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Abstract

Chiral solitons coupled with quarks in medium are studied based on the Wigner—Seitz approximation. The chiral quark soliton model is used tc
obtain the classical soliton solutions. To investigate nucleorvaimdmatter, the semi-classical quantization is performed by the cranking method.
The saturation for nucleon matter addmatter are observed.
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1. Introduction a simple cubic latticg7]. Due to the periodicity of the back-
ground potential, the solution of the Dirac equation has the
The study of dense nuclear matter with the internal nucleotiorm of the Bloch wavesyy (r) = ¢!k ¢y (r) wheregy satis-
structure is old but still a challenging subject. Especially, thefies the same periodic boundary condition as the background
approach of the topological soliton model seems interestingyotential. They performed the calculation for only one direc-
because it is believed as a low energy effective model in théion of the crystal momenta = ke, and assumed the spheri-
large N.-limit of QCD. It was first applied for nuclear matter cally symmetric energy surface. The Bloch condition is, how-
system in 80s by using the skyrmion centered cubic (CC) crysever, anisotropic for the nonzedoand the results should be
tal by Klebanov{1]. This configuration was studied further by highly dependent on the approximation. The analysis of the
Wiist, Brown and Jackson to estimate the baryon density ancrystal soliton model with quarks based on the Wigner—Seitz
discuss the phase transition between nuclear matter and quaakproximation has been already done. In this ansatz, a single
matter[2]. Goldhaber and Manton found a new configuration,soliton is placed on the center of a spherical unit cell. Then
body centered cubic (BCC) of half-skyrmions in a higher den-the lowest energy level (“bottom” of the band) for the valence
sity regime[3]. The face centered cubic (FCC) and BCC latticequarks becomes s-state. The appropriate boundary conditions at
were also studied by Castillejo et §] and the phase tran- the cell boundary should be imposed on the quark wave func-
sitions between those configurations were investigated by Kuions as well as the chiral fields. This simple treatment sheds
gler and Shtrikmaffi5]. Recently, the idea of using crystallized light on the nucleon structure in nuclear medium. Soliton mat-
skyrmions to study nuclear matter was revived by Park, Minter within this approximation have been extensively studied by
Rho and Vento with the introduction of the Atiyah—Manton using various nucleon models such as the chiral quark—meson
multi-soliton ansatz in a unit cef6]. type model[8-11], Friedberg—Lee soliton bag modail—14]
Incorporating quark degrees of freedom into each solitorthe Skyrme mode]J15]. The nonzero dispersion of the lowest
makes the prediction more realistic. Achtzehnter, Scheid antland[11] and the quark—meson couplifityl] were also exam-
Wilets investigated the Friedberg—Lee soliton bag model withined within this approximation.
The chiral quark soliton model (CQSM) can be interpreted
. as the soliton bag model including not only valence quarks
Corresponding author. but also the vacuum sea quark polarization effects explic-
E-mail addresses: sawado@ph.noda.tus.ac(p. Sawado),
norikoshiiki@mail.goo.ne.jgN. Shiiki). itly [16—18] The model provides correct observables of a nu-
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cleon such as mass, electromagnetic value, spin carried tgnd experimentallyf, ~ 93 MeV. Since our concern is the
quarks, parton distributions and octet, decuplet®Waryon tree-level pions and one-loop quarks according to the Hartree
spectrd19]. Remarkably this model predicted the exotic quarkmean field approach, the kinetic term of the pion fields which
bound state, pentagua®™ [20] which may have been ob- gives a contribution to higher loops can be neglected. Due to
served in experimen{&1]. the interaction between the valence quarks and the Dirac sea,
Amore and De Pace studied soliton matter in the CQSMsoliton solutions appear as bound states of quarks in the back-
using the Wigner—Seitz approximation and observed the nuground of self-consistent mean chiral field. valence quarks
clear saturatiofi22]. They examined the soliton solutions with fill the each bound state to form a baryon. The baryon number is
three different boundary conditions imposed on the quark wavéhus identified with the number of bound states filled by the va-
function. However the obtained saturation density was highelence quark$24]. The B = 1 soliton solution has been studied
than the experimental value and they concluded that such di detail at classical and quantum leve[i6-19,25]
crepancy is originated in the approximate treatment of the sea The vacuum functional in Eq1) can be integrated over the
quark contribution[23]. Thus we treat the vacuum polariza- quark fields to obtain the effective action
tion exactly in the manner originally proposed by Kahana and

Ripka [24] and semi-classically quantize the chiral soliton bySEff[U] =—iNcIn dei(ia - MUVS) 4)
the cranking method to see those effects on the matter solution. _ —iN SpinptD ®)
At present, soliton matter has been studied only at the classi- 2°¢ ’

cal energy level. In order to study the property of nucleon Ofiwherei D = i — MU (i D is called the Dirac operator). This
A in medium, the spin and isospin of each of the soliton musHeterminant is ultraviolet divergent and must be regularized.

be quantized. We hence perform the rotational collective quangsing the proper-time regularization scheme, we can write
tization by the cranking formula and observe the saturation of

nuclear andA matter. As shown in Sectids we obtained ver i N dr "

shallow saturation. ’ Sef lU1 = 5 Ne / - SF’(‘?DTDr — e PoPor)
Unfortunately, the study of the nuclear matter within the 1/42

soliton model often fails to fit the experimental values, even 00

in the saturation energy. This may be caused by the fact that _IiNT [ do

the topological soliton picture is based on the approximation 2 21

of large N.-limit of QCD and therefore works well only in the ’°°

very low energy scale. Thus our model improves slightly the T dr H2r0? H2r0?

situation in the sense that we take into account the quantum X / - Sp{e T ) — er ot (6)

correction ofO(1/N,) to the classical soliton mass 6f(N.). 1/42

However, it should be noted that as our model contains the va-

lence quark explicitly, the physical meaning of su¢hcount- mhfr?Tv'S“tjhf Eubdl?ﬁ an tlr:r:i‘ietisiptiri“t%n,g arli\(/:;;;/off p))(arar; ion
ing is obscure. Of course, the prescription is still insufficient, cler evaluated by the co on that the de € eXpansio

and the obtained results will still room for improvement. of Eq. (4) reproduces the pion kinetic term with the correct co-

efficient, i.e.,

2. Thechiral quark soliton model x°

! P 7)

T 2 s
The CQSM was originally derived from the instanton lig- add 1/42 t
uid model of the QCD vacuum and incorporates the non- ) ) o )
perturbative feature of the low-energy QCD, spontaneous chir&NdH is the Dirac one-quark Hamiltonian defined by
symmetry breaking. The vacuum functional is define .
ymmety J W eV emun. ®)
l

+ . a4 7/
2z :/D” Dy Dy exp[z fd X (if — MUVSW}’ (1) py=DW =1) andHo = H(U = 1) correspond to the vac-
uum sectors. AT’ — oo, we have Eeft ~ e~/ Esedl |ntegrating

where the S(P) matrix overw in Eq.(6) and constructing a complete set of eigenstates
1 1— of H with
grs = =1 W5y 2T Vst @)
2 2 Hpv)=6lv),  Holv)® =€), ©)
ith .
W L one obtains the sea quark eneff§]
U:exp(irotb/fn):f—(cr—i-ir-n) 3) N 0o e o
f4 c 12 _
EsedU] = —( e v — e e ) (10)
describes chiral fieldsy is quark fields andv is the dy- > 4 73/2 Zv: ZU:

. . 2
namical quark mass. We choose the constituent quark mass /A

M = 420 MeV which reproduces the experimental observabletn the Hartree picture, the baryon states are the quarks occu-
of the free nucleon correctft9]. f; is the pion decay constant pying all negative Dirac sea and valence levels. Hence, if we
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define the total soliton energ¥staiic, the valence quark energy 3. Thenumerical basis

EvalU] should be added; ] . ) )
In this section we present the numerical method of eigen-

EstatidU] = N, Eval[U] + EsedU]. (11) problem of the Hamiltoniaf14). The Hamiltonian with hedge-
hog ansatz commutes with the parity and the grandspin operator
To obtain theB = 1 soliton solution, we impose the hedgehog given by

ansatz on the chiral field
K=j+t/2=140/2+1/2,

U(r)= exp(iF(r)f . r) =COSF(r) +if-TSINF(r) (12)  wherej, I are respectively total angular momentum and orbital
angular momentum. Accordingly, the angular basis can be writ-

ten as
1 1
EO’3>) ‘ ET3>. (18)

For B = 1 solution, following states are possible:

KM
>KM>,
1
2
1

with the boundary conditions

= — = . I/
F(0) = —m, F(o00) =0. (13)  |upkM)= Zcm r3<z 3 |lm)

Im3o3

The one-quark Hamiltoniaf8) reads s33

H(U") = —ia -V +BM(COSF(r) +iyst - TSINF(r)). (14) 1
|0) = (KK +

This Hamiltonian does not commute with the total angular mo- 2

mentumj nor the isospirr /2 but commute with the grand spin 1) = <KK _ }

operatorK = j +t/2with[H, K] = 0. H also commutes with 2

(K + 1K

the P =y which turns to be a parity operator. As a result, the
one-quark eigenstates are labeled by #he-0,1,2,... and 12) = + _)KM>’
the parity’? = £. The three valence quarks occupy the low-
est statek” = 0T and are responsible for the baryon number!3) = (K 1K - —>KM>

(=1 (nontopological charge). . ) . ) )
Field equations for the chiral fields can be obtained by deWith this angular basis, the normalized eigenstates of the free
manding that the total energy in E(L1) be stationary with Hamiltonianin a spherical box with radikscan be constructed

respect to variation of the profile functidn(r), as follows:

jwr jx (kr)|0
M(Iglgt/[=Nk< la)fij( r)l > >9

SF () Estatic= 0, a)e._k jf-f‘—l(k””z)
| T (e
which produces KM —wg jk-1(kr)|3)
. il j (kr)|2)
S(r)sinF(r) = P(r)COSF(r), (15) @ _ N <lw€k]K.+1 )
kM =N o jg (k)]0)
where it iv 1(kr)3
= (M. (19)
. we, jk (kr)|1)
S(r)=Ne Y _(mb(ey) +signe, )N (e,)) _
" with
x vy %8(1x| = r)v), (16) 1, -2
( ) Ny = [ERB(JKH(ICR))Z} (20)
P(r)=Nc Yy (n0() +signe,) N (€,))
v andof o, 07 _o=sgne), o g o _o="k/(ex+M). Theu
x (]iy%y5F - 78(Ix| —r)v) (17)  andw correspond to therfatural” and “unnatural” components
_ of the basis which stand for parity-1)X and(—1)X 1 respec-
with tively. The momenta are discretized by the boundary conditions
1 1 2 Jjx (ki R) = 0. The orthogonality of the basis is then satisfied by
€y
v) = _—F ) N
Nie A (2 <A> ) p

dr r? i (kir) ji (k;r)
andn,, is the valence quark occupation number. / l !
The procedure to obtain the self-consistent solution of R

Eqg. (15) is that (1) solve the eigenequation (@) under an 5. .
assumed initial profile functiorFo(r), (2) use the resultant :/d” Jrx1(kir) jrx1(kjr)
eigenfunctions and eigenvalues to calculste) and P (), (3) 0 3
i i i — R
solve Eq.(15) to obtain a new profile function, (4) repeat (1) s —[JKﬂ(k,»R)]Z. 21)

(3) until the self-consistency is attained. VT
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Table 1 1 \/__
The classical mass for the original Kahana—Ripka basis and modified version 1200 » L
(in MeV), with M = 400 MeV, R = 6 fm. The error becomes of order10~3 1100 Total i
004 ~ | -
Valence Vacuum Total 1 Valence | T
— 900 Vacuum | [
Free 191 637 1209 = 200 N
Modified 192 633 1210 = ]
= 7004 -
35 R L L 1 . I R L R L . ng 600__ ; . T
] 500 L
3.0 400 L
25417 2004 -
1 | 0+ 77T 7T T T
-2.0 P 04 06 08 1.0 12 14 1.6 1.8 20 22 24 26 2.8 3.0
= 1 R [fm]
=15
1 Fig. 2. Classical soliton energy and its valence and vacuum contrib{fidhs
-1.04
] 1300 1 1 1 1 1 1 1 1 1 1 1 1
0.5+ 1200 Total L
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0.0 1000 Vacuum |[
0.0 1% I
— 9004 L
E 8004 -
Fig. 1. Profile functions foR = 0.5, 1, 2 fm and the free soliton. = 700 4 L
w600 N e -
Let us examine the boundary conditions for the chiral 500 -
and Dirac fields to construct the nuclear matter solution in 400 C
the Wigner—Seitz approximation. When the background chiral 3004 -
fields are periodic with lattice vectar, the quark fields would 2009/ e — r
be replaced by Bloch wave functions@sgr +a) = /¥ %y (r). 100

In the Wigner—Seitz approximation, however, the soliton is 040608 10 12 14 ;6[101;? 20 22 24 26 28 30
put on the center of the spherical unit cell with the radius

(a = 2R) and the dispersiok is assumed to be zero. For the Fig. 3. Classical soliton energy after removing the spurious center of mass mo-
profile function F(r), the periodicity and the unit topological tion (25).

charge inside the cell require the boundary conditions

¢’(0)=0'(R)=0
7(0)=n(R)=0

4. Spurious center of mass correction
} = F(0)=—m, F(R)=0.

22 The minimum found irFig. 2is not regarded as a true sat-

For the Dirac eigenstates, modification in the basis is neede@.ration point because it contains the zero-point energy contri-

For odd number of, the boundary condition is same as the utions. The quark contribution to the mean-field expectation
free case with ' value of the square of the total momentut? appears at the

classical level although it should be zero because the soliton is
Jjxk(kiR) =0. (23)  rest at the cell center in the present approximation. Therefore,
the corresponding kinetic energy should be subtracted from the

For evenk, the following conditions must be satisfied . L
total energy. The effects of the spurious center of mass motion is

jK+1(kl.(“)R) =0, for ”5?3;4 U;?/)w roughly estimated by the method of Pobylitsa e{2F]. Con-
jK—l(kl-(b)R) —0, for “%4 ”5?1)14- (24) sidering the translational degrees of freedom and performing

their quantization, one obtains the correction at a rest frame as

Obviously the condition§24) partially break the orthogonality
of the basig21)for the finite value ofR. However we can solve . (P?)
the eigenvalue problem properly (s&able J). Although the  Estatic— Estatic= Estatic— LYo

. . . . . static
motivation is different, the similar treatment has been already
introduced in Ref[26]. The correction is easily evaluated by using the numerical basis

Fig. 1 shows the self-consistent profile functions for free given in Eq.(19) astu%l(kir) = kizu%l(kir). As is shown

(R — o0) and various values of the cell radids In Fig. 2 in Fig. 3 the minimum disappears after removing the zero-point
we present the results of the classical energy of the soliton anehergy contributiong25). This is explained by the observa-
its valence and vacuum contributions as functionR diVe find  tion that the contribution of the center of mass motion becomes

the shallow minimum of the classical energyrat- 1.2 fm. small with increasing density (s€ég. 4and the caption).

(25)
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respect to the angular momentum veloaizyup to second or-
der[29]

Seft(U) = Seft(U) — i N, Splog(id; — H + £2)]
— Sylog(id; — H)].
With the proper-time regularization, we have

reg

- 1
ST = s580) + 53 [ di [hseann 2027 0)
ab

wherelseaqs is the vacuum sea contribution to the moments of
inertia defined by

().6 l ‘ AO.S ' ""1.0 ' L5 1
7 [fm] Iseaah = gNe D f (e, €0, A)VlTalin{palzplv), (29)

v,

Fig. 4. The “upper’u(r) and the “lower’w(r) component of valence quark

wave functions for various cell radiugwith the boundary conditiom(R) = 0. with the cutoff functionf (e, €,, A)
Non vanishing values of upper component at the cell bound@ry come from

the zero-mode elements in the basis. feu, €, A)

24 e /AP _ gel/A?
T €2 —e2

The solitons that we have obtained in the previous section sgn(e,) erfc(le,|/A) — sgne,) erfc(le,|/A)
are classical objects and therefore must be quantized to assign €4 — €y '
definite spin and isospin to them. For the solitons in the free;Similarly

space, quantization can be performed semiclassically for their

[ : i i 1 (val|zy|p){mlTp| val)
rotational zero modes. For the hedgehog soliton, because of i S b = ENC Z a b _ (30)

5. Collective quantization =

for the valence quark contribution we have

topological structure, a rotation in isospin space is followed by a | E, — Eval

simultaneous spatial rotation. Let us introduce the dynamically nrva

rotated chiral fields The total moments of inertia are then given by the sum of
the vacuum and valencé,, = Iyai.ap + Iseaqs- The hedgehog

Ux,1)= A(t)U(x)A(t)T, A(t) e SU2);. (26)  ansatz of the chiral fields ensure the relation for the moment of

In a crystal configuration, the solitons are fixed on the spatiallnertla

lattice point and their isospin orientation is chosen so as to minf11 = Izo = I33. (32)

imize the energy of the system. If one rotates each soliton e guantization condition for the collective coordinatét),

the crystal, it changes the isospin orientation and increases trae ; X : .
. . . . . efine a body-fixed isospin operatiiras
energy. Thus there is only one isospin collective coordinate cor-

responding to the overall orientation of the crystal in isospaceI ob il A g 9\ k 32
called global isospin, in the soliton crysfal28]. aple” — — U 29A) T ® (32)

The Wigner-Sei ith spherical cell ima- .
tion r:ay Icgur:rthseelstiiut:;itnmg:cggsesﬁl fgilgzpcéogﬁgggnghese are related to the usual coordinate-fixed isospin operator
information of the crystalline structure, hence, the isospin struc® by transformation
ture is completely lost at least in the low-density, the rotational. 1 b +
zero-mode would be recovered. Thus, we apply the zero-modé ~ ) Tr[t"A(I)T A() ]k”' (33)

quantization method to the WS-cell to estimate the nucleon angly estimate the quantum energy corrections, let us introduce
the delta mass splitting in the matter. ~ the basis functions of the spin and isospin operators which were
By transforming the rotating frame of reference, the D'racinspired from the cranking method for nuc|8i]
operator with Eq(26) can be written as
2i+1

- i _ i+i
iD =AMy i3 — H{U™) + 2]ADT, @7)  (Aliisks) =/ 5 (=)D, (4),
where where D is the Wigner rotation matrix. Finally, we find the
1 quantized energies of the soliton as
Q=iATA=20%,. (28) ii+1)
2 E = Estatic+ 2 (34)
133

£2 is the angular velocity operators for an isorotation. Assum-
ing that the rotation of the soliton is adiabatic, we shall expandvherei(i + 1) is eigenvalues of the Casimir operaidt The
the effective actiorbesf around the classical solutidii(x) with moment of inertia for the vacuurg29) and valencg30) and



S Nagai et al. / Physics Letters B 632 (2006) 644651

0020 d—lu 1 v 1 vt
Total
......... Valence |[
s L e Vacuum L
> 0.010
=)
~
0.005
0.000

T T T - T T T T T T T T
04 06 08 1.0 12 14 1.6 1.8 2.0 22 24 26 28 3.0
R [fm]

Fig. 5. Moment of inertia: the vacuuii29) and the valencé30) contribution
and their sum.
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Fig. 6. Quantized soliton energies of nucleinand delta resonancé(1232
(34).

their sum are given ifig. 5. In Fig. 6, we present the energy of
nucleon (= %) andA (i = 3).

In this cranking procedure, the zero-point energy of the ro-

tational motion(i?) /2133 must be removed from E¢34) [27,
30]. Finally, we obtain the mass of nucleon and delta

~ 3
Eyn = Estatic— —, 35
N static 4133 ( )

. 3
E A = Estatict+ ——. (36)

4133

Fig. 7 shows the energy of nucleon and delta after subtractAs

649

1250
1200 -
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11004
1050
10004
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900 -
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800 -
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700 -
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E [MeV]

T T T T T T T T T T T T
04 06 08 1.0 1.2 14 1.6 1.8 2.0 22 24 26 2.8 3.0
R [fm]

Fig. 7. Masses oN, A, after spurious energy subtractiof®$)—(36)

does not require any tuning parameter for thepectra in the
hadrodynamics calculations.

6. Summary

We have studied soliton solutions in nuclear medium by us-
ing the Wigner—Seitz approximation. The chiral quark soliton
model was used to obtain the classical soliton solution. In this
Letter we especially focused on the properties of nucleon and
A in matter. We quantized the soliton semiclassically. The adi-
abatic rotation for the (iso)rotational zero mode was performed
and the nuclear saturation points were obtained for nucleon and
A matter.

Here we did not consider the following effects which should
be investigated to develop our understanding of the dense nu-
clear matter:

e band structure of the quarks,
e R dependence of the constituent quark misand the cut-
off parameter for the vacuum,
e inclusion of the heavier meson®, w, ...) to the soliton
solutions,
improvement of the correction by the zero point energy and
Casimir effects,
quark—meson couplings and the Fermi motion of the
baryons,
e crystalline order in high density phase,
SU(3) extension.

is expected, our model provides much lower value of the

ing the spurious zero-point energy. The minimum for nucleorsaturation density than the experiment. In this analysis, the

is observed atR ~ 1.8 fm which corresponds to the density
oy ~ 0.04 fm=3. This value is much lower than the exper-
imental value. The binding energy 8 ~ 18 MeV which

is not far from the experimental observation. Rty we also
find the shallow minima aRk ~ 1.22 fm which corresponds
to pa ~ 0.13 fm=3. The A saturation is attained at the den-
sity pa/pn ~ 3.2 which is close to the prediction of density
pa/pn ~ 2=3 in the framework of the quantum hadrodynam-

Wigner—Seitz cell is approximated by a sphere and thus high
density matter is attained by shrinking the cell volume with the
spherical shape of each soliton unchanged. However, in reality,
the neighborhood solitons start to overlap and the structure will
be deformed from uniform nuclear matter at high density. In
this phase, the hedgehog ansatz should not be appropriate any
more.

We observed the increase in the zero mode of the center of

ics [32,33] The advantage of our approach is that the modemass motion of the soliton for higher density, which means that
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Fig. 8. Binding energy of nucleon for the various constituent quark mags Fig. 9. Kinetic energy of the pio(87).
MeV).

In Figs. 6 and 7one finds the nucleomt-mass difference
Segradually decreases as matter density increases and eventu-

the soliton tends to rest in the WS approximation. In this case? “". . o .
we should employ the exact WS cell which reflects the backally it vanishes. The reduction in the mass difference has been
bserved previously in a similar chiral soliton model but em-

ground crystal symmetry instead of sphere, to get higher saturd:

tion density. The inclusion of band effects may also improve ou loying somewhat different projection 'technique for .qugntum
results. In Ref[14], the authors imposed the Bloch-like bound- number(35,36} In the present formulation, the behavior is not

s ; lly understood because it should be explained by the dynam-
ary conditions on the s-wave valence quark wave function an
y " wave v guark wave funct aus of hadrons, that is, QCD. In the naive @ quark model,

timated th lit If- istently. They found thd : ) : X .
estimated the soffon energy sef-consistently. 'hey foun I%;e mass difference is ascribed to the hyperfine spliftd1g.

the effects of the admixtures of higher states are small exce he reduci oy the | fthe dist bet
for the scalar quark density. In fact, the band structure will ap- € reguction may imply the increase ot the distance between

pear at some critical density and the correction for the quanturﬂuarks' In fact, irFig. 4, one can see the concentration of the

energy may become more important at the dense medium bg-uirllt(s at Ehe lcel_lfboundz;ry ats tr(ljetgznsny mcrease_?. biect
cause the radius of the soliton, that is, the moment of inertia ematively, It we understan as a composite objec

strongly depend on the position of the b4ad] (resonance state) of the nucleon and pion, the mass difference
Generally speaking, the constituent quar'k makss mo-  can be interpreted as the energy of pions bound to the nucleon.

mentum- and density-dependébé]. We chose the valugf = Although it is absent in the present formulation, the pion kinetic

420 MeV as it reproduces the free nucleon observableigng, energy inside the soliton can be estimated as
one can see that for larger valueMf the saturation point goes 5

to inward and the binding becomes deeper. Varying the valug: — f_ﬂ/d3x tropUTo U

of M for each density may give a better result for the saturation

point. R ,
An important feature of the nucleon in a matter is about its  _ gnﬁ/,ﬂd,, <F’(r)2 + M) (37)
size. It is believed that the nucleon will swell in the medium. 5 r2

The authors of Refl34] observe such effect with reducing ef-
fective quark massz* in the Nambu—Jona-Lasinio type quark— In Ref. [22], the authors introduced the and the cutoff pa-
soliton model. We confirmed within our model that as smallerrameter of the vacuur-dependent form of the pion decay
the M, the size of the soliton increases. But in that case, theonstantf; (r, A) and estimated its density dependence with
saturation becomes shallowig. 8). Recently, we investigated the A whose value is set for the free space valuefpf The
soliton solutions in the CQSM taking into accouniw mesons  f (r, A) determined in such a way is essentially valid only for
which will improve the short distance physics. We are able tahe free space limik — oo. Therefore we shall simply take the
obtain deeper binding energy as decreasing the valde.affe  value in free spaceg,; = 93 MeV.Fig. 9shows the result of the
will report it on forthcoming article. kinetic energy of pions as a function & and one can observe

In Fig. 6, one finds that the spectra of hucleon ahdre too  that the energy is reduced as the density increases. This reduc-
small compared to the experimental values. Obviously it is dugion of the pion kinetic energy may contribute to the reduction
to the subtraction of the zero-point corrections. A little moreof the mass difference.
sophisticated approach of the spurious motion is performed in Our formulation is directly applicable to the $8) octet-
Ref. [14] and by applying this approach to our analysis, thedecuplet baryon spectra in nuclear mafi26,38]. After the
results will be improved to a certain extent. Also, the mesombove effects are properly incorporated and more realistic esti-
coupling to the quark inside nucleon andshould be important mation of the saturation points is achieved, it will be interesting
to shift the minima at higher density. to study the SI(B).
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