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Abstract

Let {W(t),t=0} be a standard Wiener process and {t,,n>1} be an increasing sequence of
positive numbers with ¢, — oco. We consider the limit inf for the maximum of a subsequence
[W(#:)|. It is proved in this paper that the Chung law of the iterated logarithm holds, i.e.,
lim inf,_, oo (t/ log log £,) 2 maxi<. |W(5;)| = 7/v/8 a.s. if t, — ta_1 = o(tx/loglogt,) and that
the assumption ¢, — ¢, = o(t./loglogt,) cannot be weakened to ¢, — t,—1 = O(¢,/ loglogt,).
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1. Introduction and main results

Let {X,,n>1} be a sequence of independent random variables with EX,, = 0 and
EX? < oo for each n>1. Put

n n
S$5=0, S, =X, t,=>EX? n=12,...
i=1 i=1
Assume
t, — 00 as n — oo, (1.1

{Xp,n=1} is said to satisfy the Chung law of the iterated logarithm (Chung LIL) if
lim inf(#,/ log log £,) /2 max |S;| = n/v/8 as. (1.2)
n—oo 1<ign

Here, and in the sequel, logx = In max(x,e) and In is the natural logarithm.

It is well-known (Jain and Pruitt, 1975) that the Chung LIL (1.2) holds for {X,,n>1}
i.i.d. random variables with mean zero and finite variance. The assumptions EX; = 0
and EX? < oo are also necessary (cf. Csaki, 1978). For independent, not necessarily
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identically distributed random variables one can refer to Martikainen (1986) and Shao
(1992). We restate the Chung LIL of Shao (1992) here for easy reference.

Theorem A. Let {X,,n>=1} be a sequence of independent random variables with
EX, = 0 and EX} < oo for every n>1. Set o}, = Zf:,:'HEX,.Z, k=0, n>1.
Assume that for any € > 0

k+j
lim max Y. EXM{|X| >0 } o, = 0. (1.3)

n—00 k+j<niog;zety/loglogt, ;i

Then (1.2) holds.

It is easy to see that if {X;?/EX?,n>1} is uniformly integrable and

max EX,.2 =o(t,/loglogt,) as n— oo, (1.4)

I1<iga

then (1.3) is satisfied. Obviously, {X;?/EX?,n>1} is uniformly integrable for indepen-
dent normal random variables. Therefore, an immediate consequence of Theorem A is
as follows.

Theorem 1.1. Let {X,,n>1} be independent normal random variables with mean
zero. Assume (1.1) and

ty — t,— = o(t,/loglogt,) as n— oo (1.5)

are satisfied. Then (1.2) holds.
Clearly, we can rewrite Theorem 1.1 in the following form.

Theorem 1.1*. Let {W(t),t >0} be a standard Wiener process and {t,,n>1} be an
increasing sequence of positive numbers satisfying (1.1) and (1.5). Then we have

liminf(¢,/ loglog #,) /2 max |W ()| = n/vV8 as. (1.6)

We remark that if
t =0(t,—1) as n— oo, (1.7)

then we have

lim sup(2t, loglog#,)™"? max W) =1 as, (1.8)
n— o0 1<ign
lim sup(2¢t, loglogz,)~"* sup |[W(s)|=1 as., (1.9)
n—oo 0<s<t,

and
lim inf(¢,/ loglog t,)~ " sup |W(s)| = n/V8 as. (1.10)
n—oo 0<s<ty

(cf. Csorgd and Révész, 1981; Shao, 1989). Comparing (1.8) and (1.9), we see that,
for the subsequence {#,,n>1} satisfying #, = O(#,—), the almost sure limit superior
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for the maximum of that subsequence agrees with the almost sure limit superior for
the maximum of the Wiener process, computed along the subsequence. It would be
interesting to know if the same holds for limit inferior. In view of (1.10), this amounts
to asking if (1.6) remains valid when (1.5) is replaced by (1.7).

The main aim of this paper is to show that (1.5) in Theorem 1.1* cannot be replaced
by (1.7). We prove that o(-) in condition (1.5) of Theorem 1.1* cannot be weakened
even to O(-).

In what follows, we always assume that {W#(¢),t>0} is a standard Wiener process.

Theorem 1.2. Let ¢ > 0, ¢, = exp(cn/logn). We have

lim inf(z,/ loglog ,)” /2 max |W(5)| <(6+ (nc/2)?)exp(—c'?) as.  (1.11)
n—oo 1<ign

It is easy to check that
ty — t,—1 ~ cty/loglogs, as n— oo

under the hypothesis of Theorem 1.2, and that (6 + (mc/2)'?)exp(—c'?) < n/v8
provided ¢ > 5. Hence, (1.11) shows that the Chung LIL may fail if o(-) in (1.5) is
replaced by O(-). Indeed, we obtain the following more general results.

Theorem 1.3. Let {c,,n=1} and {(logn)/cs,n=1} be non-decreasing sequences of
positive numbers. Put

t, =exp(nfcy,), n=12,..., (1.12)
d = lim c,/logn. (1.13)
n— 00
Assume
Cp — 00 as n— o0. (1.14)

Then we have

lim inf (c/tx)'"* exp((log n / cx)!/?) max [W()] =7 as, (1.15)
where (1/2)'? <y<6d'? + (m/2)"2.
Clearly, y = (n/2)"? if d = 0. That is, we have

Theorem 1.4. Let {cp,,n>=1} and {(logn)/c,,n=1} be non-decreasing sequences of
positive numbers satisfying (1.14) and

cy/logn —- 0 as n— co. (1.16)
Then

lim inf(c,/1,)'? exp((log n / c,)'/*) max |W(t)| = (n/2)? as., (1.17)

n—oo 1<ign

where t, = exp(n/c,).
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Let 0 < § < 1, ¢ > 0. Take ¢, = (logn)®/c. It follows from Theorem 1.4
immediately that

Corollary 1.1. We have

lim inf #,”"/(log n)? exp (c'/*(log n)! ~972) max |W(t;)] = (nc/2)'?  as., (1.18)
n—oQ isn
where 0 < 6 < 1, ¢ > 0, t, = exp(cn/(logn)?).
Our next theorem concerns the case of 0 = 0.

Theorem 1.5. We have, for every ¢ > 0,

lim inf exp (—cn/2 + (c logn)'?) max | (e°)| = (n(1 —e79)/2) 27 as. (1.19)

n—o0

In particular,

lim inf 272 . 2098 " max |w(2)) = 27 %472 as. (1.20)

n— oo i<n
Remark 1.1. Another version of (1.19) is: For every a > 1, we have

lim inf a~"2a(%% """ max |W(@')| = a"*(n(1 ~ 1/a)/2)'" as. (121)
n—o0 isn
Remark 1.2. It is easy to see that for independent normal random variables (1.3) is
equivalent to (1.4). Theorem 1.2 in turn shows that (1.3) cannot be weakened for the
Chung LIL in general.

Remark 1.3. Huggins (1990) claimed that (1.6) was true provided ¢, — oo and ¢, —
t,—1 = o(t,) as n — oo. Theorem 1.2 indicates that his conclusion is not correct.

We will give proofs of our theorems in Section 2. Section 3 is devoted to some
further remarks and open problems. As a by-product of our Theorem 1.1*, we will
establish

SUPo<s<r, WS _
n—oo MmaX;gp lW(t;)l

under the condition ¢, — t,_; = o(t,/(loglog,)?).
Throughout this paper we will use the following notations: W (-) denotes a standard
Wiener process; [x] denotes the integer part of x; a ~ b means lima/b = 1.

2. Proofs

We start with some preliminary facts. Their proofs are elementary or well-known
and so are omitted here (cf., for example, Csorgé and Révész, 1981)
(A) 1 —e*2x/(1+x) for x > —1;
(B) sup_ < rco0 PUW (D) + x| <a) = P(|W(b)}<a) for a,b > 0;
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(C) inf <, P(|W(b) + x|<a) = P(|W(b) + a|<a) for a,b > 0;
(D) P(IW(1)|<x)<2x/V2rn for x > 0;

(E) P(supys<, W ()| <x)=(1/2)exp(—na/(8x?)) for a, x > 0;
F) fy e~"2dt=x exp(—x?/2) for x > 0.

To prove our theorems, we need the following lemma.

Lemma 2.1. Let {s,,n=1} be an increasing sequence of positive numbers. Then

P(max |W(s,)|<x) H P(|W(s; —sj—1) +x|<x)

[ASAS Jj=m+1
<P ( max |W(s;)| <x>
I<i<n
<P ( max |W(s;)| <x> H P (|W(s; —sj-1)| <x) 2.1
I<ism J=m+1
for every 1<m<n and x > 0.
Proof. Since {W(s),s =0} has independent increments, we obtain

P jmss, ol <)

= / P(W(sn) — W(sn—1)+t|<x) dP (1<m<ax ]|W(s,-)| S, W(sp—) < t>

—X

HES]

< sup P(|W(sp) — W(sn~y) +t|<x)P ( mgx_1 | W (s;)| Sx)
= P (5) - Wspen) <P | max | WG] <x)

= P(|W(sp — sn—1)| <x)P (ngx_l | () Sx) , (2.2)

by (B). Similarly, we have

P ( max |W(s;) |<x)
1<€i<n
= |1nf P(|W(sp) — W(Sq—1) + t]<x)P (l<m<ax 1 W (s;)] Sx)
<x xisn—
= P(|W(sp — sn—1) + x| <x)P ( max |W(s;)| <x> , (2.3)
1<i<n—1

by (C). Now (2.1) follows from (2.2) and (2.3), by iteration. [

Proof of Theorem 1.3. According to the Kolmogorov Zero—One law, there must exist
0 <y <00 such that (1.15) holds. So, we only need to show that for any 0 < ¢ < 0.01

lim inf(c,/t,)/? exp((log n/ c,)'?) max |W(4;)|=(1 — 2e)(n/2)!? as. (2.4)
n—oo I<i<gn
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and
lim inf(c,/tx)""* exp((log n/c,)""*) max |W(t)|<(1+ 2e)(6d"? + (n/2)'?) as. (2.5)
We prove (2.4) first. Put
yn = ¢,/ exp((log nfcy)'?), my = n —[2(cq logn)'?], 31 = (n/2)"2. (2.6)

For n > m 21, noting that

n_m_n_ mlogn _n—m mlog(n/m)

—~ L = 2.7
Cn  Cm cn  Cplogm Cn cn logm
S (1 1 ) n—m,
logm Cn
by the assumption that ¢,/logn is non-increasing, we have
m n
by —tm =ty (1——exp<———>)
Cm  Cn
1 n—m
21— —{1-
(1-oe (- () "))
1 n—m
=zt (1- —
logm j ¢, + (1 —log™ m)(n—m)
| n—m
2t |1~ , 2.8
"( logm)n—m-l-c,, (2.8)

by (A). To avoid cumbersome expressions, we always assume in what follows that n
is sufficiently large. Using Lemma 2.1, we obtain

d (1’1‘?2( (W< (1 =261 (tafen)? exr>(—(10gn/cn)‘/2))
ESE Y
=P ( max W ()| <(1 —2¢e)y t,i/z/y,,)
i<i<n
n
< I P(W(E — )< =261 6,/ yn) = L. (2.9)
Jj=ma+1

From (2.8), (1.14) and (D), we deduce that

n

o= 11 P (WIS =262 = 4-)')
Jj=ma+
< I1 PRS- 203820 +¢) 1(a(s(1 ~ Tog™ /)'™)
J=m,+1
< I1 P(IWQOI<A - 2R ™)
1

J=ma+

i n—j (logn\'"?
< II P(IW(1)|<(1 —e)y,exp( - J _( gn) ))
J=mp+1 c, o
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. 1/2
"o 2(l—e¢ n— logn
j=mat] \/E_TE 2¢, Cn

_ logn 12 "on—j
= exp ((n -~ my) <ln(l —£&)— (T) +j:§.:+1 2% | (2.10)

An elementary argument shows that

logn 12 non—j
(n—m, lnl—s—( ) +
) ( (-o-(= T

12
=(n—my,) (ln(l —€)— (l%g_rz) ) + (n—mu)n—m, — 1)

n 46‘,,

1/2
<(n—my) (ln(l —e)— (I‘Lg”> ) + L;c'”n_)z

1ogn>‘/2> | Qcalogn)'? — 1
4c¢,

<(2(calogn)'? = 1) (ln(l —&)— (

Cn
= —logn+ (2(calogn)? — ) In(1 — &) + 4%,,’ (2.11)
where the last inequality follows from the fact that x(In(1 — €) — (logn/c,)"?) +
x*/(4¢c,) is decreasing on (—oo, 2(c, logn)'?]. Therefore,
I < exp (—logn + (ci logn)"?In(1 - ¢))

and

I, < oo. (2.12)

n=1

This proves (2.4), by (2.9), (2.12) and the Borel-Cantelli lemma.
In order to prove (2.5), we let

0 12
ne = [4k logk - loglogk - logloglogkl, yi = c,‘,{z exp ((M) , k=1,2,...

Cny
We have
liminf(c,/t,)"? exp((log n/ c,)"?) max |W (1)
n—oo 1<i<n
< liminf(c,, /ty, )V? exp((log i / cn, )V?) max |W (1)
k—oo 1<i<my
< liminf(y/,%)  max (W () = W(ty_,)|
k—oo M1 <i<ng
+ lim sup(cy, /t, )/ exp ((log ni / cn, )2 )

k—o00

=L+ (2.13)

max [ ()]
I<igng_,
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Noting that, by (2.7)

bn nNg—y Mg
—— = €Xp —_— —
t"k Cne_) Cry

nyp — Np—y
< exp (——-———)
2¢cy,

< exp(—2 logk - loglogk - logloglogk /cy, )

for every k sufficiently large, and applying the law of the iterated logarithm gives

C 172 log ny 1/2
stzlimsup(ﬂ) exp ( ) (tn,_, loglogt,, H"?

k—o0 ny Cny

1/2
1 -1 k- logloglogk
< 2limsupc!? log ny exp<<10gnk) _ logk -loglogk - logloglog )

k
k—voo an an

< 2lim sup(log k) exp

k—+00

(lognk 1 logk—loglogk-logloglogk)
c

ny C”k

< 6lim sup(log k) exp

k—o0

_logk -loglogk - logloglog k
2cy,

< 6lim sup(log k) exp (—

k-—o00

loglogk - logloglogk
4C1

=0, (2.14)

where, we have used the assumption that c¢,/logn is non-increasing. Since
{max,, , <i<n, |W(t) — W(ts_,)|, k=2} are independent random variables, (2.5) fol-
lows from the Borel-Cantelli lemma if we can show

Ay <Py

§ P ( max |W(4)— W, )<+ 2€)y2t,:{2/yk) = o0, (2.15)
k=2

where y; 1= y2(d) = 6d'? + (n/2)"/2.
We divide the proof of (2.15) into two cases.

Case 1. d>0.25, where d is defined by (1.13). It is easy to see that

P( max |W(t)— W(ts,_,)|<(1 + 25)}’2’2{2/)/1()
Ry <i€ng
=P ( sup [ (s)|<(1+ 2e)vztn‘{2/yk)
0Ks<tn,
1 nicy, (log ny ) 172
—¢e —— X 2
7 °*P ( 8(1 + 2e)?y3 exp Cny

exo [ — n*d exp(2/d"'*)log ny
P\ (@) + 6d2y?

\Y%

\Y
N | —

(2.16)
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for every k sufficiently large, by (E) and (1.13). Define

__mdep/d?) _ wexp(-12) (°"p(6 + (n/(zd))‘/z))z
f( )= 8((71/2)1/2 + 6d1/2)2 - 8 6+ (7t/(2d))‘/2 .

Then, f(d) is a decreasing function and hence
f(d)<f(025)<094 for d=0.25. 2.17)

This proves (2.15), as desired.

Case 11. 0<d <0.25. Set
mi = m — [2(cp, logm ) — 2¢,, Inya] — 2. (2.18)

Clearly, we have

1/2

2(cy, logm)'? — 2¢,, Inyy ~ 2(1 — d"? Iny;)(cp, log )% = o(ng — mx—1)

by (1.13) and the fact that
2(1 —d?1Iny;) > 0 for each 0<d<025.

Therefore, n, > my; > n,_, provided that & is sufficiently large. For the sake of
convenience of expression, in what follows we will always let k& be large enough.
From Lemma 2.1 it follows that

Ue :=P( max_|W() - W(t,,_ )| <(1 + 25)y2t,1k/2/yk>

Ny <ig<n

> P( max W (&) — W(ty,_ )| <(1 +26)12 tifz/yk> :

n_ <i<my

Ny
[ P(IWE— tic)+ (1 + 220/ <1+ 2 )92 112 /)

i=14my

2 P( sup [W(s)|<(1+¢e) t,l,,fz/yk> :

05ty

Ny
[T P(IW(t—tic)+ (1 +2e)p2 4/l < (1 + 2€)p2 1,7/ 94)

i=14+m
. 1 exp( Wty V2 ) ﬁ ] /2(1+2€)}’2t,l,,/(2/()’k(li~li—!)]/2) g
e ——kt . — e ,
2 8(1 + €)y3ty, i=l+m V2T Jo
(2.19)

using (E). Write

ny 1
ne i L
i=ll;[mk V 27 0

201426yt [kt —4i—1)'™?) )
e~ /2 ds.
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Since ¢, and logn /¢, are non-increasing and limy_, . log m; / logn; = 1, we have, for
every my < i<n

i—1 i
li—t1 =1 <l—exp<c. x —z—))
i~ i

t; t logn t;
<—-<—— 8% 1L
¢ cn logm ¢y

and, by (2.7)

k

1/2 172
t,,,{ c,,{ .
——1/2 = €Xp
Vi ti

o 12 _

g Ny ng —my

((22) ) oo (-stmem)
Cn, 2¢p, logmy

m—i (lognl,)l/2 o <_(c,,,k lognk)1/2+2)

2¢,, Cn, P Cp, logmy

as k — oo uniformly in m; < i<n;. Using the definitions of #,, and y; and (F), we
obtain
”J:_('”‘_"lr)l/z)

f"‘[ 1 2t+e)p explg - (5
T, = h/
i=l+m V27 Jo

g ﬁ 2(1 + &)y, exp n—i (lognk>1/z

= il i /27[ 2an cnk

no—i logn 72
exp(—2(1+€)2)’§e"p( kc —2( c k) ))}
ng P
> exp "zk ln2(1+5))’2+nk—i_(IOgnk)l/z
- i=1+my V2n 2¢n Cny

27 & ny — i log ny 2
exp| —2(1+¢)y; 3 exp -2 ( )
i=l+my Cny Cny

:=exp(Ay) - exp(By). (2.20)

It is easy to see that

2(1 +&)y2 logn \ ' Mopy — i
Ak=(nk—mk) In —( +
v2n Cn, izlz-f-:mk 2cn,

— (O —mp) (ln 2(1+e)y2 (lognk>1/2) N (ng — mg ) (e — my — 1)

V2n Cn, 4 Cny
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Cny

21 + )y, <1og n,()”2 (ng —my — 1)
= —m In — - —_—
(my k)( o Ze,

12
> (2 + 2(cp, log m)'? — 2¢,, Iny) (ln ey (log nk) )

V 277: cnk

+ (2(cy, log m)'? — 2cp, In 7, )?
4cp,

2(1 4+ &)y,

V2

= —logn + (2(cy, log ny W2 — 2¢cy, Iny2)In

lognk>l/2

ny

+Cn,y (ln 72)2 - 2 (

21 +€/2)y,2

V2

+cp, Iny, - In

= —logni + (2(cy, logng )1/2 —2¢p, Iny3)In + cn (Iny; )2

2(1 +¢/2)y, 7
V2n 2(1 +¢/2)

by the fact that In(2(1 + €)y2/v2r)<(logni /cy)/* due to d<025 and that

(log 1k / €)' = o((cn, log n)'/?).
We turn now to estimating By. Notice that

ni _ 1 1/2
Bk>—2(1+e)2y§/ exp <nk s_2<ognk) ) ds
my Cny Cny

B L 12
= — 2(1 + )92 ¢y, exp (nkc Mk _ 5 ( ognk)
(3

Cny

— log ng+2(cy, log nk)l/2 In . (2.21)

I

> = 2(1 + €2 ¢y, exp (2(‘"’* logm)'” —2en Inyy 42, <1°g ”")1/2)
Cry Cry
> — 2(1 + €)*75 cm, exp(—21ny2 + 2/cy,)
> ~2(1+¢)cy, (2.22)
where the last inequality is by (1.14). From (2.21) and (2.22) we conclude that

2(1 2
Ty > exp (‘ log n + 2(cn, log ng)? In 21 +&/2)p

Van
n
Iny, - In —o— —2(1 3 ) 223
+cp Iny; - In 207 207, (1+¢) c,,,,> (2.23)
It follows from (2.7), (1.14) and (2.18) that
e 2, (n_2)
83t 8y3 Cmi  Cny
2.2 _ 1
< L%k exp ('"" s (1 - ))
8'})2 Cny logmk
n? cp,

8
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Therefore, by (2.19) and (2.23)
1 2(1 +¢/2)y,
Uz = -1 2(cn, 1 Vg 22272
[ 2exp( ogn + 2(cn, logng) /< In T

+Cy Inyy - In RI_‘F_:/E)TYE —(1+¢) (2 + %2> c,,,‘) (2.24)
Recall
y2 = y2(d) = 6d"? + (1/2)"2 <7,(025) for 0<d<025 and 0 < e<0.0l.
We have

21 +¢/2), n
290280 T 2/2)/2 B ) P
Y R T )
2(1 +¢/2)y,

V2n

2
U4
2en, log ) —(1+eP Q@+ Fen

22(cp, logng )2 1n

2

e, In72(025) - In - 101°@ + e,

T
2(1.01)275(0.25)
2(1 +€/2)2

—48c¢,
V2n ‘

>2(cp, logni)"? In

o 20+ e/2)y2

~ (21 Ny, 4.8d"?)(cy, logm)'?,
= 2In((1 + £/2)(1 + 6(2/n)*d"?)) — 4.8d"?)(c,, log ni ), (2.25)

by (1.13). Write
g(x) = In(1 + 6(2/n)"*x) — 4.8x, x=0.

Clearly, g(x) is a concave function with g(0) = 0 and ¢(0.5) > 0.04. Hence, g(x)=0
for every 0<x<0.5. Thus, we obtain

21n((1 + £/2)(1 + 6(2/n)'?d"?)) — 4.8d'? > 0 for every 0 <d<0.25. (2.26)

Therefore, by (2.24), (2.20), and (1.4),

1
Ux 2 2 exp(— log i),

which yields (2.15) immediately, as desired.
The proof of Theorem 1.3 is now complete. [

Proof of Theorem 1.2. Take ¢, = (l/c)logn, n = 1,2,... Now (1.11) is a direct
consequence of (1.15). O

Proof of Theorem 1.5. The proof is along the same lines of that of Theorem 1.3. Put
y3 = (n(1 — e=¢)/2)!/2. It suffices to show that for any 0 < £<0.01

lim inf exp (——cf +(c logn)l/z) max |[W(e°)| =(1 — e)e?y; as. 2.27)
n—oo 2 i<n
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and

lim inf exp (~— + (c log n)‘/z) max W) <(1 +e)ey; as. (2.28)

n—o00

Let m, =n—[2(logn/c)"?]. Applying Lemma 2.1 again, we have
ci c/4 cn 1/2
P (m(ax [W () <(1 —e)e ysexp (7 —{c logn) )) (2.29)
sn

n . .
< [I P (IW(e" — D) (1 — £)e*py exp (% —(c logn)l/z))

i=m,+1

= 11 P(lW(l)ls(l—s)(l—e-‘f)—‘”v;ec/“exp(c(”; e 1ogn)v2>>
i

i=m,+

" _ _ e~y 1/2. ucf —;
H {2(1 et \/;_n) V2y5e 4exp<C(n2 l)—(c logn)‘/z))}

= exp ((” —my) (ln(] —g)—(c logn)'/2 + 4) + i C(n?__ i)> )

i=mp+1

Similarly to (2.11), we have

exp ((" — my) (ln(l —¢e)—(c logn)'? + ) " i C("z— i))

i=m,+1

— exp ((n — my) (ln(l — &)= (c logn)'2 + Z) + Z(n e — 1))

= exp ((n —my)(In(1 — &) — (¢ logn)’/2)+ %(n - m,,)z)

logn 172 12y, € logn 172 ’
< exp 2( = 1] (In(1 — &) — (c logn)*) += 2( ) -1
c 4 c
= 1 2 (e 1 <
=cxp | —logn+ ( p ) - n( —5)+Z ,

where the last inequality is from the fact that x(In(1 — ) — (c logn)"?) + cx?/4 is
decreasing on (—oo0, 2(logn/ c)'/?]. Therefore

0 :
2P (T?Z‘ W ()< (1~ e)eys exp (— —(c logn)m)) < o0,

n=1
which yields (2.27) immediately, by the Borel-Cantelli lemma.
We prove below (2.28). Set

1 1/2
m = [k logk - log log k], mkznk——[2(0gnk) }-1, k=1,2,...

c
Using the law of the iterated logarithm, we obtain

lim sup exp (—% + (c log nk)l/z) max W) =0 as.
sng

k—o0 =1
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and hence

lim inf exp (_(:2_n +(c logn)'/z) max |W ("))
Isn

n—oo

< liminf exp (—% +(c lognk)'/z) max |W ()|
k—o0 2 i<ng

< lim inf exp (—f"—" ¥ (c lognk)1/2> max  |W(e)) — W(e™1).  (2.30)
k—»oo 2

m— <i<ng

Thus, to finish the proof of (2.28), by the Borel-Cantelli lemma, it is enough to show
that

g <i<ng

o0 .
S P ( max |W(ef) — W(e™ )< (1 + e)ec/4y3zk) = 00, (2.31)
k=2

where z; = exp(c ni/2 — (c logng)'/?).
Similarly to (2.19), we have
U :=P ( max |[W(e') — W(e™ )| <(1+ E)ec/"yazk)

ng_ <i<m

ZP( sup |W(S)|<V3Zk)

0<s<e™
e . )
I P(w(e’ - U=y 1 (1 + e)ey3zi| < (1 + s)ec/4y3zk)
i=14my
2 112
>Lexp <_ n ixp(2(c log ) ))
2 8y3 exp(c(nx — my))
. 2(1 + €)e*ys c(ng — i)
1l {(21:(1 "oz TP\ 2

i=1+my

1 2 .c/2.,2
X exp (—g(—:-g—l_ic—b exp(c(ng — i) — 2(c log nk)l/z)) }

1 n2
= 5 €Xp —8—?%

X exp ((nk —my) (ln(l +e)—(c 10gnk)1/2+ %) + "Z" C(nkz— i)) ‘

i=14+my

—(c log ”k)l/z)

2.¢2.2 n
wexp | = 2LEEVETNs S (clm — i) — 2(c logm)?) ). (2.32)
I —e=c i=1+my

Similarly to (2.21), we have

exp <(”k —my) (ln(l +&)— (c logny)? + %) + i‘: c(nk2-— 1))
i=1+my

= exp ((nk — my) (ln(l + ) — s(c logm ) + %) + el mk)(zk L 1)>

c(ng — my )2)

= exp ((nk —m)(In(1 + ) — (¢ lognk)‘/2) + ;
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1/2
> exp (2 (k’gc"") (In(1 + &) — (¢ logm)'?) + lognk)

1 1/2
— exp (— log ny + 2 ( °gc"") In(1+¢) ), (2.33)

where the last inequality uses the fact that x(In(1 + ¢) — (c logng)'?) + cx?/4 is
increasing on [2(logny / ¢)'/2, oo).
Along the same lines of the estimation of Bj in (2.22) one can easily obtain

2.c/2.2 ny
0 (_%(b_ff)‘;?_s S exp (cm — i) — 2(c lognk)‘“)>

l—e¢ i=1+my

2(1 2.¢/2.,2
> ex (_(_iff)_e_V; exp(cln — mg) — 2(c log ,,k)l/z))

c(1—e°)
2(1 4+ e)%e*y3

Now (2.31) follows from (2.32), (2.33) and (2.34), as desired.
This completes the proof of Theorem 1.5. O

3. Further remarks and open questions

As mentioned in the introduction (see (1.6), (1.8), (1.9) and (1.10)), supy <,
|W(s)| and max;<,|W(#)| have the same upper and lower bound if the gap in the
sequence {t,,n>>1} does not grow too fast, i.e., #, — t,; = o(ty/loglogt,). This leads
to the idea that max; <, |W(#)| and sup, ., |W(s)| may share same sample behaviour
as n — oco. The following theorem makes this notion precise.

Theorem 3.1. Let {t,, n=1} be an increasing sequence of positive numbers with
t, — 0o. Assume

ty — ta_) = o(ty/(loglogt,)’) as n— oo. 3.1
Then, we have

lim sup |W(s)|/ [max (W)l =1 as. (3.2)

"—’OOOSSSln
Corollary 3.1. We have

lim sup |W(s)|/ lrg?i(nlW(i”)l =1 as. for every p > 0. 3.3)

n—o0 0<s<nP

The significance of Theorem 3.1 as well as Corollary 3.1 is that in order to estimate
SUPy<s<;, |W(s)|, one only need to calculate |W(-)| at points #,i = 1,2,...,n. For
example, to estimate max; <4025 |W(i)|, it is enough to calculate 155 values of |W(-)|
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at t; = i%,i = 1,2,...,155. This phenomenon exists in many other situations, as we
state in the next theorem.

Theorem 3.2. Let {X,,n>1} be iid random variables with EX; =0, EX} = 1 and
E|lX;|**° < oo for some 6 > 0. Let {t,, n>1} be an increasing sequence of positive
numbers satisfying (3.1) and t, — oo. Then, we have

11m sup |S(s)l/ [max [S(#) =1 as, 3.4)

P05ty

Here, and in the sequel S(s) =3, <, Xi
Corresponding to Theorems 1.4 and 1.5 (cf. Remark 1.1), we have

Theorem 3.3. Let {X,,n=1} be iid random variables with EX; = 0, EX? = 1
and E|X;|**° < oo for some 6 > 0. Let {c,,n>1} and {(logn)/c,,n=1} be non-
decreasing sequences of positive numbers with ¢, — oo and c,/logn — 0 as n — oc.
Then

lim inf(c,/t, )"/ exp((log n /c,,)‘/2)m<ax IS(4)| = (n/2)'?  as,, (3.5)
where t, = exp(n/c,).

Theorem 3.4. Let {X,,n>1} be iid random variables with EX, = 0, EX? = 1 and
E|X|**? < oo for some & > 0. We have

. / ; 1 12
liminf a="/2 . gllog.m"* max 1S(a")| = a'* (g (1 — —)) as. (3.6)

n—oo a
for every a > 1 and, in particular

lim inf 2-"2 . 20og;m)" max [S(2)] = 27%47'?  as. (3.7)

n—oo

Proof of Theorem 3.1. Put {y = 0, d, = max; <,(¢; — t;1). Clearly, by (3.1), we have
d, = o(t,/(loglogt,)?) as n — oo. (3.8)
Noting that

sup [W(s)| < max W ()| + jmax  sup |W () — W(s)

0<s<t, Sisny_<s<y
< max. W)+ sup  sup |W(u+v)— W(u),

Osu<t, O<v<d,

we obtain
limsup sup |W(s)|/max|W(t,)]
n—oo 0Ks<y,

<1+limsup sup sup |W(u+v)-— W(u)]/m<ax | (¢;)]|
isn

n—oo 0<u<t,0<v<d,
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1}

<1+ lims .
+ TSP log log 1)1 max; < [ (5]

log log ¢,
lim sup(ig—og———)l/2 sup sup |W(u+v)— W(u)
n—00 In 0<u<t, 0<v<d,
I " " v
<1+ ﬁ lim sup (( oglogt,)d (log(tt,,/d )+ log log t,,)) .
i SUPg<u<i, SWPo<o<a, | W (1 + 1) — W(u)|
im sup
n—oo (dn(log(t,/d,) + loglog 1x))1/?

12
<1+ 2limsup ((log log t,)d,(log(¢,/d,) + loglog t,,))

n—oo tn

-1, (3.9)

where the third inequality is from Theorem 1.1*, the fourth is by Theorem 3.2 A of
Hanson and Russo (1983), and the last equality follows from (3.8). On the other hand,
it is trivial that supy ¢, |W(s)|> max;<, |W(t)|. This proves (3.2). O

Proof of Theorem 3.2. By the well-known strong approximation theorem of Komlds
et al. (1976), without changing the distribution of {S(¢),#>0} we can redefine {S(¢),
t >0} on a richer probability space together with a standard Wiener process {W (¢), =0}
such that

S(t) - W(t) = o) as. as t — oo (3.10)
From (3.10) and (1.6), we derive that

max; <<, [SG)|  maxi<ig, W) + o(t;/(zﬂs))
maxi <i<n (S| max, <in |W(1)] + (/@)
max; <i<, [ ()]

=(14o(1)) (3.11)
Now (3.4) follows from (3.11) and (3.2) immediately. O

Proof of Theorems 3.3 and 3.4. The conclusion is a direct consequence of (3.10),
(1.17) and (1.21). O

We conclude with the following remarks and open questions.

Remark 3.1. Let {S(¢),t=0} be a stochastic process. If (3.10) holds for some § > 0
in the Strassen sense, then (3.4)—(3.7) remain true.

Question 1. We are not sure if the condition (3.1) is the best one for (3.2). Can (3.1)
in Theorem 3.1 be replaced by (1.5)?

Question 2. What is the exact convergence rate to 1 in (3.3)?
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Question 3. If we only assume that the second moment of X is finite, do Theorems
3.2-3.4 remain true? If the answer is no, what are the normalizing constants in these
theorems?

Question 4. Let ¢ > 0, t, = exp(cn/logn). By Theorem 1.3, we have

meNY2 e loglog ¢, 172 nC 12\ e
(—) ™ <liminf { —=—— max | W ()| < (6+(7) )e -
n i<n

2 n—00

What is the precise constant for the above lim inf?
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