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Abstract

Chiral solitons coupled with quarks in medium are studied based on the Wigner–Seitz approximation. The chiral quark soliton model
obtain the classical soliton solutions. To investigate nucleon and∆ in matter, the semi-classical quantization is performed by the cranking me
The saturation for nucleon matter and∆ matter are observed.
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1. Introduction

The study of dense nuclear matter with the internal nucl
structure is old but still a challenging subject. Especially,
approach of the topological soliton model seems interes
because it is believed as a low energy effective model in
largeNc-limit of QCD. It was first applied for nuclear matte
system in 80s by using the skyrmion centered cubic (CC) c
tal by Klebanov[1]. This configuration was studied further b
Wüst, Brown and Jackson to estimate the baryon density
discuss the phase transition between nuclear matter and
matter[2]. Goldhaber and Manton found a new configurati
body centered cubic (BCC) of half-skyrmions in a higher d
sity regime[3]. The face centered cubic (FCC) and BCC latt
were also studied by Castillejo et al.[4] and the phase tran
sitions between those configurations were investigated by
gler and Shtrikman[5]. Recently, the idea of using crystallize
skyrmions to study nuclear matter was revived by Park, M
Rho and Vento with the introduction of the Atiyah–Mant
multi-soliton ansatz in a unit cell[6].

Incorporating quark degrees of freedom into each sol
makes the prediction more realistic. Achtzehnter, Scheid
Wilets investigated the Friedberg–Lee soliton bag model w
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a simple cubic lattice[7]. Due to the periodicity of the back
ground potential, the solution of the Dirac equation has
form of the Bloch waves,ψk(r) = eik·rφk(r) whereφk satis-
fies the same periodic boundary condition as the backgro
potential. They performed the calculation for only one dir
tion of the crystal momentak = kez and assumed the sphe
cally symmetric energy surface. The Bloch condition is, ho
ever, anisotropic for the nonzerok and the results should b
highly dependent on the approximation. The analysis of
crystal soliton model with quarks based on the Wigner–S
approximation has been already done. In this ansatz, a s
soliton is placed on the center of a spherical unit cell. T
the lowest energy level (“bottom” of the band) for the valen
quarks becomes s-state. The appropriate boundary conditio
the cell boundary should be imposed on the quark wave f
tions as well as the chiral fields. This simple treatment sh
light on the nucleon structure in nuclear medium. Soliton m
ter within this approximation have been extensively studied
using various nucleon models such as the chiral quark–m
type model[8–11], Friedberg–Lee soliton bag model[11–14],
the Skyrme model[15]. The nonzero dispersion of the lowe
band[11] and the quark–meson coupling[14] were also exam
ined within this approximation.

The chiral quark soliton model (CQSM) can be interpre
as the soliton bag model including not only valence qua
but also the vacuum sea quark polarization effects exp
itly [16–18]. The model provides correct observables of a
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cleon such as mass, electromagnetic value, spin carrie
quarks, parton distributions and octet, decuplet SU(3) baryon
spectra[19]. Remarkably this model predicted the exotic qu
bound state, pentaquarkΘ+ [20] which may have been ob
served in experiments[21].

Amore and De Pace studied soliton matter in the CQ
using the Wigner–Seitz approximation and observed the
clear saturation[22]. They examined the soliton solutions wi
three different boundary conditions imposed on the quark w
function. However the obtained saturation density was hig
than the experimental value and they concluded that such
crepancy is originated in the approximate treatment of the
quark contribution[23]. Thus we treat the vacuum polariz
tion exactly in the manner originally proposed by Kahana
Ripka [24] and semi-classically quantize the chiral soliton
the cranking method to see those effects on the matter solu
At present, soliton matter has been studied only at the cla
cal energy level. In order to study the property of nucleon
∆ in medium, the spin and isospin of each of the soliton m
be quantized. We hence perform the rotational collective qu
tization by the cranking formula and observe the saturatio
nuclear and∆ matter. As shown in Section5, we obtained very
shallow saturation.

Unfortunately, the study of the nuclear matter within t
soliton model often fails to fit the experimental values, ev
in the saturation energy. This may be caused by the fact
the topological soliton picture is based on the approxima
of largeNc-limit of QCD and therefore works well only in th
very low energy scale. Thus our model improves slightly
situation in the sense that we take into account the quan
correction ofO(1/Nc) to the classical soliton mass ofO(Nc).
However, it should be noted that as our model contains the
lence quark explicitly, the physical meaning of suchNc count-
ing is obscure. Of course, the prescription is still insufficie
and the obtained results will still room for improvement.

2. The chiral quark soliton model

The CQSM was originally derived from the instanton l
uid model of the QCD vacuum and incorporates the n
perturbative feature of the low-energy QCD, spontaneous c
symmetry breaking. The vacuum functional is defined by[16]

(1)Z =
∫

Dπ Dψ Dψ† exp

[
i

∫
d4x ψ̄

(
i/∂ − MUγ5

)
ψ

]
,

where the SU(2) matrix

(2)Uγ5 = 1+ γ5

2
U + 1− γ5

2
U†

with

(3)U = exp(iτ · φ/fπ) = 1

fπ

(σ + iτ · π)

describes chiral fields,ψ is quark fields andM is the dy-
namical quark mass. We choose the constituent quark m
M = 420 MeV which reproduces the experimental observa
of the free nucleon correctly[19]. fπ is the pion decay constan
y
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and experimentallyfπ ∼ 93 MeV. Since our concern is th
tree-level pions and one-loop quarks according to the Ha
mean field approach, the kinetic term of the pion fields wh
gives a contribution to higher loops can be neglected. Du
the interaction between the valence quarks and the Dirac
soliton solutions appear as bound states of quarks in the b
ground of self-consistent mean chiral field.Nc valence quarks
fill the each bound state to form a baryon. The baryon numb
thus identified with the number of bound states filled by the
lence quarks[24]. TheB = 1 soliton solution has been studie
in detail at classical and quantum level in[16–19,25].

The vacuum functional in Eq.(1) can be integrated over th
quark fields to obtain the effective action

(4)Seff[U ] = −iNc ln det
(
i/∂ − MUγ5

)
(5)= − i

2
Nc Sp lnD†D,

whereiD = i/∂ − MUγ5 (iD is called the Dirac operator). Th
determinant is ultraviolet divergent and must be regulariz
Using the proper-time regularization scheme, we can write

S
reg
eff [U ] = i

2
Nc

∞∫

1/Λ2

dτ

τ
Sp

(
e−D†Dτ − e−D

†
0D0τ

)

= iNcT

2

∞∫
−∞

dω

2π

(6)×
∞∫

1/Λ2

dτ

τ
Sp

[
e−τ(H2+ω2) − e−τ(H2

0 +ω2)
]
,

whereT is the Euclidean time separation,Λ is a cut-off para-
meter evaluated by the condition that the derivative expan
of Eq. (4) reproduces the pion kinetic term with the correct
efficient, i.e.,

(7)f 2
π = Ncm

2

4π2

∞∫

1/Λ2

dτ

τ
e−τM2

,

andH is the Dirac one-quark Hamiltonian defined by

(8)H = α · ∇
i

+ βMUγ5.

D0 ≡ D(U = 1) andH0 ≡ H(U = 1) correspond to the vac
uum sectors. AtT → ∞, we have eiSeff ∼ e−iEseaT . Integrating
overω in Eq.(6) and constructing a complete set of eigensta
of H with

(9)H |ν〉 = εν |ν〉, H0|ν〉(0) = ε(0)
ν |ν〉(0),

one obtains the sea quark energy[18]

(10)Esea[U ] = Nc

4
√

π

∞∫

1/Λ2

dτ

τ3/2

(∑
ν

e−τε2
ν −

∑
ν

e−τε
(0)2
ν

)
.

In the Hartree picture, the baryon states are the quarks o
pying all negative Dirac sea and valence levels. Hence, if
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define the total soliton energyEstatic, the valence quark energ
Eval[U ] should be added;

(11)Estatic[U ] = NcEval[U ] + Esea[U ].
To obtain theB = 1 soliton solution, we impose the hedgeh
ansatz on the chiral field

(12)U(r) = exp
(
iF (r)r̂ · τ) = cosF(r) + ir̂ · τ sinF(r)

with the boundary conditions

(13)F(0) = −π, F (∞) = 0.

The one-quark Hamiltonian(8) reads

(14)H
(
Uγ5

) = −iα · ∇ + βM
(
cosF(r) + iγ5r̂ · τ sinF(r)

)
.

This Hamiltonian does not commute with the total angular m
mentumj nor the isospinτ/2 but commute with the grand sp
operatorK = j +τ/2 with [H,K] = 0.H also commutes with
theP = γ0 which turns to be a parity operator. As a result,
one-quark eigenstates are labeled by theK = 0,1,2, . . . and
the parityP = ±. The three valence quarks occupy the lo
est statesKP = 0+ and are responsible for the baryon num
(= 1) (nontopological charge).

Field equations for the chiral fields can be obtained by
manding that the total energy in Eq.(11) be stationary with
respect to variation of the profile functionF(r),

δ

δF (r)
Estatic= 0,

which produces

(15)S(r)sinF(r) = P(r)cosF(r),

where

(16)

S(r) = Nc

∑
ν

(
nνθ(εν) + sign(εν)N (εν)

)

× 〈ν|γ 0δ
(|x| − r

)|ν〉,

(17)

P(r) = Nc

∑
ν

(
nνθ(εν) + sign(εν)N (εν)

)

× 〈ν|iγ 0γ 5r̂ · τδ
(|x| − r

)|ν〉
with

N (εν) = − 1√
4π

�

(
1

2
,

(
εν

Λ

)2)

andnν is the valence quark occupation number.
The procedure to obtain the self-consistent solution

Eq. (15) is that (1) solve the eigenequation in(9) under an
assumed initial profile functionF0(r), (2) use the resultan
eigenfunctions and eigenvalues to calculateS(r) andP(r), (3)
solve Eq.(15) to obtain a new profile function, (4) repeat (1
(3) until the self-consistency is attained.
-

-

f

3. The numerical basis

In this section we present the numerical method of eig
problem of the Hamiltonian(14). The Hamiltonian with hedge
hog ansatz commutes with the parity and the grandspin ope
given by

K = j + τ/2= l + σ/2+ τ/2,

wherej , l are respectively total angular momentum and orb
angular momentum. Accordingly, the angular basis can be w
ten as

(18)
∣∣(lj)KM

〉 = ∑
j3τ3

CKM

jj3
1
2τ3

(∑
mσ3

C
jj3

lm 1
2σ3

|lm〉
∣∣∣∣1

2
σ3

〉)∣∣∣∣1

2
τ3

〉
.

ForB = 1 solution, following states are possible:

|0〉 =
∣∣∣∣
(

KK + 1

2

)
KM

〉
,

|1〉 =
∣∣∣∣
(

KK − 1

2

)
KM

〉
,

|2〉 =
∣∣∣∣
(

K + 1K + 1

2

)
KM

〉
,

|3〉 =
∣∣∣∣
(

K − 1K − 1

2

)
KM

〉
.

With this angular basis, the normalized eigenstates of the
Hamiltonian in a spherical box with radiusR can be constructe
as follows:

u
(a)
KM = Nk

(
iω+

εk
jK(kr)|0〉

ω−
εk

jK+1(kr)|2〉
)

,

u
(b)
KM = Nk

(
iω+

εk
jK(kr)|1〉

−ω−
εk

jK−1(kr)|3〉
)

,

v
(a)
KM = Nk

(
iω+

εk
jK+1(kr)|2〉

−ω−
εk

jK(kr)|0〉
)

,

(19)v
(b)
KM = Nk

(
iω+

εk
jK−1(kr)|3〉

ω−
εk

jK(kr)|1〉
)

,

with

(20)Nk =
[

1

2
R3(jK+1(kR)

)2
]−1/2

andω+
εk>0,ω

−
εk<0 = sgn(εk),ω

−
εk>0,ω

+
εk<0 = k/(εk +M). Theu

andv correspond to the “natural” and “unnatural” components
of the basis which stand for parity(−1)K and(−1)K+1 respec-
tively. The momenta are discretized by the boundary condit
jK(kiR) = 0. The orthogonality of the basis is then satisfied

R∫
0

dr r2jK(kir)jK(kj r)

=
R∫

0

dr r2jK±1(kir)jK±1(kj r)

(21)= δij

R3

2

[
jK±1(kiR)

]2
.
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Table 1
The classical mass for the original Kahana–Ripka basis and modified ve
(in MeV), with M = 400 MeV,R = 6 fm. The error becomes of order∼ 10−3

Valence Vacuum Tota

Free 191 637 1209
Modified 192 633 1210

Fig. 1. Profile functions forR = 0.5,1,2 fm and the free soliton.

Let us examine the boundary conditions for the ch
and Dirac fields to construct the nuclear matter solution
the Wigner–Seitz approximation. When the background ch
fields are periodic with lattice vectora, the quark fields would
be replaced by Bloch wave functions asψ(r + a) = eik·aψ(r).
In the Wigner–Seitz approximation, however, the soliton
put on the center of the spherical unit cell with the radiusR

(a = 2R) and the dispersionk is assumed to be zero. For th
profile functionF(r), the periodicity and the unit topologica
charge inside the cell require the boundary conditions

(22)

σ ′(0) = σ ′(R) = 0
π(0) = π(R) = 0

}
⇒ F(0) = −π, F (R) = 0.

For the Dirac eigenstates, modification in the basis is nee
For odd number ofK , the boundary condition is same as t
free case with

(23)jK(kiR) = 0.

For evenK , the following conditions must be satisfied

jK+1(k
(a)
i R) = 0, for u

(a)
KM,v

(a)
KM,

(24)jK−1(k
(b)
i R) = 0, for u

(b)
KM,v

(b)
KM.

Obviously the conditions(24) partially break the orthogonalit
of the basis(21)for the finite value ofR. However we can solve
the eigenvalue problem properly (seeTable 1). Although the
motivation is different, the similar treatment has been alre
introduced in Ref.[26].

Fig. 1 shows the self-consistent profile functions for fr
(R → ∞) and various values of the cell radiusR. In Fig. 2,
we present the results of the classical energy of the soliton
its valence and vacuum contributions as functions ofR. We find
the shallow minimum of the classical energy atR ∼ 1.2 fm.
n

l

l

d.

y

d

Fig. 2. Classical soliton energy and its valence and vacuum contributions(11).

Fig. 3. Classical soliton energy after removing the spurious center of mas
tion (25).

4. Spurious center of mass correction

The minimum found inFig. 2 is not regarded as a true sa
uration point because it contains the zero-point energy co
butions. The quark contribution to the mean-field expecta
value of the square of the total momentumP 2 appears at the
classical level although it should be zero because the solit
rest at the cell center in the present approximation. There
the corresponding kinetic energy should be subtracted from
total energy. The effects of the spurious center of mass moti
roughly estimated by the method of Pobylitsa et al.[27]. Con-
sidering the translational degrees of freedom and perform
their quantization, one obtains the correction at a rest fram

(25)Estatic→ Ẽstatic= Estatic− 〈P 2〉
2Estatic

.

The correction is easily evaluated by using the numerical b
given in Eq.(19) asP 2u

(a)
KM(kir) = k2

i u
(a)
KM(kir). As is shown

in Fig. 3, the minimum disappears after removing the zero-p
energy contributions(25). This is explained by the observ
tion that the contribution of the center of mass motion beco
small with increasing density (seeFig. 4and the caption).
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Fig. 4. The “upper”u(r) and the “lower”w(r) component of valence quar
wave functions for various cell radiusR with the boundary conditionw(R) = 0.
Non vanishing values of upper component at the cell boundaryu(R) come from
the zero-mode elements in the basis.

5. Collective quantization

The solitons that we have obtained in the previous sec
are classical objects and therefore must be quantized to a
definite spin and isospin to them. For the solitons in the
space, quantization can be performed semiclassically for
rotational zero modes. For the hedgehog soliton, because
topological structure, a rotation in isospin space is followed b
simultaneous spatial rotation. Let us introduce the dynamic
rotated chiral fields

(26)Ũ (x, t) = A(t)U(x)A(t)†, A(t) ∈ SU(2)I .

In a crystal configuration, the solitons are fixed on the spa
lattice point and their isospin orientation is chosen so as to m
imize the energy of the system. If one rotates each solito
the crystal, it changes the isospin orientation and increase
energy. Thus there is only one isospin collective coordinate
responding to the overall orientation of the crystal in isosp
called global isospin, in the soliton crystal[1,28].

The Wigner–Seitz treatment with spherical cell approxim
tion may cure the situation. Because in this approximation
information of the crystalline structure, hence, the isospin st
ture is completely lost at least in the low-density, the rotatio
zero-mode would be recovered. Thus, we apply the zero-m
quantization method to the WS-cell to estimate the nucleon
the delta mass splitting in the matter.

By transforming the rotating frame of reference, the Di
operator with Eq.(26)can be written as

(27)˜iD = A(t)γ 0[i∂t − H
(
Uγ5

) + Ω
]
A(t)†,

where

(28)Ω = iA†Ȧ = 1

2
Ωaτa.

Ω is the angular velocity operators for an isorotation. Assu
ing that the rotation of the soliton is adiabatic, we shall exp
the effective actionSeff around the classical solutionU(x) with
n
gn
e
ir
its
a
y

l
-
n
he
r-
,

-
e
-
l
e
d

-
d

respect to the angular momentum velocityΩ up to second or
der[29]

Seff(Ũ) = Seff(U) − iNc Sp
[
log(i∂t − H + Ω)

]
− Sp

[
log(i∂t − H)

]
.

With the proper-time regularization, we have

S
reg
eff (Ũ ) = S

reg
eff (U) + 1

2

∑
ab

∫
dt

[
Isea,abΩ

a(t)Ωb(t)
]
,

whereIsea,ab is the vacuum sea contribution to the moments
inertia defined by

(29)Isea,ab = 1

8
Nc

∑
ν,µ

f (εµ, εν,Λ)〈ν|τa|µ〉〈µ|τb|ν〉,

with the cutoff functionf (εµ, εν,Λ)

f (εµ, εν,Λ)

= − 2Λ√
π

e−ε2
µ/Λ2 − e−ε2

ν /Λ2

ε2
µ − ε2

ν

+ sgn(εµ)erfc(|εµ|/Λ) − sgn(εν)erfc(|εν |/Λ)

εµ − εν

.

Similarly, for the valence quark contribution we have

(30)Ival,ab = 1

2
Nc

∑
µ 
=val

〈val|τa|µ〉〈µ|τb|val〉
Eµ − Eval

.

The total moments of inertia are then given by the sum
the vacuum and valence,Iab = Ival,ab + Isea,ab. The hedgehog
ansatz of the chiral fields ensure the relation for the mome
inertia

(31)I11 = I22 = I33.

The quantization condition for the collective coordinate,A(t),
define a body-fixed isospin operatorK as

(32)IabΩ
b → − tr

(
A

τa

2

∂

∂A

)
≡ −ka.

These are related to the usual coordinate-fixed isospin ope
ia by transformation

(33)ia = −1

2
Tr

[
τaA(t)τ bA(t)†]kb.

To estimate the quantum energy corrections, let us introd
the basis functions of the spin and isospin operators which w
inspired from the cranking method for nuclei[31]

〈A|ii3k3〉 =
√

2i + 1

8π2
(−1)i+i3Di

−i3k3
(A),

whereD is the Wigner rotation matrix. Finally, we find th
quantized energies of the soliton as

(34)E = Estatic+ i(i + 1)

2I33
,

wherei(i + 1) is eigenvalues of the Casimir operatori2. The
moment of inertia for the vacuum(29) and valence(30) and
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Fig. 5. Moment of inertia: the vacuum(29) and the valence(30) contribution
and their sum.

Fig. 6. Quantized soliton energies of nucleonN and delta resonance∆(1232)
(34).

their sum are given inFig. 5. In Fig. 6, we present the energy o
nucleon (i = 1

2) and∆ (i = 3
2).

In this cranking procedure, the zero-point energy of the
tational motion〈i2〉/2I33 must be removed from Eq.(34) [27,
30]. Finally, we obtain the mass of nucleon and delta

(35)EN = Ẽstatic− 3

4I33
,

(36)E∆ = Ẽstatic+ 3

4I33
.

Fig. 7 shows the energy of nucleon and delta after subtr
ing the spurious zero-point energy. The minimum for nucle
is observed atR ∼ 1.8 fm which corresponds to the dens
ρN ∼ 0.04 fm−3. This value is much lower than the expe
imental value. The binding energy isEB ∼ 18 MeV which
is not far from the experimental observation. For∆, we also
find the shallow minima atR ∼ 1.22 fm which correspond
to ρ∆ ∼ 0.13 fm−3. The ∆ saturation is attained at the de
sity ρ∆/ρN ∼ 3.2 which is close to the prediction of densi
ρ∆/ρN ∼ 2–3 in the framework of the quantum hadrodyna
ics [32,33]. The advantage of our approach is that the mo
-

t-

l

Fig. 7. Masses ofN , ∆, after spurious energy subtractions(35)–(36).

does not require any tuning parameter for the∆ spectra in the
hadrodynamics calculations.

6. Summary

We have studied soliton solutions in nuclear medium by
ing the Wigner–Seitz approximation. The chiral quark soli
model was used to obtain the classical soliton solution. In
Letter we especially focused on the properties of nucleon
∆ in matter. We quantized the soliton semiclassically. The
abatic rotation for the (iso)rotational zero mode was perform
and the nuclear saturation points were obtained for nucleon
∆ matter.

Here we did not consider the following effects which sho
be investigated to develop our understanding of the dense
clear matter:

• band structure of the quarks,
• R dependence of the constituent quark massM and the cut-

off parameter for the vacuumΛ,
• inclusion of the heavier mesons(ρ,ω, . . .) to the soliton

solutions,
• improvement of the correction by the zero point energy

Casimir effects,
• quark–meson couplings and the Fermi motion of

baryons,
• crystalline order in high density phase,
• SU(3) extension.

As is expected, our model provides much lower value of
saturation density than the experiment. In this analysis,
Wigner–Seitz cell is approximated by a sphere and thus
density matter is attained by shrinking the cell volume with
spherical shape of each soliton unchanged. However, in re
the neighborhood solitons start to overlap and the structure
be deformed from uniform nuclear matter at high density
this phase, the hedgehog ansatz should not be appropriat
more.

We observed the increase in the zero mode of the cent
mass motion of the soliton for higher density, which means
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Fig. 8. Binding energy of nucleon for the various constituent quark massM (in
MeV).

the soliton tends to rest in the WS approximation. In this c
we should employ the exact WS cell which reflects the ba
ground crystal symmetry instead of sphere, to get higher sa
tion density. The inclusion of band effects may also improve
results. In Ref.[14], the authors imposed the Bloch-like boun
ary conditions on the s-wave valence quark wave function
estimated the soliton energy self-consistently. They found
the effects of the admixtures of higher states are small ex
for the scalar quark density. In fact, the band structure will
pear at some critical density and the correction for the quan
energy may become more important at the dense medium
cause the radius of the soliton, that is, the moment of ine
strongly depend on the position of the band[22].

Generally speaking, the constituent quark massM is mo-
mentum- and density-dependent[16]. We chose the valueM =
420 MeV as it reproduces the free nucleon observable. InFig. 8,
one can see that for larger value ofM , the saturation point goe
to inward and the binding becomes deeper. Varying the v
of M for each density may give a better result for the satura
point.

An important feature of the nucleon in a matter is abou
size. It is believed that the nucleon will swell in the mediu
The authors of Ref.[34] observe such effect with reducing e
fective quark massM∗ in the Nambu–Jona-Lasinio type quar
soliton model. We confirmed within our model that as sma
the M , the size of the soliton increases. But in that case,
saturation becomes shallow (Fig. 8). Recently, we investigate
soliton solutions in the CQSM taking into accountρ,ω mesons
which will improve the short distance physics. We are able
obtain deeper binding energy as decreasing the value ofM . We
will report it on forthcoming article.

In Fig. 6, one finds that the spectra of nucleon and∆ are too
small compared to the experimental values. Obviously it is
to the subtraction of the zero-point corrections. A little mo
sophisticated approach of the spurious motion is performe
Ref. [14] and by applying this approach to our analysis,
results will be improved to a certain extent. Also, the me
coupling to the quark inside nucleon and∆ should be importan
to shift the minima at higher density.
,
-
a-
r

d
t

pt
-
m
e-
,

e
n

r
e

e

n

Fig. 9. Kinetic energy of the pion(37).

In Figs. 6 and 7, one finds the nucleon–∆ mass difference
gradually decreases as matter density increases and ev
ally it vanishes. The reduction in the mass difference has b
observed previously in a similar chiral soliton model but e
ploying somewhat different projection technique for quant
number[35,36]. In the present formulation, the behavior is n
fully understood because it should be explained by the dyn
ics of hadrons, that is, QCD. In the naive SU(6) quark model,
the mass difference is ascribed to the hyperfine splitting[37].
The reduction may imply the increase of the distance betw
quarks. In fact, inFig. 4, one can see the concentration of
quarks at the cell boundary as the density increases.

Alternatively, if we understand the∆ as a composite objec
(resonance state) of the nucleon and pion, the mass differ
can be interpreted as the energy of pions bound to the nuc
Although it is absent in the present formulation, the pion kin
energy inside the soliton can be estimated as

Eπ = f 2
π

4

∫
d3x tr ∂kU

†∂kU

(37)= 2πf 2
π

R∫
0

r2 dr

(
F ′(r)2 + sin2 F(r)

r2

)
.

In Ref. [22], the authors introduced ther- and the cutoff pa-
rameter of the vacuumΛ-dependent form of the pion deca
constantfπ(r,Λ) and estimated its density dependence w
the Λ whose value is set for the free space value offπ . The
fπ(r,Λ) determined in such a way is essentially valid only
the free space limitR → ∞. Therefore we shall simply take th
value in free spacefπ = 93 MeV.Fig. 9shows the result of th
kinetic energy of pions as a function ofR and one can observ
that the energy is reduced as the density increases. This r
tion of the pion kinetic energy may contribute to the reduct
of the mass difference.

Our formulation is directly applicable to the SU(3) octet-
decuplet baryon spectra in nuclear matter[26,38]. After the
above effects are properly incorporated and more realistic
mation of the saturation points is achieved, it will be interes
to study the SU(3).
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