its tangent. We then find what we call a solution of
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I T T T T
1.0 1.1 1.2 1.3 1.4 GeV

Fig. 3. The phase$; (s) (continuous line) ang (s) (dashed line) corresponding to a solution of Type Id. The spike that appedrey ihis
now accompanied by a jump &f; (s), ats = sq.

Type ld(d for discontinuous), depicted ifig. 3. In this caseg, (s) is not continuous across, but does tentito
37 (s), for all values ofs, when the inelasticity tends to zero. It is also continuous (in the mean) faround zero.
ACCGL appear to be unaware of the existence of solutions of Type Id.

It is not clear which of the two solutions, Type | or Type Id, should be considered correct: both types look awry.
In fact, we will show that both Type | and Type Id are, with all probability, spureous solutions, artifacts due to the
use of the parametrizatidB.1), (3.2) over too wide a range, and with too little experimental information.

4.2. The correct,

We next repeat the calculations of the previous section, but we will now assum&g(hmtf() is larger thanr,
so thatd is positive To get this it is sufficient to alter a little the parameteré3dr2). For example, if we move only
one parameter bydl, just replacing in(3.2)

a1 — 2.20=2.28—0.08, 4.7

thens, (4m§<) becomes 185 Note thats, (s) is almost unchanged by this, as may be seen by comp&rgsy 1
and 4 The only important effect of the change(#.7)is to pushs, (4m§<) from a bit below to a bit above 180
but then, this is a key point, as we will see.

A value foré, (4m§<) above 180 follows also fors; =0, y11 = 3.0 (as in Ref[7]), which values are both less
than I off the central values if3.2). In fact, a values,, (4m§() > 180 can already be obtained with only%ar
change,

a1 — 2.24=2.28—-0.04.

Thus, a valué, (4m§<) > 180 is perfectly compatible with the energy-dependent parametrization of Hyams et al.,
Egs.(3.1), (3.2) when errors are taken into account.
We will use(4.7)for simplicity in the discussion and will thus repeat the calculations with

87(4m%) =185,  do=-+0.087. (4.8)

In the present case, and as is obvious f(@m®), ¢, (s) is never singular and it stayboves,; (s), up to the energy
s1/2 ~ 1.3 GeV wheres;; (s) crosses 8/2, remaining close to it afterwards.

This property is actually quite generatot tied to the specific approximatio4.2), (4.8), and depends only
on the fact tha, (s) is an increasing function of and thats,, (4m§() > r. This is all we need fop,,. To get the

3 To be precise, one should remark that this limit appliethe meanthe isolated pointg remains singular. Convergence in the mean,
however, is sufficient to ensure convergence of integrals invokging
4 |n fact, over the whole range, the difference betwggrands,; is smaller than the experimental errors of the last: compaye 2 and 4
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\ T T T \
1.0 1.1 1.2 1.3 1.4 GeV

Fig. 4. The phase$; (s) (continuous line) ang (s) (dashed line) corresponding to the solution of Type II. AFiim. 1, the thick gray line is
the asymptotic phastys .

360° 7
270° 7]
180°
90° 7 )
8" (TypeT)
1|.o 1|.1 1|.2 1|.3 GeV

Fig. 5. The phasesy (s) (continuous lines) ané(t) (s) (dashed lines) evaluated in the K-matrix formalism, @qL), with the central values of
the parameters given {3.2) (Type I) or(4.7), Type Il. (The two lines foB; correspond also t(8.2), (4.7).) The asymptotic phasks (thick
gray line) is also shown.

analogous property fa¥™*), 85 we also require that th(4m§() < 0, something that is amply satisfied with the
parameters of3.2), (3.3)or, more generally, if, as implied by SU(3) ch.p.t., one hastar 0 nearK K threshold
(see below).

A set of phases with these properties we will call a solutioygde 1l In the specific casét.8) we find the
3 (s), ¢ (s) depicted irFig. 4. Note that,; (s) andg,, (s) are near each other all the time, as one expects physically
since the inelasticity is small; this is particularly important in view of the results of[BefUnlike what happened
in solutions of Type I, or Type Id, the phagg (s) is now a smooth function both efis) and ofs.

These results are not new. They were amply discussed more than thirty years ago, in connection with the eigen-
phases®) (s), by the present author in Rg¥]. There it was noted that, by going from the values of the K-matrix
parameters irf3.2) to values like those i1t4.7), the eigenphasé&*(s) changes from a fast decrease above the
K K threshold, diverging frond,; (s) by ~ = (as doesp,, in a solution of Type |, se€ig. 1), to increasing above
K K threshold with increasing, staying close, but a bit abov&, (s) (again, as doeg, in a solution of Type I,

Fig. 4). The reader may compare ofiigs. 1, 4here with Fig. 2 in Ref[7]. In Ref.[7] the M-matrix M = K1)
parametrization of experimental data of Protopopescu ¢8fls also considered, and the same phenomenon is
observed (Fig. 1 in Ref7]).

We give inFig. 5the eigenphase¥™ corresponding to Type | and Type Il solutions. Héfe as well as the
eigenphasé ™, are evaluated with the K-matrix formalism, §§.1). For Type | we took the paramete(3.2);
for Type I, those in(4.7). OurFig. 5here agrees with the corresponding parts of Figs. 1, 2 in[Ref.
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5. Thevalue of 8 (4m?2)

As is obvious from the previous discussion, a key quantity in this analysis isthghase ak K threshold,
Ox (4m§<). If this is smaller thant, we have a situation of Type I; if, on the contrasy,(4m§() > 7, we have a
solution of Type Il and, in particular, we can approximate

85(5) =28 () 2 (5) 2 8 (s),

as was done in Ref2].

It should be clear that the parametrizatigl), (3.2) is not a good guide to find the value &;(4m§<). Not
only &, (4m§() crosses 180when varying the parameters (8.2) within their errors (as we have shown before)
but, more to the point(3.1) was devised to furnish aapproximaterepresentation oé, (s), n(s) in the whole
range AMJ% to 1.92 Ge\2. This may easily create local distortions; and, in fact, such distortions are expected. The
inelasticity of Ref[4] is overestimated, as proven by the more precise measurements [F]Riiis will influence
the phasé, above 1 GeV, hence, via the parametrization, arokitk threshold. Such a distortion also occurs in
the evaluation of Au et a[9], who make a fit to; ands,;, based on data of Rg#], over the whole energy range,
which fit leads to a value af; (4m§<) smaller than 180 see Fig. 4 in Ref[9]. We certainly need something more
precise in the vicinity of the&k K threshold, sincé,, (4m§() is so neatr.

For this we have several possibilities: the constant K-matrix fit arokikt threshold of Hyams et a[4];
the energy-independent analysis of this same reference; the results of other experiments; or certain theoretical
arguments. As for the first, if we take the valu€g, in (3.3), obtained from a fit to data from 0.9 GeV to 1.1 GeV,
we find

87 (4m%) = 205+ 8°, (5.1)

30 above 180. A value above 18Dis, of course, also found if interpolating the energy-independent analysis
of Ref. [4]. The data of Protopopescu et ] are not sufficiently precise to discriminate whetlﬂgmmf()

is below or above 180 for some of the solutions in Ref8], &, (4m§<) is below, and for others above 180

but in all cases, the errors cover the value °L8@owever, a value clearly above 18% found if extrapolating
downward the experimental results of REf0] (the phase shift is only measured 32 > 1 GeV). This give?

S (4m§<) = 203+ 7°, including estimated systematic errors. A vaﬁ*e{4m§() > 180 is also found in all five
solutions of Grayer et a[11]: cf. Fig. 31 there. Finally, Kaniski et al.[11] find 5, (4m§<) =190+ 25°. The
experimental information thus clearly favours a va&ue4m§() > 180, and hence a solution of Type IlI.

There are two other independent, theoretical arguments in favour of a solution of Type II. The first is based on
chiral SU(3) calculations: unitarized SU(3) ch.p.t. produces central valu@s(@hi) above 190 (with a value
around 200 favoured; see, for example, R¢12]). Moreover, in Type Il solutions, with the parameterg4n?),
one has a real part of th€ K scattering lengtha, (K K) ~ —O.46M7;1, in agreement with the unitarized current
algebra (ch.p.t.) result that gives(K K) ~ —0.5M 1.

The second, more serious indication, is that the pligée ~ ¢, (s) for Type Il solutions joins smoothly the
result furnished by the perturbative QCD evaluation gf), while a Type | solutiorss(s) lies clearly below. We
now turn to this.

5 For the favoured solution in Ref10] which, incidentally, is the one with values gfs) more compatible with measurements based on
nm — KK . For other solutions, (4m§() is even larger, except for one that yields a value neaf 180
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6. Thephaseds(¢) at larget from QCD

Using the evaluations in RdfL3] it is easy to get that, to leading order in the QCD couplingone has
4 i (v) +mg0)ICras (v?) |

Fsn(t)= —a , (6.1)
where, neglecting quark and pion masses,
W (E 1P / v, v 2) / v [ )
. 6.2
:/é e | T ©2

Herev? is the renormalization point andl is the partonic wave function of the pion, defined by

(27)¥2(01S:d(0) Y2 y5Dypy - - Dy (0):| 7 (p)) = 1" piprs -+~ Py / dg &"w (£,12).

The D,, are covariant derivatives, a8l means symmetrization. The functi@n is the same that appears in the
evaluation of the vector form factor, and tHuS]

w(E V7)) = EQ-56V2fr. (6.3)

If we input(6.3)into (6.2)we get a divergent result. This divergence may be traced to the fact that we have neglected
quark and pion masses, and may be cured by defining the form factor not for external mpfhenp4 = 0, but

with p2 = p’2 =1, 1o being a fixed number; for example, we could take- Mﬁ. Then we choose? = —¢ (for
spaceliker) and find the asymptotic behaviour

487 [m2(—1) +m3(—1)1Cr f2as(—1) log(—1/to) N Clm2(—t) +m3(—0)1f2
—t —r

Fg () ~ (6.4)
1—>00

with C =57672Cr /(33— 2n ), andn ;s is the number of quark flavours, that we take equal to three.

Unfortunately, the value of the constahis changed when higher order corrections are included. These have the
same structure g$.4), with higher powergo, (—¢)log(—t/19)]* which are not suppressed at langél herefore,
the constaniC gets contributions from all orders of perturbation theory with the result that the final value is
unknown. However, it is very likely that the structyi€onstant x Zmiz(—t)/t] remains. This is sufficient to get
a prediction for the asymptotic phase:

2d,, 12
log(s/A2) > ™" 33— 2n
Here A is the QCD parameter; in our calculations here we have allowed it to vary in the rah@et? < A2 <

0.35 Ge\~. 85 (s) is the phase plotted iRigs. 1, 4, Swhere it is seen very clearly that it is consistent with Type Il
solutions, but not with the Type | solution of ACCGL.

8s(s) = Bas(s) :71{1+ (6.5)

7. Conclusions

There are other methods for finding direalyof which we only mention two. One can evaluate on the lattice the
dependence of the quark condensate on the quark mdg§esr one can fif4 to the experimentat = scattering
lengths and effective range parameters obtained from experimentgbiiatsing ch.p.t. to one loofl5]. The
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results are summarized below, where we also repeat the results of RE.

44402 (Refs[L,3]),

_ | 54+05 (Ref[2)),

la=9140+06 (lattice calculation, Ref14]),
72407 (fitinga,”, by, b1, Ref.[15]).

(7.1)

This is inconclusive; lattice calculations are known to suffer from large systematic errors, and the number following
from the fit to experimental data is affected by higher order corrections, which the evaluation jh3Rebes not
take into account. We have to fall back on our previous discussion, involving the phase of the scalar form factor.

In this case, and as we have shown, we have two types of solution: Type I, that occurémﬁ) <m,
and Type Il, whers,, (4m§<) > 7. The correctness of a solution of Type |, which is the one used in the evaluations
of DGL, ACCGL is very unlikely: the experimental indicatiofs10,11]favour valuess, (4m%<) > . Moreover,
in Type | solutions one has a discontinuous phasewhen the inelasticity tends to zero. Type | solutions also
exhibit a phas@;, which is not continuous Whezh,(4m§<) moves arouner . Finally, Type | solutions give a phase
3s(s) rather different from what perturbative QCD suggests,(Edp), at larges. We think that Type | solutions are
spureous, unphysical solutions, which appear only because one tries to fit, with too simple a formula, and without
enough experimental information, the whole energy range franthreshold to 1.9 GeV, which distorts the results
in the region ofK K threshold. This last conjecture is confirmed by the evaluations of Mouss@&nThis author
uses, like DGL, ACCGL, fits that represent the quantifiegndn over the whole energy range; in particular, the
fit of Au et al.[9]. Such parametrization givég (4m§() ~ 173, hence a Type | solution and thus, not surprisingly,
Moussallam finds a value er§) similar to that of DGL.

Although this is not very important, because the very starting point of DGL, ACCGL (a Type | solution) is
unlikely to be correct, one may question the methods of error analysis of these authors. As we discussed above, &
values, (4m§() > 180 is obtained if replacing; — 2.28— 0.04, i.e., moving only%a off the central value in the
fits of Hyams et al[4, Eq. (3.2)] Variation within errors of their parameters should have taken DGL, ACCGL to a
Type Il solution and, therefore, their error fo@) should have comprised the value found with a Type Il solution.
With a complete error analysis DGL, ACCGL should have’gef) = 0.61732 fm?.

For a Type Il solution, on the other hand, the vaIueS,pMm%) > 7t agrees with what experiment indicates;
the phase® (s), 8 (s) andss(s) are continuous both in and when the inelasticity goes to zero; and the phase
3s(s) agrees well with what perturbative QCD suggests at larg#e conclude that a situation of Type Il is by
far the more likely to be correct, thus confirming the validity of the approximations in[RBefin particular, the
estimate

(r3)=0.75+0.07 . (7.2)

A last question is whether one can improve on the evaluation in[RefThis is very unlikely, for the contribu-
tion of the region Aﬁ{ <s < 2GeV, Eq(1.7). First of all, the incompatibility of the central values fpin analyses
based onrw — 7 scatterind4,10,11]with what one finds intr — K K experiment$5], implies that the phase
8, obtained fromr7 — 7w scattering must be biased. And, secondly, to find the eigenpli&Seand mixing
angled which are necessary to disentangle the form fackgrs, Fs x (cf. EQ.(2.6)), one requires, as discussed in
detail in Ref.[7], experimental measurements of theeereactionstw — nw, nm — KK, KK — K K. Failing
this, we are only left with approximate evaluations, like those in Réf.

6 Note that the converse is not true, in the sense that wtloave to enlarge the errors to encompass the DGL number: while it is true that
theparametrization(3.1), (3.2)is compatible with both a solution of Type | and one of Type Il, we have shown in Seéxtiwt theexperimental
data point clearly té, (4m§<) > 18, hence a solution of Type Il, that SU(3) ch.p.t. calculations also indicate a solution of Type Il and, finally,
in Section6, we have argued that only a solution of Type Il is compatible with the asymptotic behaviour indicated by perturbative QCD.
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