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We performed the first replication study for the reported association of the insulin receptor gene (INSR) with
migraine with aura (MA). Two of 35 SNPs (rs1052371 and rs2860174) reached borderline significance (best
uncorrected allelic p value of 0.052 for rs2860174) in stage 1 of our study (270 MA patients, 280 controls). As
1s2860174 was 1 of the 5 SNPs with prior evidence of association, we also genotyped this SNP in our stage 2
sample (679 MA patients, 368 controls), and it was nonsignificant (allelic p value 0.478). The combined
analysis of our samples showed just a nonsignificant trend for rs2860174 (p=0.1). However, the joint analysis
of our study and the initial study reporting an association—including 1278 Caucasian MA patients and 1337
Caucasian controls altogether—displayed a significant allelic p value of 0.005. In conclusion, further
association studies for rs2860174 with even larger numbers of individuals are required to exclude or confirm

definitely a small effect of this SNP on migraine susceptibility.

© 2008 Elsevier Inc. All rights reserved.

Migraine is a very common and genetically complex episodic
disorder. The molecular pathomechanisms of this severely disabling
brain disease are largely unknown [1]. Among the different forms of
migraine as classified by the criteria of the International Headache
Society [2], the two most common ones are migraine without aura
(MO; 70-80% of cases) and migraine with aura (MA; 20-30% of cases).
Epidemiological data demonstrate that a genetic susceptibility is
involved in both forms of migraine, but argue for a stronger genetic
background in MA compared to MO [3].

McCarthy et al. [4] performed one of the few genetic association
studies in migraine research that had reasonable statistical power and
reported a significant finding, which, however, has up to now not been
reanalyzed in an independent association study. In their large-scale
study, 16 SNPs within the insulin receptor gene (INSR; OMIM *147670)
were genotyped in two Caucasian samples with a total of 827 patients
with MA and MO from North America and 765 control individuals. They
could also replicate some of their findings in an independently collected
Australian sample with 255 Caucasian patients with MO and MA
and 237 controls. The strongest association was found for MA with one
exonic (synonymous) and two intronic SNPs (rs1799817, rs2860172, and
1rs2860174, with allelic p values of 0.008, 0.002, and 0.007, respectively)
in one of the North American samples. The only SNP that was significant
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gender-independently in the combined analysis of both American
samples was rs2860174 (designated as SNP90). Whether this variant or
any of the other INSR SNPs with evidence for association has a direct
functional effect, e.g., on INSR mRNA splicing or expression levels, is
currently unknown. The authors had selected the INSR gene for
analysis due to its chromosomal localization on chromosome 19p13
near CACNAI1A, the gene mutated in familial hemiplegic migraine
type 1 (FHM1) [5], a rare autosomal dominant inherited form of MA.
Indeed, in parallel with the association study, the same group published
evidence for an MA susceptibility locus on chromosome 19p13 distinct
from the FHM1 gene [6], and the INSR gene is located within the critical
region between D195427 and D195S592. On the other hand, the
chromosome 19p locus was later on excluded in Finnish MA families
[7]. Also in a Caucasian migraine pedigree with linkage to 19p (for which
CACNA1A mutations had been excluded) no coding mutations in the
INSR gene were identified [8,9]. However, further plausibility of INSR
as a putative migraine susceptibility gene comes from evidence for a
comorbidity of migraine with diabetes [10] in combination with the
significant association of INSR polymorphisms with type 2 diabetes in a
recent study including 2134 Caucasian individuals [11]. Moreover,
fasting is a frequent trigger factor reported by migraineurs [12-15], and
there is evidence for an altered insulin metabolism in migraineurs [16].

The positive findings of the INSR association study for migraine
have attracted much attention; however, a confirmation or rejection
of the association results has not been published yet. For this reason
we performed a comprehensive replication study in a large German
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MA case-control sample. Our study included all SNPs that were
initially found to be associated with migraine (MA and/or MO) in any
of the three case-control samples gender-independently. In addition,
we investigated haplotype-tagging SNPs that capture the common
haplotype variation in the European population at the INSR locus. We
applied a two-stage design: our case-control sample was randomly
split into two subsamples, and the selected set of SNPs was first
genotyped in subsample 1. SNPs with interesting findings in
subsample 1 were subsequently also genotyped in subsample 2.

Results
Single-marker analysis

Allele call rates on the Illumina platform were between 97.4 and
99.9%. Four SNPs moderately deviated from the Hardy-Weinberg equi-
librium (two in the case and two in the control sample; see Table 1).
These deviations were not significant after Bonferroni correction for
multiple testing.

Two of the altogether 35 SNPs genotyped in our stage 1 sample
comprising 270 patients with MA (77 male/193 female) and 273
control individuals (82 male/191 female) displayed borderline sig-
nificant (p=0.05) allelic association with MA (Fig. 1 and Tables 1 and 2):
1rs1052371 and rs2860174. After permutation-based correction for the
number of tests performed, the allelic p values of these SNPs increased
to 0.73 and 0.74, respectively. However, among the five INSR SNPs that
were previously reported to be associated with migraine [4], rs2860174

reached borderline significance also in our uncorrected single-marker
analysis. As this was hence the SNP with the best a priori evidence for
association (it was the only significant marker in the combined analysis
of both North American samples in the original study), we subse-
quently genotyped rs2860174 in our stage 2 sample 2 [679 patients
with MA (128 male/551 female) and 368 control individuals (77 male/
291 female)]. No significant allele frequency differences could be
observed in this subsample (allelic p value of 0.478; Table 2). However,
a combined analysis for rs2860174 including our stage 1 and 2 samples
showed a nonsignificant trend (p=0.1; odds ratio=1.17; Table 2). As
also observed in the prior study, the minor allele (T allele) of rs2860174
was more common in the patient sample.

Haplotype analysis

We also performed a haplotype-based comparison of case-control
genotypes in our stage 1 sample, starting with the markers that were
associated with migraine in the original study (rs1051690, rs1799817,
1s2860172, rs2860174, and rs2860183) or that showed uncorrected
association in our stage 1 sample (rs1052371, rs2860174). We
evaluated all possible SNP combinations of these six polymorphisms,
yet, for none of the 63 SNP combinations was the p value obtained for
the global haplotype smaller than those obtained for the two
borderline-associated SNPs alone (data not shown). However, nomin-
ally significant differences on the same order of magnitude were found
for some individual haplotypes. The A-T haplotype over the two SNPs
rs1052371 and rs2860174 displayed an estimated frequency of 8.3% in

Table 1
Genotyping results and statistical analysis in subsample 1
SNP rs ID Distance (bp) Allele 1/2 (strand) Deviation from HWE Minor allele frequency in% Allelic p value OR (95% CI)

(p value)

Controls Cases Controls Cases
rs1052371 AJG (+) 0.06 0.22 12.8 (A) 171 (A) 0.05 0.71 (0.51-1.00)
1rs3745550 2,980 AlG (-) 0.50 0.30 17.8 (A) 15.9 (A) 0.39 1.15 (0.84-1.58)
rs1051690 (=SNP279) 1,390 AJG (-) 0.05 0.44 19.1 (A) 18.4 (A) 0.76 1.05 (0.77-1.42)
rs2288404 8,023 AJG (-) 0.23 0.13 49.3 (G) 483 (A) 0.43 0.91 (0.72-1.15)
51799817 (=SNP274) 311 AJG (+) 0.28 0.95 16.5 (A) 20.1 (A) 013 0.79 (0.58-1.08)
s2860172 (=SNP84) 2,078 AIC(-) 0.31 0.95 16.4 (A) 20.1 (A) 0.11 1.28 (0.94-1.75)
152860174 (=SNP90) 3,343 AJT (+) 0.47 0.94 15.8 (T) 204 (T) 0.05 1.37 (1.00-1.87)
rs6510950 5,771 AlG (-) 0.37 0.39 5.1 (G) 5.0 (G) 0.94 1.02 (0.59-1.76)
rs8103483 8,885 AlG (-) 0.35 0.02 478 (G) 481 (G) 0.91 0.99 (0.78-1.25)
1s2252673 5,044 C/G (-) 0.87 0.03 16.7 (G) 14.3 (G) 0.27 1.20 (0.86-1.67)
rs8106126 11,186 AlG (+) 0.09 0.14 38.6 (A) 42.7 (A) 0.17 1.19 (0.93-1.51)
1s7258741 1,461 AlG (+) 0.24 0.74 5.9 (A) 5.2 (A) 0.64 0.88 (0.52-1.49)
rs2245649 149 AJG (-) 0.75 0.24 7.8 (G) 6.7 (G) 0.51 1.17 (0.73-1.85)
rs2059807 2,895 AlG (+) 0.15 0.24 40.6 (A) 455 (A) 0.10 1.22 (0.96-1.56)
rs1366234 1,708 A/C(+) 0.72 0.46 23.5 (A) 219 (A) 0.53 0.91 (0.69-1.21)
rs11671975 9,463 AJG (+) 0.92 0.40 23.7 (G) 22.5(G) 0.63 0.93 (0.70-1.24)
rs8112883 2,040 A/C(-) 0.92 0.57 27.6 (A) 25.8 (A) 0.50 0.91 (0.70-1.19)
rs891087 5,198 AJG (+) 0.93 0.65 8.8 (A) 7.5 (A) 0.42 0.84 (0.54-1.30)
152860183 (=SNP81) 4,857 AlG (-) 0.96 0.57 39.4 (A) 371 (A) 0.43 1.11 (0.86-1.42)
rs2115386 7,190 AJG (-) 0.24 0.97 48.5 (A) 48.0 (G) 0.25 1.15 (0.91-1.46)
rs4499341 4,425 AlG (-) 0.62 1.00 38.8 (G) 36.1 (G) 0.35 0.89 (0.70-1.14)
1s3745545 10,851 AlG (-) 0.99 0.75 14.9 (G) 14.1 (G) 0.72 0.94 (0.67-1.32)
rs4804404 6,541 A/C(+) 0.08 0.19 143 (C) 15.2 (C) 0.66 0.93 (0.66-1.30)
rs7508679 4,450 AlG (-) 0.90 0.68 43.2 (A) 38.9 (A) 0.15 0.84 (0.66-1.07)
rs890860 5333 AlG (-) 0.25 0.09 221 (A) 22.7 (A) 0.81 1.04 (0.78-1.38)
rs3852876 11,390 AJG (+) 0.63 0.69 30.5 (G) 309 (G) 0.90 1.02 (0.78-1.32)
rs10404318 8,072 AJG (-) 0.95 0.98 0.4 (G) 0.2 (G) 0.57 0.51 (0.05-5.60)
154247374 5129 AlG (-) 0.15 0.32 14.8 (A) 16.9 (A) 0.35 1.17 (0.84-1.62)
rs4804195 2,188 C/G (-) 0.62 0.96 38.8 (G) 38.7 (G) 0.97 0.99 (0.78-1.27)
rs919275 6,497 AJG (-) 0.02 0.78 377 (G) 377 (G) 1.00 1.00 (0.78-1.28)
rs6510975 5,437 AlG (-) 0.55 0.39 49.1 (A) 47.0 (A) 0.50 1.09 (0.86-1.38)
1s7248939 1,560 AJG (+) 0.35 0.19 39.9 (A) 355 (A) 0.14 1.21 (0.94-1.54)
1rs7254060 14,093 AlG (+) 0.64 0.65 7.5 (A) 7.4 (A) 0.95 1.01 (0.65-1.60)
rs8111710 9,169 A/C(-) 0.43 0.72 22.9 (A) 22.0 (A) 0.73 0.95 (0.71-1.27)
rs7507911 5,512 AlG (-) 0.29 0.10 17.7 (A) 13.9 (A) 0.10 1.32 (0.95-1.84)

Genotyping results and statistics for 35 SNPs at the INSR locus analyzed in subsample 1. p values<0.05 are in bold. HWE, Hardy-Weinberg equilibrium. OR, odds ratio. CI, confidence
interval. SNPs that were reported to be associated with migraine [4] are given in italic, with the original designation written in parentheses after the rs ID.
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Fig. 1. Schematic representation of the INSR gene. (A) Chromosome 19 position in bases, based upon NCBI build 35 of the human genome. (B) Genomic structure of the INSR gene.
Small vertical bars represent 5’ untranslated regions, large vertical bars coding exons. (C) Relative positions and rs IDs of the 35 SNPs genotyped in this study. SNPs previously
reported to be associated with migraine [4] are marked by an asterisk. (D) LD plot with HaploView 3.11. Solid red squares indicate complete LD between SNPs. D’ values <1 are given

within each square.

patients and 4.8% in controls, whereas the G-A haplotype was more
common among controls (76.2% versus 70.9%). Because 4 of the 5
previously reported associated SNPs fall within the 23-kb interval
between these two SNPs, a potential susceptibility variant would most

likely reside in this region. We finally evaluated all possible two-
marker combinations over all 35 genotyped SNPs, but did not find any
more pronounced differences that could withstand correction for
multiple testing.

Table 2
Single marker association results of rs2860174 in the various MA samples of our study and the initial report [4]
Sample Controls MA Allele frequency Genotype frequency Allele A versus T
() F;)t St Controls (n) MA patients (n)  Controls (n) MA patients (n)
A T A T AA AT TT AA AT T p value  OR (95% CI)
Subsample 1 (this study) 263 270 0.842 0.158  0.796 0204 0703 0278 0.019 0.633 0326 0.041 0.0516 137
(443) (83) (430) (110) (185)  (73) (5) (171) (88) (11) (1.00-1.87)
Subsample 2 (this study) 368 679 0.837 0163  0.825 0.175 0.696 0283 0.022 0672 0306 0.022 04784 1.09
(616) (120)  (1120) (238) (256) (104) (8) (456)  (208) (15) (0.86-1.39)
Subsamples 1+2 (this study) 631 949 0.839 0.161 0.817 0183 0.699 0281 0.021 0661 0312 0.027 0.1026 117
(1059)  (203) (1550) (348)  (441) (177) (13) (627)  (296)  (26) (0.97-1.42)
Sample S1 (initial study) 279 175 0.849 0.151 0.837 0163 0.720 0258 0.022 0703 0269 0.029 0.6179 110
(474) (84) (293) (57) (201)  (72) (6) (123)  (47) (5) (0.76-1.58)
Sample S2 (initial study) 427 154 0.847 0153  0.776 0224 0717 0260 0.023 0.604 0344 0.052 0.0049 1.59
(723) (131)  (239) (69) (306) (111) (10) (93) (53) (8) (115-2.21)
Samples S1+S2 (initial study) 706 329 0.848 0.152  0.809 0.191 0718 0.259 0023 0.657 0304 0.040 0.0251 132
(1197)  (215)  (532) (126)  (507) (183)  (16) (216)  (100)  (13) (1.04-1.68)
All samples 1337 1278 0.844 0156  0.815 0185 0.709 0269 0.022 0660 0310 0.031 0.0051 1.23
(2256)  (418)  (2082) (474) (948) (360) (29) (843) (396) (39) (1.06-1.42)

MA, migraine with aura; CI, confidence interval.
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Joint analysis

As both in our study and in the initial study [4] the T allele of
152860174 displayed a moderately increased frequency in MA patients,
we performed a combined analysis of both studies including the
original, unpublished genotype frequency data for the patients of
Caucasian descent in the S1 and S2 populations from Northern
America. This combined analysis comprises 1278 patients with MA
and 1337 control individuals from three different sampling units. The
three sampling units were homogeneous with respect to ethnicity
(=Caucasian) and clinical diagnosis (=migraine with aura according to
the International Headache Society criteria). The genotype frequencies
of any of the single samples as well as of the combined sample did not
deviate from the Hardy-Weinberg equilibrium as tested by the exact
test (e.g., for the combined analysis of all samples, p=0.53 and p=0.40,
for the control and patient sample, respectively). Moreover, the allele
frequencies of the three different control samples did not differ from
one another by more than 1.2%, which proves the good comparability
and homogeneity of cohorts. The combined statistical analysis showed
a p value of 0.0051 (Table 2) compatible with a small but causative
involvement of the INSR gene in MA pathogenesis.

Discussion

As a follow-up of the association study published by McCarthy
et al. [4] we performed a comprehensive replication study of the INSR
gene in a large MA case-control sample. Indeed, 2 of 35 genotyped
SNPs (rs1052371 and rs2860174) showed borderline-significant allelic
association with MA (p=0.05) in our single-marker analysis, a finding
that, however, does not withstand a correction for multiple testing.
Among the INSR SNPs previously reported to be associated with
migraine, MA, or MO, only rs2860174 could nominally be replicated
(with p=0.05) in our stage 1 sample, but not in our larger stage 2
sample, in which we subsequently genotyped this SNP. Furthermore, a
haplotype-based analysis capturing the common haplotype variation
at the INSR locus in the European population could also not detect
convincing evidence for association.

However, in the combined analysis of our two samples, rs2860174
still showed a nonsignificant trend (allelic p value=0.1), with the same
allele as the putative risk-conferring variant as reported by McCarthy
et al. We therefore contacted the investigators of the initial study and
performed a joint analysis of both studies for rs2860174. This joint
analysis, including the formerly unpublished genotype frequencies of
the initial study for patients with migraine with aura and for controls
of Caucasian descent, revealed a p value of 0.005. The analysis
included 1278 patients with MA, uniformly diagnosed according to
the International Headache Society criteria, and 1337 control
individuals. It was ethnically homogeneous (of Caucasian descent)
and displayed almost identical allele frequencies in the control
samples, so that population stratification (as a frequent cause of
false-positive results) is a rather unlikely explanation for the observed
differences. A possible explanation for these allele frequency
differences in the joint analysis may be random effects on allele
distribution, attributable to the fact that both studies (this study and
the study by McCarthy et al.) included multiple SNPs. However, as this
observation is based on one of the largest MA samples analyzed in
migraine research so far, further association studies for rs2860174
with even larger numbers of migraine patients and control individuals
are required to exclude or confirm definitely a small effect of this SNP
on migraine susceptibility.

Materials and methods
Patients

In total 949 German patients with MA, recruited at a single clinical center, were
included in the study and randomly assigned to sample 1 or 2 to enable a two-stage

study design. All patients gave their written informed consent and were diagnosed
according to the revised criteria of the International Headache Society [2] by
experienced physicians as described previously[17-19]. The composition of our two
patient subsamples used in different parts of this study and a detailed description of
clinical features of the participants is given in Table 3. The study was approved by the
local university ethics committees. The population-based control sample consisted of
641 gender- and ethnically matched German individuals.

Genetic analysis

SNP genotyping on genomic DNA of subsample 1 (=stage 1 of the study) was
performed on an Illumina platform according to the manufacturer's protocol. For
genotyping of SNP rs2860174 in our subsample 2 (=stage 2 of the study), a 587-bp
genomic fragment was amplified by a standard PCR with a touchdown protocol
(annealing temperature decreased from 63 to 55 °C within 9 PCR cycles, followed by 28
cycles with 55 °C annealing temperature) with the primer pair 5'-GAAGTGAACAGTA-
GACACCG-3' and 5’-GGTTGCAGTGAGCCGACATC-3'. The PCR products were digested
with the restriction enzyme Bglll, as the minor allele of rs2860174 introduces a Bglll
restriction site into this fragment. Digested PCR products were analyzed on a 2% agarose
gel after electrophoresis. Genotyping of individuals was independently performed by
two investigators.

SNP assortment

The SNPs rs1051690, rs1799817, rs2860172, rs2860174, and rs2860183 were
included because they were reported to be associated with migraine (MA and/or MO)
in at least one of the three case-control samples analyzed previously [4]. Because in the
initial study the rs nomenclature was not used, we assigned the rs IDs to all SNPs by
using the sequence information given in the initial publication. For those SNPs
genotyped in both studies, we included the initial designation in Table 1 (e.g., rs2860174
corresponds to SNP90 in the former study). The haplotype-tagging (ht-) SNPs were
chosen based on the HapMap database (http://www.hapmap.org; version September
2004) to discriminate between all common haplotypes (with an estimated frequency
>5%) within haplotype blocks in the Central European sample. Haplotype blocks were
defined as regions in which >85% of total haplotype diversity is covered by common
haplotypes, using the program Hapblock [20].

Statistics

Allele and genotype distributions were compared between cases and controls by a
%2 test with the appropriate degrees of freedom. Tests of Hardy-Weinberg equilibrium
were performed using a X? goodness-of-fit test. For the comparison of haplotype
frequencies between cases and controls we used the program Cocaphase, which is
contained in the Unphased package [21]. This program estimates maximum-likelihood
haplotype frequencies using an expectation-maximization algorithm and compares
haplotype frequencies using a likelihood ratio test.

Power calculation

A power analysis was performed with the Genetic Power Calculator [22]. We
estimate that, under the assumption of complete LD between the marker tested and the
disease-causing variant, we had 78% power to detect a true difference in allele
frequency between the 270 patients with MA and 273 controls (i.e., in the first stage of

Table 3
Clinical characteristics of patients with migraine with aura

Characteristic Stage 1 sample

(=subsample 1)

Subjects (n) 270 679 949

Stage 2 sample
(=subsample 2)

Full sample
(=subsample 1+2)

Men/women (n) 77/193 128/551 205/744
Age (years) 48+13.5 429+12.9 444+13.2
Mean age at onset (years) 19.5+£11.1 17.7+£9.6 18.2+10.1
Mean duration of one 449+23.7 50.5£22.5 48.9+23.0
attack (h)
Mean number of 26+14 2.7+13 26+13
attacks/month
Visual aura symptoms (%) 96.6 93.5 94.4
Sensory aura symptoms (%) 404 36.8 37.8
Dysarthria/aphasia (%) 32.8 28.8 29.9
Nausea (%) 87.4 90.1 89.4
Vomiting (%) 66.0 64.3 64.8
Photophobia (%) 91.6 88.3 89.2
Phonophobia (%) 88.9 87.6 88.0
Unilateral location (%) 84.6 82.7 83.2
Pulsating pain (%) 80.8 84.6 835
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our study) with a single-marker association analysis (a=0.05), further assuming a
frequency of the disease-associated allele A of 0.18, a relative risk of 1.5 for genotype Aa
and of 2.25 for genotype AA, and a prevalence of MA in the general population of 8%.
Using the same parameters, the estimated power increases to >98% in a sample of 949
patients and 641 controls (i.e., in our complete sample).
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