
Physics Letters B 718 (2013) 1321–1333

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

A fresh look into mc,b(mc,b) and precise f D(s),B(s) from heavy–light QCD
spectral sum rules ✩

Stephan Narison

Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugène Bataillon, 34095 – Montpellier, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 September 2012
Received in revised form 13 October 2012
Accepted 22 October 2012
Available online 26 October 2012
Editor: A. Ringwald

Keywords:
QCD spectral sum rules
Meson decay constants
Heavy quark masses

Using recent values of the QCD (non-)perturbative parameters given in Table 1 and an estimate of the
N3LO QCD perturbative contributions based on the geometric growth of the PT series, we re-use QCD
spectral sum rules (QSSR) known to N2LO PT series and including all dimension-six NP condensate
contributions in the full QCD theory, for improving the existing estimates of mc,b and f D(s),B(s) from the
open charm and beauty systems. We especially study the effects of the subtraction point on “different
QSSR data” and use (for the first time) the Renormalization Group Invariant (RGI) scale-independent
quark masses in the analysis. The estimates [rigourous model-independent upper bounds within the
SVZ framework] reported in Table 8: f D/ fπ = 1.56(5) [� 1.68(1)], f B/ fπ = 1.58(5) [� 1.80(3)] and
f Ds / f K = 1.58(4) [� 1.63(1)], f Bs / f K = 1.50(3) [� 1.61(3.5)], which improve previous QSSR estimates,
are in perfect agreement (in values and precisions) with some of the experimental data on f D,Ds and
on recent lattice simulations within dynamical quarks. These remarkable agreements confirm both the
success of the QSSR semi-approximate approach based on the OPE in terms of the quark and gluon
condensates and of the Minimal Duality Ansatz (MDA) for parametrizing the hadronic spectral function
which we have tested from the complete data of the J/ψ and Υ systems. The values of the running
quark masses mc(mc) = 1286(66) MeV and mb(mb) = 4236(69) MeV from MD,B are in good agreement
though less accurate than the ones from recent J/ψ and Υ sum rules.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction and a short historical review

The (pseudo)scalar meson decay constants f P are of prime in-
terests for understanding the realizations of chiral symmetry in
QCD. In addition to the well-known values of fπ = 130.4(2) MeV
and f K = 156.1(9) MeV [2] which control the light flavor chiral
symmetries, it is also desirable to extract the ones of the heavy–
light charm and bottom quark systems with high accuracy. These
decay constants are normalized through the matrix element:

〈
0| J P

q̄Q (x)|P
〉 = f P M2

P , (1)

where:

J P
q̄Q (x) ≡ (mq + M Q )q̄(iγ5)Q , (2)

is the local heavy–light pseudoscalar current; q ≡ d, s; Q ≡ c,b;
P ≡ D(s), B(s) and where f P is related to the leptonic width:

✩ Some results of this work have been presented at the 16th QCD International
Conference (QCD12), Montpellier, 2–6th July 2012 (Narison, 2012) [1].
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Γ
(

P+ → l+νl
) = G2

F

8π
|V Q q|2 f 2

P m2
l M P

(
1 − m2

l

M2
P

)2

, (3)

where ml is the lepton mass and |V Q q| the CKM mixing angle.
Besides some earlier attempts based on non-relativistic potential
models to extract these quantities (which are however not appli-
cable for the heavy–light systems), the first bounds on f D and f B

from QCD spectral sum rules (QSSR) [3]1 were derived by NSV2Z
[8], which have been improved four years later in [9–11]. Since
then, but long time before the lattice results, different QSSR papers
have been published in the literature for estimating f D,B .2 These
results look, at first sight, in disagreement among each others and
some of them, claimed the observation of the scaling f P ∼ 1/

√
M P

expected in the large M P limit [12]. These different papers have
been scrutinized in [6,13], where Narison found that the apparent
discrepancies between the different results can be solved if one ap-
plies carefully the stability criteria (also called sum rule window)
of the results versus the external QSSR Laplace/Moments sum rules

1 For reviews, see e.g.: [4–7].
2 For reviews and more complete references, see e.g.: [5,6].
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variables and continuum threshold tc . In this way, and for given
values of mc,b , he obtained the values:

f D � (1.31 ± 0.12) fπ , f B � (1.6 ± 0.1) fπ , (4)

which are independent of the forms of the sum rules used. How-
ever, the result has been quite surprising as it indicates a large
violation of the heavy quark symmetry scaling predictions,where
1/M Q corrections have been estimated in [14]. This “unexpected
result” has been confirmed few years later by lattice calculations
[15]. Since then, some progresses have been done for improving
the QCD expression of the 2-point correlator. It starts from a con-
firmation of the SVZ original expression of the LO perturbative
and non-perturbative contributions. Then, Broadhurst and Gener-
alis [10,16] have provided the complete PT αs NLO including light
quark mass corrections. It has been completed by the PT α2

s N2LO
corrections of Chetyrkin and Steinhauser [17] in the case of one
heavy and one massless quarks. This result has been completed by
the inclusion of the NP contributions up to dimension-six [11] and
of the light quark mass corrections to LO by [11,18]. All of these
previous QCD expressions have been given in terms of the on-shell
quark mass. In [19], Narison has used (for the first time) the run-
ning c,b quark masses in the QSSR analysis, by using its known
relation with the on-shell mass known at present to NLO [20–22],
N2LO [10,16] and N3LO [24] where it has been noticed that the
QSSR PT expressions converge faster. It has also been noticed that
the values of f D,B are very sensitive to the value of mc,b motivat-
ing him to extract mc,b (for the first time) from the known values
of MD and MB . Recent analysis, including the α2

s corrections have
been presented in the literature, in the full theory where the run-
ning MS mass has been used [25–27] and in HQET [28] where
the radiative corrections are large due to the uses of the on-shell
mass.3

In the following, we shall present analysis based on the full
QCD theory where we use as inputs the most recent values of the
(non-)perturbative QCD parameters given in Table 1. We assume
the geometric growth of the PT series [30] as a dual to the effect
of a 1/q2 term [31,32] for an estimate of the N3LO perturbative
contributions. We shall also study systematically the effect of the
substraction points on each “QSSR data” and use (for the first time)
in the analysis, the Renormalization Group Invariant (RGI) s, c,b
quark masses introduced by [33] and which are scale- and (mass-
less) scheme-independent.

2. QCD spectral sum rules (QSSR)

2.1. The Laplace sum rules (LSR)

We shall be concerned with the two-point correlator:

ψ P
q̄Q

(
q2) = i

∫
d4x eiq.x〈0|T J P

q̄Q (x) J P
q̄Q (0)†|0〉, (5)

where J q̄Q (x) is the local current defined in Eq. (2). The associated
Laplace sum rules (LSR) Lq̄Q (τ ) and its ratio Rq̄Q (τ ) read [3]4:

Lq̄Q (τ ,μ) =
tc∫

(mq+M Q )2

dt e−tτ 1

π
Im ψ P

q̄Q (t,μ), (6)

3 We plan to analyze the HQET sum rules [14,29] in a separate publication.
4 Radiative corrections to the exponential sum rules have been first derived in

[34], where it has been noticed that the PT series has the property of an Inverse
Laplace transform.
Rq̄Q (τ ,μ) =
∫ tc

(mq+M Q )2 dt t e−tτ 1
π Im ψ P

q̄Q (t,μ)∫ tc

(mq+M Q )2 dt e−tτ 1
π Im ψq̄Q (t,μ)

, (7)

where μ is the subtraction point which appears in the approxi-
mate QCD series when radiative corrections are included. The ratio
of sum rules Rq̄Q (τ ,μ) is useful, as it is equal to the resonance
mass squared, in the Minimal Duality Ansatz (MDA) parametriza-
tion of the spectral function:

1

π
Im ψ P

q̄Q (t) � f 2
P M4

P δ
(
t − M2

P

) + “QCD cont.” · θ(t − tc), (8)

where f P is the decay constant defined in Eq. (1) and the higher
states contributions are smeared by the “QCD continuum” coming
from the discontinuity of the QCD diagrams and starting from a
constant threshold tc .

2.2. The Q 2 = 0 moment sum rules (MSR)

We shall also use for the B-meson, the moments obtained af-
ter deriving (n + 1)-times the two-point function and evaluated at
Q 2 = 0 [3], where an expansion in terms of the on-shell mass Mb
can be used. They read:

M(n)

q̄b (μ) =
tc∫

(mq+Mb)2

dt

tn+2

1

π
Im ψ P

q̄b(t,μ), (9)

and the associated ratio:

R(n)

q̄b (μ) =
∫ tc

(mq+Mb)2
dt

tn+2
1
π Im ψ P

q̄b(t,μ)∫ tc

(mq+Mb)2
dt

tn+3
1
π Im ψ P

q̄b(t,μ)
. (10)

2.3. Test of the minimal duality ansatz (MDA) from J/ψ and Υ

We have checked explicitly in [6] that the MDA presented in
Eq. (8), when applied to the ρ-meson reproduces within 15% accu-
racy the ratio Rd̄d measured from the total cross-section e+e− →
I = 1 hadrons data (Fig. 5.6 of [6]). In the case of charmonium,
we have also compared M2

ψ from R(n)

c̄c with the one from com-
plete data and find a remarkable agreement for higher n � 4 values
(Fig. 9.1 of [6]), indicating that for heavy quark systems the rôle of
the QCD continuum will be smaller than in the case of light quarks
and the exponential weight or high number of derivatives sup-
presses efficiently the QCD continuum contribution but enhances
the one of the lowest ground state in the spectral integral. We
redo the test done for charmonium in Fig. 9.1 of [6] and analyze
the bottomium channel for the LSR and MSR. We show in Fig. 1(a)
the τ -behavior of the ratio of Lexp

c̄c normalized to Ldual
c̄c where we

have used the simplest QCD continuum expression for massless
quarks to order α3

s from the threshold tc
5:

QCD cont. = 1 + as + 1.5as2 − 12.07as3. (11)

We show in Fig. 1(b) the τ -behavior of Mψ , where the continuous
(oliva) curve corresponds to

√
tc � Mψ(2S) − 0.15 GeV. We show a

similar analysis for the bottomium sum rules in Fig. 2 for the LSR
and in Fig. 3 for the MSR where we have taken

√
tc � MΥ (2S) −

0.15 GeV. One can see that the MDA, with a value of
√

tc around
the value of the 1st radial excitation mass, describes quite well the
complete data in the region of τ and n where the corresponding
sum rules present τ or n stability [35]:

5 We have checked that the spectral function including complete mass corrections
give the same results.
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Fig. 1. (a) τ -behavior of the ratio of Lexp
c̄c /Ldual

c̄c for
√

tc = Mψ(2S) − 0.15 GeV. The
red dashed curve corresponds to the strict equality for all values of τ . (b) The same
as (a) but for Mψ = √

Rc̄c . (For interpretation of the references to color in this
figure, the reader is referred to the web version of this Letter.)

Fig. 2. The same as in Fig. 1 but for the b-quark and for
√

tc = MΥ (2S) − 0.15 GeV.

τψ � 1.3–1.4 GeV−2,

τΥ � 0.2–0.4 GeV−2, nΥ � 5–7, (12)

as we shall see later on. This good description of the data by the
MDA shows the efficient rôle of the exponential weight or high
Fig. 3. The same as in Fig. 2 but for the Q 2 = 0 moment of the b-quark versus the
number of derivatives n.

number of derivatives for suppressing the higher mass states and
QCD continuum contribution in the analysis. This nice feature pre-
vents the introduction of some more involved models bringing
new parameters in the analysis where some of them cannot be
understood from QCD 1st principles. Moreover, MDA has been also
used in [36] (called Minimal Hadronic Ansatz in this Letter) in the
context of large Nc QCD, where the restriction of an infinite set
of large Nc narrow states to a Minimal Hadronic Ansatz which is
needed to satisfy the leading short- and long-distance behaves o
the relevant Green’s functions, provides a very good approxima-
tion to the observables one compute.

2.4. Optimal results from stability criteria

Using the theoretical expressions of Lth
d̄Q

or M(n)th
d̄b

, and

parametrizing its experimental side Lexp
d̄Q

or M(n)exp
d̄b

by the MDA

in Eq. (8), one can extract the decay constant f P and the RGI quark
mass m̂Q . In principle the equality Lth

d̄Q
=Lexp

d̄Q
should be satisfied

for any values of the external (unphysical) set of variables (τ , tc),
if one knows exactly Lth

d̄Q
and Lexp

d̄Q
. Unlike the harmonic oscil-

lator, this is not the case. Using the ratio of moments Rd̄Q for
the harmonic oscillator as a function of the imaginary time vari-
able τ , where one knows the exact and approximate results, one
can find [37] that the exact energy E0 of the ground state can be
approached from above by the approximate series (see Fig. 4). At
the minimum or inflexion point (stability) of the curves, one has a
ground state dominance. For small time (large Q 2), all level con-
tributes, while for large time (small Q 2) the series breakdown. We
shall apply this stability criterion inspired from quantum mechan-
ics in our analysis.

In principle, the continuum threshold
√

tc in Eq. (8) is a free pa-
rameter, though one expects its value to be around the mass of the
1st radial excitation because the QCD spectral function is supposed
to smear all the higher state contributions in the spectral inte-
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Fig. 4. τ -behavior of R(τ ) normalized to the ground state energy E0 for the har-
monic oscillator. 2 and 4 indicate the number of terms in the approximate series.

gral as explicitly shown previously in Section 2.3. In order to avoid
the model-dependence on the results, Refs. [5,6,13,14,19,25] have
considered the conservative range of tc-values where one starts to
have τ - or n-stability until which one reaches a tc-stability where
the contribution of the lowest ground state to the spectral inte-
gral completely dominates. For the D and B mesons, this range is
[5,6,13,14,19,25]:

t D
c � (5.5 → 9.5) GeV2, t B

c � (33 → 45) GeV2. (13)

3. The QCD input parameters

The QCD parameters which shall appear in the following anal-
ysis will be the strange, charm and bottom quark masses ms,c,b
(we shall neglect the light quark masses q ≡ u,d), the light quark
condensate 〈q̄q〉, the gluon condensates 〈g2G2〉 ≡ 〈g2Ga

μν Gμν
a 〉 and

〈g3G3〉 ≡ 〈g3 fabc Ga
μν Gb

νρ Gc
ρμ〉, the mixed condensate 〈q̄gσ Gq〉 ≡

〈q̄gσμν(λa/2)Ga
μνq〉 = M2

0〈q̄q〉 and the four-quark condensate

ρ〈q̄q〉2, where ρ � 2 indicates the deviation from the four-quark
vacuum saturation. Their values are given in Table 1 and we shall
work with the running light quark parameters known to order α3

s
[5,6,38]. They read:

m̄q,Q (τ ) = m̂q,Q (−β1as)
−2/β1 × C(as),

〈q̄q〉(τ ) = −μ̂3
q(−β1as)

2/β1/C(as),

〈q̄gσ Gq〉(τ ) = −M2
0μ̂

3
q(−β1as)

1/3β1/C(as), (14)

where β1 = −(1/2)(11 − 2n f /3) is the first coefficient of the β

function for n f flavors; as ≡ αs(τ )/π ; m̂q,Q is the RGI quark mass,
μ̂q is spontaneous RGI light quark condensate [33]. The QCD cor-
rection factor C(as) in the previous expressions is numerically:

C(as) = 1 + 0.8951as + 1.3715a2
s + · · · , n f = 3,

= 1 + 1.1755as + 1.5008a2
s + · · · , n f = 5, (15)

which shows a good convergence. We shall use:

αs(Mτ ) = 0.325(8) 	⇒ αs(M Z ) = 0.1192(10) (16)

from τ -decays [39,40], which agree perfectly with the world aver-
age 2012 [41,42]:

αs(M Z ) = 0.1184(7). (17)

We shall also use the value of the running strange quark mass
obtained in [43]6 given in Table 1. The value of the running

6 This value agrees and improves previous sum rules results [44].
Table 1
QCD input parameters.

Parameters Values Ref.

αs(Mτ ) 0.325(8) [39–41]

ms(2) 96.1(4.8) MeV average [43]

mc(mc) 1261(12) MeV average [35]

mb(mb) 4177(11) MeV average [35]
1
2 〈ūu + d̄d〉1/3(2) −(275.7 ± 6.6) MeV [5,43]

〈s̄s〉/〈d̄d〉 0.74(3) [5,43,47]

M2
0 (0.8 ± 0.2) GeV2 [48–50]

〈αs G2〉 (7 ± 1) × 10−2 GeV4 [35,37,39,51–56]

〈g3G3〉 (8.2 ± 1.0) GeV2 × 〈αs G2〉 [35]

ρ〈q̄q〉2 (4.5 ± 0.3) × 10−4 GeV6 [39,48,51]

〈q̄q〉 condensate is deduced from the value of (mu + md)(2) =
(7.9 ± 0.6) MeV obtained in [43] and the well-known GMOR re-
lation: (mu + md)〈ūu + d̄d〉 = −m2

π f 2
π . The values of the running

MS mass mQ (M Q ) recently obtained in Ref. [35] from charmo-
nium and bottomium sum rules, will also be used.7 Their average
is given in Table 1. From which, we deduce the RGI invariant heavy
quark masses to order α2

s , in units of MeV:

m̂c = 1467(14), m̂b = 7292(14). (18)

For the light quarks, we shall use the value of the RGI mass and
spontaneous mass to order αs for consistency with the known αs

ms and 〈q̄q〉 condensate corrections of the two-point correlator.
They read, in units of MeV:

m̂s = 128(7), μ̂q = 251(6). (19)

4. QCD expressions of the sum rules

4.1. The LSR

To order α2
s , the QCD theoretical side of the sum rule reads, in

terms of the on-shell heavy quark mass M Q and for md = 0:

Ld̄Q (τ ) = M2
Q

∞∫

M2
Q

dt e−tτ 1

π
Im ψ P

q̄Q (t)

∣∣∣∣
P T

+ 〈αsG2〉
12π

e−z

−
{[

1 + 2as

[
1 + (1 − z)

(
lnν2τ + 4

3

)]]
e−z

− 2asΓ (0, z)

}(
mQ

M Q

)2

mQ 〈d̄d〉

− τe−z
{

z

2

(
1 − z

2

)
M Q M2

0〈d̄d〉

+
(

2 − z

2
− z2

6

) 〈d̄ jd〉
6

−
(

1 + z − 7z2 + 5

3
z3

) 〈
g3G3

〉
2880π2

+
[

5L̃
(
12 − 3z − z2)z − 9 + 11z + 41

2
z2

+ 5

2
z3

] 〈 j2〉
2160π2

}
, (20)

where:

7 These values agree and improve previous sum rules results [3–6,45,46].
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Im ψ P
q̄Q (t)

∣∣
P T = 1

8π2

[
3t(1 − x)2

(
1 + 4

3
as f (x)

)
+ a2

s R2s

]
(21)

with: z ≡ M2
Q τ ; x ≡ M2

Q /t; as ≡ αs/π ; L̃ ≡ ln (μM Q τ ) + γE :
γE = 0.577215 . . . ; μ is an arbitrary subtraction point; R2s is the
α2

s -term obtained semi-analytically in [17] and is available as a
Mathematica package program Rvs.m. Neglecting md , the PT NLO
terms read [10]:

f (x) = 9

4
+ 2 Li2(x) + log x log(1 − x)

− 3

2
log(1/x − 1) − log(1 − x)

+ x log(1/x − 1) − (
x/(1 − x)

)
log x. (22)

The contribution up to the d = 4 gluon condensate and up to d = 6
quark condensates have been obtained originally by NSV2Z [8]. The
contribution of the d = 6 〈g3 fabc G3〉 and 〈 j2〉 gluon condensates
have been deduced from the expressions given by [11] (Eqs. II.4.28
and Table II.8) where:

〈d̄ jd〉 ≡
〈
d̄gγμDμGμν

λa

2
d

〉
= g2

〈
d̄γμ

λa

2
d
∑

q

q̄γμ
λa

2
q

〉

� −16

9
(παs)ρ〈d̄d〉2,

〈
j2〉 ≡ g2〈(DμGa

νμ

)2〉 = g4
〈(∑

q

q̄γν
λa

2
q

)2〉

� −64

3
(παs)

2ρ〈d̄d〉2, (23)

after the use of the equation of motion. ρ � (2±0.2) measures the
deviation from the vacuum saturation estimate of the d = 6 quark
condensates [39,48,51].

The αs correction to 〈d̄d〉, in the MS-scheme, comes from [26],
where the running heavy quark mass mQ enters into this expres-
sion. Using the known relation between the running m̄Q (μ) and
on-shell mass M Q in the MS-scheme to order α2

s [20–24]:

M Q = mQ (μ)

[
1 + 4

3
as + (16.2163 − 1.0414nl)a

2
s

+ ln

(
μ

M Q

)2(
as + (8.8472 − 0.3611nl)a

2
s

)

+ ln2
(

μ

M Q

)2

(1.7917 − 0.0833nl)a
2
s + · · ·

]
, (24)

for nl light flavors, one can express all terms of the previous sum
rules with the running mass mQ (μ). It is clear that, for some
non-perturbative terms which are known to leading order of per-
turbation theory, one can use either the running or the pole mass.
However, we shall see that this distinction does not affect, in a vis-
ible way, the present result, within the accuracy of our estimate, as
the non-perturbative contributions are relatively small though vital
in the analysis.

4.2. The MSR

The moments read for md = 0:

M(n)

d̄b
=

tc∫

M2

dt

tn+2

1

π
Im ψ B

d̄b
(t)

∣∣∣∣
P T
b

Fig. 5. (a) τ -behavior of f D from Ld̄c for different values of tc , for a given value
of the subtraction point μ = τ−1/2 and for m̂c = 1467 MeV as given in Eq. (18);
(b) the same as (a) but for MD from Rd̄c .

+ 1

(M2
b)n+1

{
−Mb〈d̄d〉 + 〈αsG2〉

12π

+ (n + 1)(n + 2)
1

4Mb
M2

0〈d̄d〉

− (n + 1)(n + 2)(n + 9)
1

M2
b

〈d̄ jd〉
36

− (n + 3)
(
5n2 + 9n + 1

) 1

3M2
b

〈g3G3〉
2880π2

−
{

1

3

(
20n3 + 186n2 + 337n + 117

)

− 5(n + 2)

[
S4

(
n2 + 7n + 12

) + 3S3(n + 3) − 12S2

− (
n2 + 10n + 9

)
ln

(
Mb

μ

)]}
1

M2
b

〈 j2〉
2160π2

}
, (25)

where:

S p ≡
n∑

i=0

1

i + p
. (26)

5. Estimates of f P and m̂ Q at μ = τ−1/2 from LSR

After inspection, one finds that f P and the RGI mass m̂Q

can only be simultaneously determined from Ld̄Q (τ ,μ) and

Rd̄Q (τ ,μ) evaluated at μ = τ−1/2. For other values of μ, only

Ld̄c(τ ,μ) present τ stability at reasonable values of τ � 1.2 GeV−2,
which is not Rd̄c(τ ,μ). This particular value of μ = τ−1/2 is also
interesting because the subtraction scale moves with the sum rule
variable τ in the analysis.

5.1. Analysis of the τ -and tc-stabilities of Ld̄c and Rd̄c

Using the central values of the QCD input parameters in Table 1
and in Eqs. (16), (18) and (19), one can show in Fig. 5 the influ-
ences of τ and tc on the value of f D and MD for a given value of
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the subtraction point μ = τ−1/2, where, the τ -stability for f D is
reached for:

τ D
0 � (0.8∼1.2) GeV−2, t D

c � (5.3 → 6.5) GeV2. (27)

When extracting the RGI mass m̂c from Rd̄c by requiring that it
reproduces the experimental mass squared M2

D , one can notice in
Fig. 5 that, unlike f D , MD present τ -stability for larger range of
tc-values:

t D
c � (5.3 → 9.5) GeV2. (28)

The existence of τ -stability at values of tc below 5.3 GeV2 depends
on the heavy quark mass value and disappears when we require
the sum rule to reproduce the value of MD , such that we shall not
consider a such region. The values of tc � (6.5 ∼ 9.5) GeV2 given in
Eqs. (27) and (28) correspond the beginning of tc stability, where
at the extremal values τ � (1.2 ∼ 1.3) GeV−2, optimal results for
f D , MD can be extracted (principle of minimal sensitivity on exter-
nal variable) and where there is a balance between the continuum
(left) and non-perturbative (right) contributions (see also similar
cases of the harmonic oscillator in Fig. 4 and of the Laplace sum
rules for charmonium and bottomium in [35,37]). Like in earlier
versions of this work [13,14,19,25], we consider this large range of
tc-values in the aim to extract the most conservative result from
the analysis and to avoid, in the same way, any (ad hoc) exter-
nal input for fixing the exact value of tc . This procedure implies
a larger error in our result than often quoted in the literature
where (to my personal opinion) the systematics have been under-
estimated. A similar procedure will be done in the following and
for the B-meson channel.

5.2. Analysis of the convergence of the QCD series

We study the convergence of the QCD series in the case of
the charm quark at a such low value of the subtraction point
μ = τ−1/2 and taking tc = 6 GeV2. We work in the MS-scheme
as we know from previous works [19] that the PT series converge
better than using the on-shell subtraction. In so doing, we estimate
the α3

s N3LO contribution using a geometric PT series as advo-
cated in [30] which is dual to the effect of the 1/q2 term when
large order PT series are resummed. We show the τ -behavior of
f D in Fig. 6. One can notice that, all corrections act in a positive
way. The prediction increases by about 17% from LO to NLO and
another 14% from NLO to N2LO but remains unaffected by the in-
clusion of the N3LO contribution estimated above. These features
indicate that the PT series converge quite well at this low scale,
while the size of each PT corrections are reasonably small and will
be even smaller for higher values of the subtraction point μ and
for the B-meson. Therefore, a confirmation of this N3LO estimate
requires an explicit evaluation of this contribution.

As far as the non-perturbative contributions are concerned,
their effects are relatively small.

5.3. QCD and systematic error estimates

Using the previous QCD input parameters and their correspond-
ing errors, we deduce the different errors on f P and m̂Q given in
Table 2, where the optimal results have been taken at the τ - and
tc-stability regions mentioned in the previous subsection:

τ D � 0.8–1.3 GeV−2, t D
c � (5.3 → 6.5–9.5) GeV2. (29)

As mentioned earlier, we consider a such large range of tc-values
in the aim to extract the most conservative result from the analy-
sis. However, this procedure induces a larger error in the analysis
Fig. 6. τ -behavior of f D from LSR for t D
c = 6 GeV2, for m̂c = 1467 MeV, for a given

value of the subtraction point μ = τ−1/2 GeV and for different truncations of the
QCD PT series, where the estimated N3LO contribution is small indicating a good
convergence of the series; (b) the same as (a) but for MB .

than the one quoted in the literature using some other models or
using some other criteria. In fact, the range of values of our result
includes most of the predictions given in the literature which are
often quoted with smaller errors. Therefore, we expect that, within
this procedure, we take properly into account most of the system-
atics of the sum rule approach.

In so doing, we take the central value of f D in Table 2 as com-
ing from an arithmetic average of its values from the different tc

given in the legend of Fig. 5 inside the range given by Eq. (27). We
may have improved the accuracy of our predictions by introduc-
ing more model-dependent new parameters for parametrizing the
continuum contribution, which we would not do as, in addition to
the test performed in Section 2.3, we also want to check the de-
gree of accuracy of the MDA parametrization for the heavy–light
systems by confronting the results obtained in this Letter with
the some known data on f P or from lattice simulations. Indeed,
such tests are important as the MDA model is widely used in the
literature for predicting some not yet measured masses of new ex-
otic hadrons like four-quark, molecules [57] and hybrid [58] states.
However, we do not also try to fix more precisely tc by e.g. using
Finite Energy Sum Rule [53] like did the authors in Ref. [59] as we
want to have more conservative results.

5.4. Results for f D and m̂c

Considering the common range of tc-values for f D and MD

given in Eq. (27), we obtain the results quoted in Table 2 which
come from an arithmetic average of optimal values obtained at dif-
ferent tc values in Eq. (27)8:

f D = 204(11) MeV,

m̂c = 1490(77) 	⇒ mc(mc) = 1286(66) MeV, (30)

which we consider as improvement of the result obtained from the
same sum rule and at the same subtraction point by [19]9:

8 Using the larger range of tc -values, we would have obtained a slightly different
value: m̂c � 1492(102)tc (82)qcd MeV, where the errors come respectively from the
choice of tc and QCD parameters given in details in Table 2.

9 An extended discussion about the value of f D at different subtraction points
will be done in the next section.
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Table 2
Central values and corresponding errors for f P and m̂Q in units of MeV from the LSR at the subtraction point μ = τ−1/2. We have used m̂Q in Eq. (18) for getting f P . The
+ (resp. −) sign means that the values of f P , m̂Q increase (resp. decrease) when the input increases (resp. decreases). The relative change of sign from c to b in some errors
is due to the effects of τm2

Q appearing the OPE. Notice that the error in 〈G2〉 also affects the 〈G3〉 contribution. The total error comes from a quadratic sum.

Value tc αs α3
s mQ 〈d̄d〉 〈G2〉 M2

0 〈d̄d〉2 〈G3〉 Total

f D 204 +4 −9 +3 −2 +3.5 +0.5 −0.5 −0.01 +0.03 11
f B 201 +7 −10 +1 −2 +1.9 +0.05 −0.25 −0.00 +0.00 13

m̂c 1457 −44 −64 −24 0 +22 +5 −38 +1.5 −0.8 93
m̂b 7272 −150 −114 −14 0 +20 +5 −39 −13 −14 195
Fig. 7. (a) τ -behavior of f B from Ld̄b for different values of tc , for a given value
of the subtraction point μ = τ−1/2 and for m̂b = 7292 MeV as given in Eq. (18);
(b) the same as (a) but for MB from Rd̄b .

f D = 205(20) MeV, mc(mc) = 1100(40) MeV. (31)

The smaller errors in the present analysis, come from more precise
input parameters, more complete NP-corrections included into the
OPE and more constrained range of tc-values.The value obtained in
Eq. (30) also agrees within errors with the accurate determination
from charmonium systems quoted in Table 1 though less accurate.
The main sources of errors from the present determination can
be found in Table 2. One can notice that the contributions of the
d = 6 condensates are negligible for f D (less than 0.3 MeV) and
small for mc (〈d̄d〉2 and 〈G3〉 which contribute respectively to 17
and 6 MeV).

5.5. Extension of the analysis to f B and m̂b

We extend the previous analysis to the case of the b-quark. We
show in Fig. 7 the τ -behaves of f B and MB for different values of
tc . One can see, that in this channel, τ -stability for f B is reached
at 10:

τ B
0 � (0.2 ∼ 0.26) GeV−2, t B

c � (33 → 35) GeV2, (32)

10 The apparent minima at τ � 0.1 GeV2 obtained for lower values of tc corre-
sponds to the region where the continuum contribution to the spectral integral is
dominant and should not be considered.
Fig. 8. τ -behavior of f B from LSR for t B
c = 33 GeV2, for m̂b = 7292 MeV, for a given

value of the subtraction point μ = τ−1/2 GeV and for different truncations of the
QCD PT series; (b) the same as (a) but for MB .

while, like in the case of MD , MB stabilizes for a larger range of
values11:

t B
c � (33 → 45) GeV2. (33)

We show in Fig. 8 the predicted values of f B and MB for a given
value of m̂b and for different truncations of the PT QCD series.
Using the same procedure as in the charm quark case and consid-
ering the range of tc in Eq. (32), where the central values of f B

and m̂b , in units of MeV in Table 2 comes from an arithmetic av-
erage of different optimal values in the range of tc in Eq. (32), we
deduce the estimate in units of MeV:

f B = 201(13),

m̂b = 7272(195) 	⇒ mb(mb) = 4164(112), (34)

which we again consider as improvement of the result from [19]:

f B = 203(23) MeV, mb(mb) = 4050(60) MeV, (35)

obtained from the same sum rule.

6. Effects of the subtraction point on f D,B from LSR

The choice of subtraction points is also one large source of er-
rors and discrepancies in the existing literature. In order to cure
these weak points, we extract the values of f D,B and the corre-
sponding errors at a given value of the subtraction point μ. We

11 Like in the case of the charm quark, we shall not consider values of tc �
32.5 GeV2 where the τ -stability disappears, when one requires the sum rule to
reproduce MB .
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Fig. 9. (a) τ -behavior of f D from LSR for different values of tc , for a given value of
the subtraction point μ = 1.4 GeV and for m̂c = 1467 MeV; (b) the same as (a) but
for f B , using μ = 3 GeV and m̂b = 7292 MeV.

show in Fig. 9 the τ -behavior of f D,B for given values of μ and
m̂c,b . We show in Tables 3 and 4, the results of the analysis in-
cluding the different sources of the errors, where the typical sizes
normalized to the values of f D,B are:

– f D : (7–8)% from tc , (0.7–2)% from the PT contributions, 0.5%
from mc and (0.9–1.6)% from the NP-contributions.

– f B are: (2–4)% from tc , 4% from the PT contributions, 4% from
mb and (0.8–1.5)% from the NP-contributions.

We show in Figs. 10 and 14, the set of “QSSR data points” obtained
in this way for different values of μ.
Fig. 10. Values of f D from LSR at different values of the subtraction point μ and
for m̂c = 1467 MeV. The filled (grey) region is the average with the corresponding
averaged errors. The dashed horizontal lines are the values if one takes the errors
from the best determination.

6.1. Final results for f D and f B from LSR

Using the fact that the “physical observable” is independent of
μ, we average (fit horizontally) the different data points of f D

from LSR in Tables 2 and 3 and Fig. 10 (red triangle). The aver-
age is represented by the horizontal band in Fig. 10. The narrower
(grey) domain corresponds to the resulting averaged error, while
the larger one corresponds to the case where the error from the
most precise determination has been taken. A similar analysis for
f B from LSR has been done using the data in Tables 2 and 4 and
Fig. 14. We deduce from this analysis, the final results:

f D = 204(6) MeV ≡ 1.56(5) fπ ,

f B |LSR = 207(8) MeV ≡ 1.59(6) fπ , (36)

where the quoted errors are the averaged errors. The previous er-
rors are multiplied by about 1.8 for f D and 1.65 for f B if one keeps
the errors from the most precise determinations.
Table 3
Central values and corresponding errors for f D in units of MeV from the LSR at different values of the subtraction point μ in units of MeV and for m̂c = 1467 MeV. The +
(resp. −) sign means that the values of f D increase (resp. decrease) when the input increases (resp. decreases). The total error comes from a quadratic sum.

μ f D tc αs α3
s mc 〈d̄d〉 〈G2〉 M2

0 〈d̄d〉2 〈G3〉 Total

1.4 204 +14 −1.3 +4 −1 +3 +1 +0.6 +0.6 +0.6 15.0
1.8 204 +16 −1.2 +2.7 −0.9 +2.3 +0.3 +0.4 0.0 0.0 16.5
2.2 203 +16 −1.0 +2.2 −0.7 +2.1 +0.3 +0.3 0.0 0.0 16.3
2.6 203 +16 −1.1 +1.5 −1.1 +1.6 +0.3 0.0 −0.6 −0.5 16.2
3.0 201 +17 −0.8 +1.2 −0.8 +1.6 +0.3 +0.1 −0.5 −0.5 17.2

Table 4
Central values and corresponding errors for f B in units of MeV from the LSR and MSR at different values of the subtraction point μ in units of GeV for m̂b = 7292 MeV. The
+ (resp. −) sign means that the values of f B increase (resp. decrease) when the input increases (resp. decreases). The total error comes from a quadratic sum.

μ f B tc αs α3
s mb 〈d̄d〉 〈G2〉 M2

0 〈d̄d〉2 〈G3〉 Total

LSR
3 196 +22 −8.0 −1.6 −1.1 +1.9 +0.1 +0.4 0.0 0.0 23.6
4 210 +23 −7.6 −0.3 −1.2 +1.7 +0.1 −0.2 0.0 0.0 24.3
5 213 +24 −7.6 +0.4 −1.2 +1.5 +0.1 0.0 0.0 0.0 25.3
6 217 +24 −7.3 +0.1 −1.2 +1.6 +0.1 0.0 0.0 0.0 25.2
7 218 +21 −7.1 +0.5 −1.0 +1.5 +0.1 0.0 0.0 0.0 22.3

MSR
3 183 +7 −16 0 −2.5 +2 0 −5 0 0 18.4
4 199 +10 −22 0 −3 +3 0 −9 0 0 26.1
5 216 +11 −19 +1 −3 +4 0 −13 0 0 26.0
6 227 +17 −21 0 −4 +3 0 −17 0 0 32.3
7 235 +20 −21 +0.5 −3 +4 0 −20 0 0 35.6
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Fig. 11. τ behavior of MB from LSR for different values of tc , for m̂b = 7292 MeV
and at the subtraction point μ = Mb .

6.2. Final value of m̂b from LSR

In addition to the sum rule Rd̄b subtracted at μ = τ−1/2, we
also notice that the sum rule Rd̄b subtracted at μ = Mb , where
the log (μ/Mb)-term disappears in the QCD expression, presents
τ -stability [see Fig. 11] and can then provide another estimate of
m̂b . The result is given in Table 5. Taking the average of this result
with the previous one in Table 2, we deduce in units of MeV:

m̂b|LSR = 7326(178) 	⇒ mb(mb)|LSR = 4195(102), (37)

7. Q 2 = 0 moment sum rules (MSR) for the B meson

7.1. Convergence of the PT series

We show in Fig. 12 the n-behaves of f B and MB for different
values of tc , where one can realize a good convergence when the
N3LO term is included.The convergence of the PT series is compa-
rable with the one of LSR shown in Fig. 8.

7.2. Optimal values of f B and m̂b from MSR

Using a similar procedure as for the LSR, we study, in the case
of MSR, the n-and tc-stabilities of f B and m̂b for different values of
the subtraction point μ. The analysis is illustrated in Fig. 13. The
results are shown in Tables 4 and 5. One can notice that the sum
rule does not stabilize for μ < 2 GeV, while for other values of μ,
the range of values tc at which the n-stability is reached depends
on the value of the subtraction point μ and are inside the range
32–42 GeV2. We show the results in Table 4 an in Fig. 14 from
which we deduce the result from the moments in units of MeV:

f B |MSR = 203(11),

m̂b|MSR = 7460(164) 	⇒ mb(mb)|MSR = 4272(94). (38)
Fig. 12. (a) n-behavior of f B from MSR for t B
c = 32 GeV2, for m̂b = 7292 MeV, for a

given value of the subtraction point μ = 4 GeV and for different truncations of the
QCD PT series; (b) the same as (a) but for MB .

Fig. 13. (a) n behavior of f B from MSR for different values of tc , for m̂b = 7292 MeV
and at the subtraction point μ = 4 GeV; (b) the same as (a) but for MB .

8. Final values of f D , f B and m̂c,b

As a final result of the present analysis, we take the average of
the results from LSR for f D and m̂c . This result is given in Eq. (30).
Table 5
Central values and corresponding errors for m̂b in units of MeV from LSR and MSR at different values of the subtraction point μ in units of GeV. The + (resp. −) sign means
that the values of m̂b increase (resp. decrease) when the input increases (resp. decreases). The total error comes from a quadratic sum.

μ m̂b tc αs α3
s 〈d̄d〉 〈G2〉 M2

0 〈d̄d〉2 〈G3〉 Total

LSR
Mb 7586 −419 −95 −4 +7 +2 −26 0 0 431

MSR
3 7188 −295 −110 −6 +6 +1 −174 +5 −0.5 360
4 7360 −301 −102 −6 +5 +1 −178 +4 −1 365
5 7490 −306 −99 −4 +8 +1 −179 +5 0 368
6 7598 −310 −99 −4 +9 +1 −179 +5 0 372
7 7686 −312 −97 −4 +9 +1 −180 +4 −1 374
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Fig. 14. Values of f B from LSR (red triangle) and from MSR (blue open circle) at dif-
ferent values of the subtraction point μ and for m̂b = 7292 MeV. The filled (grey)
region is the average with the corresponding averaged errors. The dashed horizontal
lines are the values if one takes the errors from the best determination. (For inter-
pretation of the references to color in this figure, the reader is referred to the web
version of this Letter.)

The final results for f B and m̂b come from the average of the ones
from LSR and MSR shown in Figs. 14 and 15, which are:

f B = 206(7) MeV ≡ 1.58(5) fπ ,

m̂b = 7398(121) 	⇒ mb(mb) = 4236(69) MeV, (39)

where we have used the more precise value of mb(mb) given in
Table 1 for getting f B . One can notice that f D � f B , confirming
previous results quoted in Eq. (4). This (almost) equality instead of
the 1/

√
mb behavior expected from HQET has been qualitatively

interpreted in [60] using semi-local duality, while in [14] large
mass corrections to the HQET lowest order expression have been
found. These results are also confirmed by recent lattice calcula-
tions (see Table 8).

9. SU(3) breaking and estimates of f Ds and f Bs

We extend the previous analysis for extracting f Ds,Bs by in-
cluding the ms-corrections and by taking into account the SU(3)

breaking of the quark condensate 〈s̄s〉/〈d̄d〉 given in Table 1.

9.1. f Ds from LSR

In so doing, we use the complete PT expression in ms of
the QCD spectral function given to order αs by [10]. The mass-
less expressions for N2LO and N3LO have been used. The non-
perturbative contributions come from the expressions given by [11,
18,26] where we have taken into account corrections of O(m2

s ) for
the d = 4 condensates contributions while we have neglected the
ms corrections for the d = 6 condensates. We show in Fig. 16 the
τ -behavior of f Ds for different values of tc at given μ = 1.4 GeV.
The results for different values of μ are given in Table 6 and
Fig. 17.
Fig. 15. Values of m̂b from LSR (red triangle) and from MSR (blue open circle) at
different values of the subtraction point μ. Same caption as in Fig. 14. (For inter-
pretation of the references to color in this figure, the reader is referred to the web
version of this Letter.)

Fig. 16. τ -behavior of f Ds from Ld̄c for different values of tc , for a given value of
the subtraction point μ = 1.4 GeV and for m̂c = 1467 MeV as given in Eq. (18).

Fig. 17. Values of f Ds from LSR at different values of the subtraction point μ and for
m̂c = 1467 MeV. The filled (dark blue) region is the average with the corresponding
averaged errors. The horizontal lines are the values if one takes the errors from the
best determination. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this Letter.)

9.2. f Bs from LSR and MSR

In this case, we only use the PT expression to order αs of the
QCD spectral function expanded up to order m2

s which is given by
Table 6
Central values and corresponding errors for f Ds from the LSR at different values of the subtraction point μ and for m̂c = 1467 MeV. The + (resp. −) sign means that the
values of f P , m̂c increase (resp. decrease) when the input increases (resp. decreases). The total error comes from a quadratic sum.

μ f Ds tc αs α3
s mc 〈d̄d〉 〈G2〉 M2

0 ms 〈s̄s〉 Total

τ−1/2 264 +8.2 +2.8 +3.2 +0.2 +0.8 +0.2 +0.3 +1.2 +0.5 9.4
1.4 247 +15 +1.0 +4.6 +0.4 +1.5 +0.7 +0.9 +1.7 +1.2 16
1.8 236 +15 +1.1 +3.3 +1.1 +1.0 +0.0 +0.3 +1.1 +0.5 15.5
2.2 232 +16.5 +1.2 +3.5 +1.1 +2.0 +1.4 +1.5 +2.2 +1.7 17.5
2.6 229 +17.6 +0.3 +1.8 +0.1 +1.2 +0.2 +0.5 +1.1 +0.7 18
3.0 226 +18.4 +1.2 +1.6 +0.2 +0.7 +0.1 +0.2 +1.0 +0.4 18.6
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Fig. 18. Values of f Bs from LSR (red triangle) and from MSR (blue open circle) at
different values of the subtraction point μ and for m̂b = 7292 MeV. Same caption
as in Fig. 17. (For interpretation of the references to color in this figure, the reader
is referred to the web version of this Letter.)

[26]. The non-perturbative contributions are the same as in the
case of f Ds . We show in Fig. 19 the τ -behavior and n-behavior
of f Bs from LSR and MSR for different values of tc at given μ =
4 GeV. The results for different values of μ are given in Table 7
and Fig. 18.

9.3. Results for f Ds and f Bs

From the previous analysis, we deduce:

f Ds = 246(6) MeV ≡ 1.59(5) f K ,

f Bs = 234(5) MeV ≡ 1.51(4) f K (40)

which, with the help of the results in Eqs. (36) and (39) lead to:

f Ds

f D
= 1.21(4),

f Bs

f B
= 1.14(3). (41)

These results agree within the errors with the ones obtained by us-
ing the semi-analytic expressions of the correlator to order αs [61]:

f Ds

f D
= 1.15(4),

f Bs

f B
= 1.16(5), (42)

with data when available [2,62] and with recent lattice simulations
(see Table 8).

10. Rigorous model-independent upper bounds on f D(s),B(s)

Upper bounds on f D has been originally derived by NSV2Z [8]
and improved four years later in [9–11] and more recently in [27].
Fig. 19. (a) τ behavior of f Bs from LSR for different values of tc , for m̂b = 7292 MeV
and at the subtraction point μ = 4 GeV; (b) the same as (a) but n behavior of f Bs

from MSR.

In this Letter, we shall use LSR and the positivity of the contin-
uum contributions to the spectral integral for obtaining the upper
bounds on the decay constants. The procedure will be similar to
the estimate done in previous sections where the optimal bound
will be obtained at the minimum or inflexion point of the sum
rules. In the D and Ds-meson channels, the LSR present a mini-
mum which is well localized, while in the B and Bs channels, the
LSR present instead an inflexion point which induces a new error
for its localization, in addition to the errors induced by the QCD
parameters which are the same as in the estimate of f D,B done in
the previous sections. We show the results of the analysis for dif-
ferent values of the subtraction points in Fig. 20 from which we
deduce the final results:

f D � 218.4(1.4) MeV ≡ 1.68(1) fπ ,

f B � 235.3(3.8) MeV ≡ 1.80(3) fπ (43)

and:

f Ds � 253.7(1.5) MeV ≡ 1.61(1) f K ,

f Bs � 251.3(5.5) MeV ≡ 1.61(4) f K . (44)

These bounds are stronger than earlier results in [9–11], while the
results for f D,Ds agree (within the large errors quoted there) with
Table 7
Central values and corresponding errors for f B in units of MeV from the LSR and MSR at different values of the subtraction point μ in units of MeV for m̂b = 7292 MeV. The
+ (resp. −) sign means that the values of f B increase (resp. decrease) when the input increases (resp. decreases). The total error comes from a quadratic sum.

μ f Bs tc αs α3
s mb 〈d̄d〉 〈G2〉 M2

0 ms 〈s̄s〉 Total

LSR
τ−1/2 225 +18 −1.9 +3.5 −1.3 +1.4 +0.1 −0.4 +0.4 +0.7 19
3 226 +17 −8.5 +1.1 −1.3 +1.1 +0.0 −0.1 +0.5 +0.6 19
4 230 +10 −8 +0.8 −1.3 +1.1 +0.0 0.0 +0.5 +2.9 13
5 232 +11 −8.3 +0.7 −1.9 +1.2 −0.3 −0.5 +0.3 +2.5 14
6 230 +16 −10.9 +0.8 −0.9 +0.6 −0.2 −0.4 +0.4 +2.5 20
7 234 +16 −10.6 +0.7 −1.2 +1.2 +0.1 −0.3 +0.4 +2.7 20

MSR
3 224 +8.0 −14 +0.4 −2.0 +1.4 −0.2 −1.1 +1.0 +1.0 16
4 235 +13 −10.6 +1.0 −2.1 +1.3 −0.1 −0.7 +1.0 +1.2 17
5 240 +12.4 −19.2 +1.1 −1.8 +1.2 0.0 −0.3 +1.1 +0.7 23
6 254 +12 −12.9 +1.0 −2.0 +2.3 −0.8 −2.4 +0.6 +1.5 18
7 258.6 +14 −13.2 +1.0 −2.4 +2.4 −0.5 −2.2 +0.7 +1.5 20
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Table 8
Results from the open charm and beauty systems in units of MeV and comparison
with experimental data and lattice simulations using n f = 2 [63,64] and n f = 3 [65,
66] dynamical quarks. f P are normalized as fπ = 130.4 MeV.

Charm Bottom Ref.

mc(mc) mb(mb)

1286(66) 4236(69) This work
1280(40) 4290(140) ETMC [63]
f D f B

204(6) ≡ 1.56(5) fπ 206(7) ≡ 1.58(5) fπ This work
� 218.4(1.4) ≡ 1.68(1) fπ � 235.3(3.8) ≡ 1.80(3) fπ This work
207(9) – Data [2,62]
212(8) 195(12) ETMC [63]
– 193(10) ALPHA [64]
207(4) 190(13) HPQCD [65]
219(11) 197(9) FNAL [66]
f Ds f Bs

246(6) ≡ 1.59(5) f K 234(5) ≡ 1.51(4) fπ This work
� 253.7(1.5) ≡ 1.61(1) f K � 251.3(5.5) ≡ 1.61(4) f K This work
260(5.4) – Data [2,62]
248(6) 232(12) ETMC [63]
– 219(12) ALPHA [64]
248(2.5) 225(4) HPQCD [65]
260(11) 242(10) FNAL [66]

the ones in [27]. These large errors come mainly from mc,μ and
〈d̄d〉. The previous bounds can be used for excluding some ex-
perimental data and some theoretical estimates. In deriving these
bounds, we have only used the positivity of the spectral function
and we have checked that the SVZ-expansion converges quite well
both for the PT radiative and non-perturbative corrections such
that the approximate series is expected to reproduce with a good
precision the exact solution. This fact can be (a posteriori) in-
dicated by the remarkable agreement of our estimates with the
lattice results. In this sense, we may state that the upper bound
obtained previously is rigourous (at least within the SVZ frame-
work).

11. Summary and conclusions

We have re-extracted the decay constants f D,Ds and f B,Bs and
the running quark masses mc,b(mc,b) using QCD spectral sum rules
(QSSR). We have used as inputs, the recent values of the QCD
(non-)perturbative parameters given in Table 1 and (for the first
time) the renormalization group invariant quark and spontaneous
masses in Eqs. (18) and (19). The results given in Eqs. (36), (39),
(43) and (44) agree and improve existing QSSR results in the lit-
erature. Along the analysis, we have noticed that the values of the
decay constants are very sensitive to the heavy quark mass and
decrease when the heavy quark masses increase. Here we have
used (for the first time) the scale-independent Renormalization
Group Invariant (RGI) heavy quark masses in the analysis. We have
translated the on-shell mass expressions of the PT spectral func-
tion known to N2LO into the MS one where (as has been already
noticed in previous works [19]) the PT series converge faster. We
have also remarked that f P and mQ are affected by the choice of
the continuum threshold tc which gives the largest errors. Here,
like in our previous works [13,14,19,25], we have taken the con-
servative range of tc-values where the τ - or n-stability starts until
the one where ones starts to have tc-stability. We have also seen
that the subtraction point μ affects the truncated results within
the OPE which has been the sources of apparent discrepancies and
large errors of the results in the literature. Here, we have consid-
ered carefully the results at each subtraction point and deduced,
from these “QSSR data”, the final results which should be indepen-
dent on this arbitrary choice. In view of previous comments, we
consider our results as improvements of the most recent ones to
N2LO and using MDA in [25–27].
Fig. 20. (a) Upper bounds of f Ds (red triangle) and of f D (blue open circle) at differ-
ent values of the subtraction point μ and for m̂c = 1467 MeV. The filled horizontal
band is the average within the averaged error; (b) the same as a) but for f Bs and
f B with m̂b = 7292 MeV. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this Letter.)

The results on f D and f Ds agree within the errors with the
data compiled in [2,62], while the upper bound on f Ds can already
exclude some existing data and theoretical estimates.12

As one can see in Table 8, our results are comparable (in values
and precisions) with recent lattice simulations including dynami-
cal quarks [63–66].13 These agreements are not surprising as both
methods start from the same observables (the two-point correla-
tor though evaluated in two different space–times) and use the
1st principles of QCD (here is the OPE in terms of the quarks
and gluon condensates which semi-approximate the confinement
regime). These agreements also confirm the accuracy of the MDA
for describing the spectral function in the absence of a complete
data, which has been tested earlier [5,6] and in this Letter from
the charmonium and bottomium systems. MDA has been also suc-
cessfully tested in the large Nc limit of QCD in [36].
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