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In this note we prove existence theorems for dualizing complexes over graded
and filtered rings, thereby generalizing some results by Zhang, Yekutieli, and
Jørgensen. Q 1997 Academic Press

1. INTRODUCTION

w xIn this note we aim to complete some of the results in 8, 9, 14, 13 . In
these papers the authors are concerned with local cohomology, Serre
duality, and dualizing complexes over graded rings. Recall that a dualizing
complex over a non-commutative ring A is roughly speaking a bounded
complex of A-bimodules finitely generated on both sides such that

Ž . Ž .RHom y, R defines a duality between suitable subcategories of D AA
Ž .and D A8 . In the commutative case, dualizing complexes are fundamental

in Grothendieck’s duality formalism for coherent sheaves.
w xIn the non-commutative case, it is pointed out in 14 that the existence

Ž .of a ‘‘balanced’’ dualizing complex implies Serre duality, but the converse
is less clear.

Below we will give a necessary and sufficient criterion for the existence
Ž . Žof balanced dualizing complexes over connected graded rings Theorem
. w x Ž .6.3 . This resembles 9, Theorem 3.3 which roughly states that the Matlis

b Ž . b Ž .dual of local cohomology defines a duality between D A and D A8 .f g f g
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However, Jørgensen proves his result only for quotients of AS-Gorenstein
rings and even in this somewhat more restricted situation he doesn’t quite

w xprove that one obtains a balanced dualizing complex in the sense of 13 .
ŽOur criterion is based upon a general local duality formula Theorem

. w x Ž5.1 , a slightly restricted version of which is also proved in 9 Jørgensen’s
.methods would also yield our version .

In Section 8 of this paper we develop the rudiments of a theory of
dualizing complexes over ungraded rings. This section really poses more
problems that it answers, but we are nevertheless able to show the
existence of dualizing complexes over some filtered rings, thereby answer-

w xing a question by Yekutieli at the end of the introduction to 13 . The
Ž .following corollary a special case of Corollary 8.7 is a typical example of

what can be obtained.

COROLLARY 1.1. Let k be a field and assume that A is a k-algebra
carrying a filtration k s F A ; F A ; ??? such that gr A is commutatï e0 1
and finitely generated. Then A has a dualizing complex and in particular

b Ž . b Ž .D A is dual to D A8 .f g f g

As a byproduct of our methods we obtain a general formula for the
Ž .dualizing complex over a Gorenstein ring Proposition 8.4 . It is tempting

to conjecture that such a formula might be used to prove existence of
dualizing complexes over more general classes of non-graded rings, but we
have not yet been able to so.

Finally in Section 9 we compute the dualizing complex of a Koszul
w xAS-regular algebra 2 . Specializing to dimension three yields a connection

w xbetween the matrix Q, prominent in 2 and the automorphism defined by
the canonical normalizing element in degree three, which was introduced

w xin 3, 4 .
w xThis paper was completed before I became aware of 9 so there is some

overlap between the papers in their starting sections. For example, the
w xresults below on Matlis duality are also contained in 9 . Furthermore, as

w xpointed out above, a duality formalism is to some extent developed in 9
for quotients of Gorenstein rings.

Let me close this introduction by thanking Yekutieli for his careful
reading of a preliminary version of this paper and for pointing out a

Žserious error in the proof of Proposition 8.2 and also for telling me how to
.repair it! .

2. NOTATIONS AND CONVENTIONS

Except for Section 8, most objects below will be tacitly assumed to be
Z-graded. If M s [M is a graded object with M s 0 for n 4 0 then wen n
say that M is right limited. Left limited is defined similarly.
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k will always be a field. A connected graded k-algebra is an N-graded
ring k q A q A q ??? with dim A - ` for all i. Unless otherwise speci-1 2 i
fied A, B, C will be connected graded rings.

Ž .The category of left graded A-modules is denoted by Gr A . Following
w x13 we view right A-modules as left A8-modules and A-B bimodules as

e Ž .A m B8-modules. We denote A s A m A8. When we write Hom y, yA
we mean graded ‘‘Hom,’’ that is, those maps which are finite sums of

Ž .homogeneous maps. If we really need Hom in Gr A then we write
Ž .Hom y, y . Similar conventions apply to RHom. Shifting in Gr AGrŽ A.

Ž . Ž . w xwill be denoted by and shifting in D A will be denoted by .
Forgetting right or left structure defines restriction maps

6

Gr A m B8 Gr AŽ . Ž .

66 6

Gr kGr B8 Ž .Ž .
w xwhich preserve injectives and projectives 13, Lemma 2.1 . This means in

particular that all derived functors we will use are compatible with it.
Ž . .If M g D Gr A then M stands for an arbitrary complex representing

. Ž ..M. Conversely if N is a complex then Q N is the corresponding object
Ž .in D Gr A .

w xWe refer to 13 for other notations. In general these should be self-
explanatory.

3. MATLIS DUALITY FOR GRADED RINGS

w xThe results in this section are also contained in 9 . For the convenience
of the reader I repeat them here.

If M is a graded k-vector space then we define its Matlis dual as

M9 s Hom M , k s MU .Ž . [k n
n

Let us call M locally finite if M is finite dimensional in every degree.
Ž .Then y 9 defines an autoduality on the category of locally finite vec-

Ž .torspaces. If A is a graded ring then y 9 sends Gr A to Gr A8 and in this
way defines a duality between the full subcategories consisting of locally

Ž .finite objects. Since y 9 is exact it extends in the obvious way to a
contravariant functor

y 9: D Gr A ª D Gr A8Ž . Ž . Ž .
iŽ . yiŽ . w x w xand we have H K 9 s H K 9 , K n 9 s K 9 yn .
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Ž . Ž .Let us denote by D Gr A the full subcategory of D Gr A consistingl f
of complexes with locally finite homology.

Ž . Ž . Ž .PROPOSITION 3.1 Matlis Duality . 1 y 9 defines a duality between
Ž . Ž .D Gr A and D Gr A8 .l f l f

Ž . Ž .2 For M, N g D Gr A we ha¨el f

Hom M , N s Hom N9, M9 . 3.1Ž . Ž . Ž .A A8

Ž . yŽ . qŽ .3 Assume in addition that either M g D Gr A or N g D Gr A .l f l f
Then

RHom M , N s RHom N9, M9 .Ž . Ž .A A8

Ž . Ž . Ž .Proof. 1 If K g D Gr A then we have K 9 g D Gr A8 and byl f l f
looking at homology we see that the canonical map K ª K 0 is an

Ž .isomorphism. This proves 1 .
Ž . Ž .2 By 1 we find that

Hom M , N s Hom N9, M9Ž . Ž .DŽGr A. DŽGr A8.

Ž .and by taking the sum over the shifts in Gr A we obtain 3.1 .
Ž .3 Under the current hypotheses we may, and we will, assume that

M . is a right bounded complex of projectives or that N . is a left bounded
complex of injectives.

Taking H 0 of the composition

RHom M , N s Q Hom M ., N . ª Q Hom N . 9, M . 9Ž . Ž . Ž . Ž .Ž .A A A8

ª RHom N9, M9Ž .A8

Ž .is precisely the map 3.1 and hence is an isomorphism. If we replace M
Ž . iby shifts in D Gr A we find that this is also the case for H . This proves

Ž .3 .

4. SOME RESULTS ON LOCAL COHOMOLOGY

In this section we prove some results for the local cohomology of graded
rings. Our main interest concerns noetherian rings. However, even if A is
noetherian then a priori we don’t know if this is also the case for Ae.
Therefore in this section we are forced to consider non-noetherian
rings also.

For a connected k-algebra A we put m s m s A and we define theA G1
functor

G : Gr A ª Gr A : M ¬ inj lim Hom ArA , M .Ž . Ž . Ž .m A G n
n
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Ž . Ž e.On Gr A8 and Gr A we have corresponding functors, which we denote
respectively by G and G e. We will also use the same notations for somem8 m

Ž .variants of these functors. For example, G defines a functor Gr A m Bm
Ž . w xª Gr A m B . Thanks to 13, Lemma 2.1 such sloppiness is allowed, even

if we work with the corresponding derived functors.
Assume that A is finitely generated. Let us call an object X in
Ž .Gr A m B , m-torsion if for every x g X there exists an n such that

Ž .A x s 0. It is easy to see that this defines a torsion theory in Gr A m BG n
and G is the corresponding torsion functor.m

LEMMA 4.1. Assume that E is an injectï e A m B-module.

Ž . Ž .1 If M is an A-module then Hom M, E is an injectï e B-module.A

Ž . Ž .2 G E is a direct limit of injectï e B-modules.m

Ž . Ž Ž ..Proof. 1 This follows from the fact that Hom y, Hom M, E sB A
Ž ..Hom M m y, E is an exact functor.AmB

Ž . Ž .2 This follows from 1 together with the definition of G .m

iŽ .We will say that A is Ext-finite if Ext k, k is finite dimensional for
Ž .every i. This is equivalent with the minimal free left or right resolution of

k being of finite rank in every degree. From this we easily deduce:

LEMMA 4.2. Assume that A, B are Ext-finite. Then so is A m B.

Out main reason for introducing Ext-finiteness if the following.
i Ž .LEMMA 4.3. Assume that A is Ext-finite. Then R G y commutes withm

direct limits.

Proof. Since

RiG y s inj lim Ext i ArA , yŽ . Ž .m A G n
n

iŽ .it suffices to show that Ext ArA , y commutes with direct limits.G n
Let F . be the minimal free resolution of ArA . ThenG n

Ext i ArA , y s H i Hom F ., y . 4.1Ž . Ž . Ž .Ž .A G n A

Since ArA is finite dimensional it follows from Ext-finiteness that F .
G n

Ž .has finite rank in every degree. Hence the right-hand side of 4.1 com-
mutes with direct limits and we are done.

qŽ .LEMMA 4.4. Assume that A is Ext-finite. Let M g D Gr A . If M has
Ž .m-torsion homology then the canonical map RG M ª M is an isomor-m

phism. If G has finite cohomological dimension then the same is true form
Ž .M g D Gr A .
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Ž .Proof. We have to show that RG M and M have the same homol-m
ogy. By looking at the appropriate spectral sequences for hypercohomology
this amounts to showing that

RiG M s 0 4.2Ž . Ž .m

for i ) 0 and for torsion M g Gr A. Now if M is torsion then M is a
direct limit of finite dimensional modules. Hence by Lemma 4.3 it suffices

Ž .to show that 4.2 holds with M finite dimensional. But then it suffices to
. Ž . Ž ..show it for k. If F is the minimal right free resolution of k then F 9 is

Ž ..an injective resolution of k. F 9 consists of direct sums of copies of A9
i Ž .and thus is torsion in every degree. Hence we find that R G k sm

i . i .Ž ŽŽ . .. ŽŽ . .H G F 9 s H F 9 s 0, if i ) 0.m

LEMMA 4.5. Assume that A and B are Ext-finite. Then

RG s RG ( RGm m mAmB B A

qŽ Ž ..as endofunctors on D Gr A m B . If G and G ha¨e finite cohomologi-m mA B
Ž Ž ..cal dimension then the statement is also true on D Gr A m B .

Proof. Let us first consider the non-derived statement. In the following
Ž .computation we use the fact that the filters of ideals A m B andG n

A m B q A m B are cofinal.G n G n

G s inj lim Hom A m B r A m B , yŽ . Ž .Ž .Gnm AmBAmB
n

s inj lim Hom Ar A m B q A m B , yŽ .Ž .AmB G n G n
n

s inj lim Hom ArA m BrB , yŽ . Ž .Ž .AmB G n G n
n

s inj lim Hom BrB , Hom ArA , yŽ .Ž .B G n A G n
n

s inj lim inj lim Hom BrB , Hom ArA , yŽ .Ž .B G n A G m
n m

s inj lim Hom BrB , inj lim Hom ArA , yŽ .B G n A G mž /
n m

s G (G .m mB A

Ž .If we want to show the corresponding derived statement RG M sm AmB
Ž Ž ..RG RG M then as usual we replace M by a complex of injectives inm mB A

Ž . Ž .Gr A m B . The fact that this is possible if M g D Gr A m B follows
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w x Ž .from 6, Apl 2.4 . From Lemma 4.1 2 and Lemma 4.3 it follows that Gm A

applied to an injective A m B-module yields a module which is acyclic for
G . This shows what we want.m B

Recall that a connected left noetherian graded ring A is said to satisfy
w x‘‘x ’’ 1 if for every finitely generated graded A-module we have that

iŽ . w xExt k, M has right limited grading for all i. By 1, Corollary 3.6 this is
i Ž .equivalent with R G M having right limited grading for all finitelym

generated M and all i.

LEMMA 4.6. Assume that A is left noetherian and satisfies x . If M g
qŽ . Ž .D Gr A has finitely generated homology then RG M has right limitedm

Ž .homology not necessarily uniformly . If G has finite cohomological dimen-m
Ž .sion then the same result is true for M g D Gr A .

Proof. This follows by considering the appropriate spectral sequences
for hypercohomology.

THEOREM 4.7. Assume that A is left noetherian and satisfies x and that B
qŽ .is Ext-finite. Let M be an object in D Gr A m B whose cohomology

modules are finitely generated as A-modules. Then

RG M s RG M . 4.3Ž . Ž . Ž .m mAmB A

If G and G ha¨e finite cohomological dimension then the same statementm mA B
Ž .is true if we assume M g D Gr A m B .

Proof. This is a combination of Lemmas 4.5, 4.6, and 4.4.

COROLLARY 4.8. Assume that A, B are left noetherian and satisfy x . If M
qŽ .is an object in D Gr A m B whose cohomology modules are finitely gener-

ated as A and as B-modules then

RG M s RG M .Ž . Ž .m mA B

Furthermore if G and G ha¨e finite cohomological dimension then them mA B
Ž .same result is true if we take M g D Gr A m B .

Ž .Proof. This is the obvious combination of 4.3 with the symmetric
Ž . Ž .statement RG M s RG M .m mm mA B A

5. LOCAL DUALITY

w xThe following result was stated in 9 under the additional hypotheses
yŽ e.that A is left noetherian and M g D A . For completeness we include

our own proof.
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Ž .THEOREM 5.1 Local Duality . Assume that A is Ext-finite and that Gm
has finite cohomological dimension.

Ž . Ž . Ž Ž ..1 RG A 9 has finite injectï e dimension as an object in D Gr A .m

Ž . Ž Ž ..2 For M g D Gr A m C8

RG M 9 s RHom M , RG A 9 5.1Ž . Ž . Ž .Ž .m A m

Ž Ž ..in D Gr C m A8 .

Proof. Below we let E. be a bounded resolution of A as graded
Ae-modules whose restriction consists of G -acyclic A-modules. We canm
construct such a resolution by taking a suitable truncation of an Ae-

Ž Ž .. Ž .injective resolution of A. Then we have in D Gr A m B8 : RG A sm
Ž ..QG E .m

Ž . yŽ Ž .. .To prove 2 , we start by assuming that M g D Gr A m C8 . Let K
Ž .be a graded projective resolution of M in Gr A m C8 . This is automati-

Ž .cally a projective resolution of M in Gr A . Thus

RHom M , RG A 9 s Q Hom K ., G E . 9 . 5.2Ž . Ž . Ž .Ž . Ž .A m A m

On the other hand by Lemma 4.3, RiG commutes with direct sums. Som
E.m K . is a G -acyclic right bounded complex, quasi-isomorphic to M.mA

Ž .Hence it can be used to compute RG M . We findm

RG M 9 s QG E . m K . 9 s Q G E . m K . 9. 5.3Ž . Ž . Ž .Ž . Ž .m m A m A

Ž . Ž .It is now easy to see that the right-hand sides of 5.2 and 5.3 are equal.
Ž . yŽ .This proves 2 for M g D Gr A m C8 .
Ž . w x Ž .Applying 5.1 to M n for all n and all M g Gr A we see that the fact

Ž .that G has finite cohomological dimension implies that RG A 9 hasm m
Ž .finite injective dimension, which proves 1 .

Ž . Ž Ž .. w xWe now prove 2 in general. If M g D Gr A m C8 then by 6 , M is
. Ž .quasi-isomorphic to a complex K of projectives. Since RG A 9 has finitem

injective dimension and G has finite cohomological dimension the formu-m
Ž . Ž .las 5.2 , 5.3 remain valid. So we can simply copy the proof for M g

yŽ .D Gr A m C8 .

6. AN EXISTENCE THEOREM FOR
DUALIZING COMPLEXES

w xLet us recall the following definition by Yekutieli 13 .

Ž .DEFINITION 6.1. Assume that A is a left and right graded noetherian
bŽ e. Ž bŽ e..ring. Then an object of D Mod A D Gr A is called a dualizing
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Ž .complex in the graded sense if it satisfies the following conditions

Ž .1 R has finite injective dimension over A and A8.
Ž .2 The cohomology of R is given by bimodules which are finitely

generated on both sides.
Ž . Ž .3 The natural morphisms F: A ª RHom R, R and F8: A ªA

Ž . Ž e. Ž Ž e..RHom R, R are isomorphisms in D Mod A D Gr A .A8

Since our rings are noetherian it is clear from this definition that a
dualizing complex in the graded sense is automatically one in the ungraded

Žsense one uses the fact that a graded injective has injective dimension
F 1 as ungraded modules, which we leave to the reader as a pleasant

.exercise in homological algebra .
w x Ž w x. Ž .It is shown in 13 following 7 that if R g D Mod A is a dualizing

Ž .complex then RHom y, R defines a duality between the full subcate-A
Ž . Ž .gories of D Mod A and D Mod A8 consisting of complexes with finitely

generated homology, justifying to some extent the terminology.
Unfortunately, even over a connected graded ring, a dualizing complex

is only determined up to shifting in the derived category, and up to left or
right multiplication with an invertible bimodule. In order to rigidify the
definition of a dualizing complex, Yekutieli introduced the notion of a
balanced dualizing complex which we give below. From now on we assume

Ž .again that we work in the graded category except in Section 8 . As usual
A, B, C are connected graded rings.

DEFINITION 6.2. Assume that A is left and right noetherian and has a
dualizing complex R. Then we say that R is a balanced dualizing complex
if

RG R . ( A9 and RG R . ( A9 6.1Ž . Ž . Ž .m m8

Ž e.in D Gr A .

w xThe following theorem generalizes 8, Theorem 3.3 .

THEOREM 6.3. Assume that A is left and right noetherian. If A has a
balanced dualizing complex R then R is gï en by

R s RG A 9 6.2Ž . Ž .m

and furthermore the following holds.

Ž .1 G , G ha¨e finite cohomological dimension.m m8

Ž .2 A and A8 satisfy x .

Con¨ersely if these conditions are satisfied then A has a balanced dualizing
Ž .complex, gï en by 6.2 .
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w xProof. By 13, Corollary 4.21 , a balanced dualizing complex, if it exists,
Ž . Ž . Ž . w xis given by 6.2 . The fact that 1 , 2 hold is proved in 14, Theorem 4.2 .

Ž . Ž . Ž .Now assume that A satisfies 1 and 2 , and define R by 6.2 . By
Ž .Corollary 4.8, we also have R s RG A 9 and it follows from Theoremm8

Ž .5.1 2 that R has finite injective dimension on the left and on the right.
Ž .This proves Definition 6.1 1 .

iŽ . i Ž . w x iŽ .We have H R s R G A 9 and hence by 1, Proposition 7.9 , H R ism
iŽ .finitely generated on the right. Similarly H R is also finitely generated

Ž . Ž .on the left. This proves Definition 6.1 2 . In particular R g D A .l f
Ž . Ž .We now prove Definition 6.1 3 . By Proposition 3.1 3 ,

RHom R , R s RHom RG A , RG AŽ . Ž . Ž .Ž .A A8 m m

s RHom RG A , RG A .Ž . Ž .Ž .A8 m m8

Ž w x.Now G preserves injectives for example, 13, Proposition 4.6 andm8

Ž .RG A has right torsion homology by Lemma 4.6. From this we deducem

RHom RG A , RG AŽ . Ž .Ž .A8 m m8

s RHom RG A , AŽ .Ž .A8 m

s RHom A9, RG A 9 Proposition 3.1.3Ž . Ž .Ž .A m

s RG A9 9 Theorem 5.1Ž . Ž .m

s A0 Lemma 4.4Ž .
s A.

Ž .The second part of Definition 6.1 3 is similar.
Now we verify what we have to do in order to prove the first part of

Ž .6.1 . Since A is locally finite, we may as well prove

RG R 9 ( AŽ .m

Ž e.in D Gr A . By local duality this is equivalent to

RHom R , RG A 9 s A.Ž .Ž .A m

Ž . Ž .Hence the first part of 6.1 follows from Definition 6.1 3 ! The second
part is similar.

7. AN APPLICATION

THEOREM 7.1. Assume that A and B ha¨e balanced dualizing complexes
and that A m B is left and right noetherian. Then A m B has a balanced
dualizing complex, which is the tensor product of the dualizing complexes of A
and B.
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Proof. We have to verify the hypotheses for Theorem 6.3. By Lemma
4.5

RG s RG ( RG 7.1Ž .m m mAmB A B

Ž .as endofunctors on D Gr A m B . Thus in particular RG has finitem AmB

cohomological dimension, and by symmetry the same holds for RG T .m AmB
Ž .This proves Theorem 6.3 1 .

Ž .By checking the proof of Lemma 4.5 one sees that 7.1 also holds as
Ž e e.endofunctors on D Gr A ( B . Thus we find

RG A m B s RG A m RG B . 7.2Ž . Ž . Ž . Ž .m m mAmB A B

To verify x we have to show that if M is a finitely generated A m B-module
Ž .then RG M has right limited homology. Since RG has finitem mAmB AmB

cohomological dimension it suffices to do this for M s A m B. However,
Ž . Ž .this is clear by 7.2 . The fact that A m B 8 satisfies x is similar.

Hence we can now invoke Theorem 6.3 to obtain that A m B has a
Ž . Ž .dualizing complex given by RG A m B 9. By 7.2 this is equal to them AmB

tensor product of the dualizing complexes of A and B.

8. DUALIZING COMPLEXES OVER FILTERED RINGS

In this section we drop the convention that A, B, C are connected
graded rings. Our aim is to give an existence criterion for dualizing
complexes over filtered rings.

w xIn 13 Yekutieli introduced the notion of a balanced dualizing complex,
in order to rigidify the definition of a dualizing complex. Unfortunately
‘‘balanced’’ makes a priori no sense for non-graded rings, so it is conve-
nient to have a substitute.

Ž .DEFINITION 8.1. Let A be a left and right noetherian graded ring. A
Ž .dualizing complex R over A is rigid in the graded sense if

RHom e A , R m R ( R 8.1Ž . Ž .A A A

Ž e. Ž Ž e.. Ž Rin D Mod A D Gr A the notations A , R mean respectively theA
.left and right A-structures of R .

Note again that the corresponding graded version of this defini-
e Ž .tion implies the ungraded version if A is left or equivalently right noe-

therian.
The justification of Definition 8.1 is in the following proposition.
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PROPOSITION 8.2. Let A be left and right noetherian.

Ž .1 If R , R are rigid dualizing complexes for A then R ( R in1 2 1 2
Ž e.D Mod A .

Ž .2 If A is connected graded and R is a balanced dualizing complex for
Ž .A then R is rigid in the graded sense .

Ž .Proof. 1 We thank Amnon Yekutiely for suggesting a correction to
our original faulty proof of this statement.

˜Ž . Ž .Put L s RHom R , R , L9 s RHom R , R , L s RHomA 1 2 A 2 1 A8
˜Ž . Ž . w xR , R , L9 s RHom R , R . According to 13, Lemma 3.10 , L, L91 2 A8 2 1 L L

have finite Tor-dimension on the left and R s R m L, R s R m L9.2 1 A 1 2 A
w xFurthermore by the proof of 13, Theorem 3.9 we also have

L L
L m L9 s A s L9 m LA A

e ˜ ˜Ž .in D Mod A . Symmetric statements hold of course for L, L9.
We may now compute

L
eR m L s R s RHom A , R m RŽ .1 A 2 A 2 2

L L˜es RHom A , R m L m L m RA 1 A A 1ž /
L L˜ es L m RHom A , R m R m LŽ .A A 1 1 A

L L˜s L m R m LA 1 A

L
s R m L.2 A

Tensoring on the right with L9 yields R s R .1 2

Ž .2 By local duality combined with Theorem 4.7 and Lemma 4.5 we
find

R s RG A 9Ž .m

s RG e A 9Ž .m

s RHom e A , RG e A m A8 9Ž .Ž .A m

s RHom e A , RG A 9 m RG A 9Ž . Ž .Ž .A m m8

es RHom A , R m R .Ž .A
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Remark 8.3. The previous proposition leaves two obvious questions,
which I have been unable to answer so far.

Ž .1 If a connected graded ring has a rigid dualizing complex, is it
balanced?

Ž . Ž .2 If a graded not necessarily connected ring has a rigid dualizing
complex, is this dualizing complex automatically graded?

Assume that A is a left and right noetherian ring possessing a rigid
Ždualizing complex R. Then we say that A is AS-Cohen-Macaulay see

.Remark 8.5 below for the terminology if R has homology in only one
w x edegree. In that case R s v d for some v in Gr A and d g Z. We callA A

v the dualizing module of A.A
If A is AS-Cohen-Macaulay then we say that A is AS-Gorenstein if vA

Ž .is a left progenerator. It then follows immediately from Definition 6.1 3
that v is an invertible bimodule. ThusA

Ry1 s RHom R , AŽ .A

has homology in only one degree and

Ly1R m R s AA

L y1R m R s AA

Ž e.in D Mod A . We can now prove the following.

PROPOSITION 8.4. Assume that A is AS-Gorenstein. Then

Ry1 s RHom e A , AeŽ .A

Ž e.in D Mod A .

Proof. We have

RHom e A , Ae s RHom e A , R m R m e Ry1 m Ry1Ž . Ž . Ž .A A A

s R m e Ry1 m Ry1Ž .A

y1s R .

Remark 8.5. The AS in the definitions of AS-Cohen-Macaulay and
AS-Gorenstein stands for Artin]Schelter since these definitions are a
generalization of the notion of regular rings as introduced by Artin and

w xSchelter in 2 .
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There are stronger versions in the literature of the Cohen-Macaulay and
w xGorenstein property. For these we refer to 10 .

Assume that A is a k-algebra, equipped with an ascending filtration
Ž .F A such that gr A is connected. In that case we say that then ng N

filtration on A is connected. Our aim is to prove the following theorem.

THEOREM 8.6. Assume that A has a connected filtration such that gr A
has a balanced dualizing complex. Then A has a rigid dualizing complex.

Proof. To work conveniently with filtered rings we recall the formalism
w xof Rees rings 5 . The Rees ring of A is the graded ring

˜ n y1w xA s F A t ; A t , t .Ž .[ n
i

˜ Ž .We identify t with the element 1 ? t of A s F A t. Note that t is a1 1
regular central element. We have

˜ ˜ArtA s gr A 8.2Ž .
˜ y1w xA s A t , t . 8.3Ž .t

˜The fact that the filtration on A is indexed by N implies that A is
positively graded.

˜We have to verify the hypotheses for Theorem 6.3 for A, knowing that
wthey hold for gr A. Luckily for us this follows directly from 1, Theorem

x8.8 .
˜ Ž .Hence A has a balanced, and thus rigid dualizing complex given by 6.2

˜ ˜which we will denote by R. By construction t acts centrally on R and
˜Ž . Ž .hence we may define R s R which by 8.3 is a complex of bimodulest 0

over A.
Ž .We claim that R is in fact a rigid dualizing complex for A. By 8.3 there

Ž .is a category equivalence between left or right A-modules and graded
˜Ž .left or right A -modules. A similar statement holds for A-bimodules andt

˜graded A -bimodules with central t-action. Thus we only have to show thatt
˜ ˜R is a rigid dualizing complex in the graded sense over A . Since it ist t
easily seen that all defining properties of a rigid dualizing complex are
compatible with localization at t, we are done.

We immediately deduce the following corollary.

COROLLARY 8.7. Assume that A is connected filtered in such a way that
gr A is commutatï e and finitely generated. Then A has a rigid dualizing
complex.
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9. DUALIZING COMPLEXES FOR KOSZUL AND
ARTIN]SCHELTER REGULAR ALGEBRAS

Let V be a finite dimensional k-vector space and let TV be the tensor
Ž .algebra of V over k. Suppose that TVr R where R ; V m V. Thus A is a

quadratic k-algebra. The dual algebra of A, denoted by A!, is the quadratic
Ž H. Ž . Ž .algebra TV *r R . Let x be a basis of V and z be thei 1s1, . . . , n i is1, . . . , n

dual basis of V *. Then

n
!e s x m z g A m AÝ i i

is1

has the property e2 s 0.
Right multiplication by e defines a complex

A m A! * ª A m A! * 9.1Ž .Ž . Ž .1 0

Ž .A is said to be Koszul if 9.1 is a resolution of k. We have the followingA
result.

Ž . !THEOREM 9.1. Assume that A is a Koszul algebra. Let C A s A m Am
Ž . Ž !. Ž . eA be graded by C A s A m A m A. Consider C A as an A bimodulem m

Ž .Ž . Ž . Ž .¨ia a m b c m d m e s ac m d m eb and define d: C A ª C A bym mq1

d c m d m e s c m z d m x e " cx m dz m e,Ž . Ý i i i i
i

where the sign is q if m is odd, and y otherwise. Then

RHom e A , Ae s C A , d .Ž . Ž .Ž .A

Proof. The proof is based upon the explicit resolution of A as an
w x Ž . Ž !.A-bimodule, given in 12 . Define K A s A m A * m A, with the usual

Ž . Ž 1.UA-bimodule structure. Put K A s A m A m A and define d:m m
Ž . Ž .K A ª K A bym my1

d c m d m e s " c m z d m x e q cx m dz m e,Ž . Ý i i i i
i

Ž Ž . .where this time the sign is q is if m is e¨en. Then K A , d is the desired
resolution of A as Ae-module.

Ž . Ž .It is easy to see that the dual of K A is C A .

Recall that a connected ring of finite global dimension and polynomial
Ž . w xgrowth is said to be Artin]Schelter regular if Ext* k, A s k 2 . It has

been shown by Yekutieli that a two-sided noetherian AS-regular algebra
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w x Žhas a balanced dualizing complex 13, Corollary 4.14 note that this also
.follows very easily from Theorem 6.3 . Below we will explicitly compute the

dualizing complex for a Koszul AS-regular algebra.
Let A be a two-sided noetherian Koszul AS-regular algebra of global

w x !dimension n. By 11, Proposition 5.10 , A is Frobenius. This means that as
! Ž !. ! ! !A -bimodule, A * s A for some automorphism f of A . By functorial-f!

ity f ! is obtained by dualizing an automorphism f of A. More precisely,
f ! restricted to A! s V * and f restricted to A s V are dual to each1 1
other as automorphisms of vectorspaces.

THEOREM 9.2. Let A be as abo¨e and let e be the automorphism of A
Ž .mwhich is multiplication by y1 on A . Then the balanced dualizingm

w xŽ .nq 1complex of A is gï en by A n yn .fe

Ž ! . !Proof. Choose a non-zero element w in A *. Then for b g A wen
Ž . Ž . !Ž .have b w s w yb , wb s w b y . Since wb s f b w, this yields

Ž . Ž !Ž ..w b y s w yf b . Hence we obtain

ba s af ! b 9.2Ž . Ž .

for b g A! , a g A! , 0 F k F n. Choose a non-zero u g A! and definek nyk n
² : ! !the bilinear form , : A m A ª k byk nyk

² :ab s a , b u.

Ž .Then 9.2 reads as

² : !² :b , a s a , f b .Ž .

w xBy 13, p. 61, bottom it follows that A is AS-Gorenstein and that the
balanced dualizing complex lives purely in degree n. Thus by Theorem 9.1
it suffices to compute

d! !coker A m A m A ª A m A m A .ny1 nž /
Ž .Since we also know that this cokernel is left and hence right free of rank
Ž .one it suffices to analyze how the generators x of A act on 1 m u m 1.i i

! Ž . Ž U .As above, let z g A be the basis dual to x . Furthermore let z gi 1 i i i i
! Ž . ² :A be the right dual basis to z for , . Then we haveny1 i i

nU U Ud 1 m z m 1 s 1 m z z m x q y x m z z m 1Ž .Ž . Ýj i j i i j i
i

y1n U!s 1 m u m x q y f z , z x m u m 1Ž . Ž .Ž .¦ ;Ýj i j i
i

n y1s 1 m u m x q y f x m u m 1Ž . Ž .j j
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for which we deduce that the modulo A m A! m Any1

nq1 y11 m u m 1 x s y f x 1 m u m 1Ž . Ž . Ž . Ž .j j

and thus

e w xe nq1 y1RHom A , A s A yn n .Ž . Ž .A e f

Now Proposition 8.4 yields what we want.

Let us briefly recall how to apply this result to three dimensional
w xAS-regular algebras. Those were the main study objects of 2 .

We restrict ourselves to the Koszul case. In that case the algebras are
generated by three generators x , x , x and have three relations f , f , f .1 2 3 1 2 3
Let x, f stand for the corresponding column vectors. x and f may be
chosen is such a way that there exists a linear 3 = 3-matrix M such that

t Ž . tf s Mx, x M s Qf for some invertible 3 = 3 matrix Q with scalar
entries. Then we have:

COROLLARY 9.3. Let A be as abo¨e and let f be the automorphism of A
gï en by x ¬ Qyt x. Then the balanced dualizing complex of A is gï en by

w xŽ .A 3 y3 .f

Ž . Ž .Proof. As usual z is the dual basis of x . By the previous theoremi i
we have to compute A!. It is well known how this should be done. Define
C s k [ V [ R [ W with W s V m R l R m V. Then C is a graded
subcoalgebra of TV and C* s A!. We have to describe the bimodule

Ž !. t t tstructure on A * s C. Put w s x f s f Q x. This a generator of W. Then
Ž .Ž . ŽŽ t t. Ž .a simple verification shows that z w s 1 m z w s f Q s Qf , wzi i i i i

Ž .Ž . Ž !. !s z m 1 w s f . Thus A * s A where c is given in matrix form byi i c

y ¬ Qy1 y. Then the automorphism f of A, dual to c has matrix form
ytx ¬ Q x. Since n q 1 s 3 q 1 s 4 is even we are done.

The previous corollary has an interesting consequence if we combine it
w xwith 13, Theorem 7.18 . If l g k then we denote by f the automorphisml

of A which is multiplication by ln on A .n

COROLLARY 9.4. Assume that A is a three generator three dimensional
Ž . Ž w x.regular algebra associated to the triple E, s , LL with E smooth see 3, 4 .

Let g g A be the canonical normalizing element. Let f be the automor-3 g
phism of A gï en by g ? gy1. Let l be the eigen¨alue of s *, acting on
Ž . ytG E, v and let f be the automorphism of A gï en by x ¬ Q x. ThenE

f s f f .g l
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Briefly, this says that Qyt and the matrix determined by conjugation by
g differ only by the scalar l.
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