Homologous sucrose synthase genes in barley (Hordeum vulgare) are located in chromosomes 7 H (syn. 1) and 2 H

Evidence for a gene translocation?

Pilar Sánchez de la Hoz ${ }^{\text {a }}$, Jesús Vicente-Carbajosa ${ }^{\text {a }}$, Montaña Mena ${ }^{\text {b }}$ and Pilar Carbonero ${ }^{\text {a,b }}$
${ }^{4}$ Cátedra de Bioquimica y Biologia Molecular, ETS Ingenieros Agrónomos-UPM, E-28040 Madrid, Spain and ${ }^{\text {b }}$ Centro Nacional de Biotecnologla, Serrano, 115, 28006-Madrid, Spain

Received 2 June 1992; revised version received 10 August 1992

Abstract

The chromosomal location of the two types of sucrose symuase genes, $\mathrm{S}_{5} 1$ and Ss 2 , has been investigated in barley by Southern blot analysis of wheat-barley addition lines using non-cross-hybridizing-specific probes corresponding to the C-terminal regions of their respective cDNA clones $(\approx 250 \mathrm{bp})$. The Ss 1 gen, , whose cDNA of $2,607 \mathrm{bp}$ has been entrely sequenced, is located in the β-arm of chromosome 7H (syn, 1), while that corresponding to the homologous $S \mathrm{~s} 2$ is in the short arm of 2 H , suggesting the existence of a translocation event between these two chromosomes in cultivated barley after an initial gene duplication and divergent evolution.

Barley; cDNA cloning; DNA mapping; Sucrose synthase gene; Wheat-barley addition line

1. INTRODUCTION

Genomes, chromosomes or chromosomal segments from related taxa are considered to be homologous if they can be traced to a common ancestral counterpart, having retained enough of the original genetic structure for the common origin to be recognised. A detailed analysis of homology can be derived through comparison of gene sequences and investigation of the chromosomal location of genes.
Sucrose is the primary form of translocated carbon in plants, from photosynthetic mature leaves to sinkcells such as the developing endosperm [1-3]. In barley and other cereals, the endosperm accumulates high levels of starch synthesized from the transported sucrose in its amyloplasts. During germination of the seed, the endosperm becomes a source of carbohydrates, and degradation of accumulated starch provides carbon and energy for the development of the new plantule. In all these processes, the enzyme, sucrose synthase (EC 2.4.1.13), that catalyzes the reversibie reaction, sucrose + UDP \rightarrow UDP-glucose + fructose, plays a key role.
Duplicate genes in chromosome arms, 9S and 9L, encoding sucrose synthase (Sh1 and Ss2) have been

[^0]found in maize [4-6]. In hexaploid wheat, Triticum aestivum L. (genomes AABBDD; $2 \mathrm{n}=42$) we have described the existence of two types of sucrose synthase genes [7], Ss1 and Ss2, corresponding to maize Sh1 and Ss2, respectively. The wheat cDNA clones have been used for chromosomal mapping and in gene expression studies $[7,8]$, as well as for detecting cross-hybridizing sequences in related species, such as Agropyron elongatum and Hordeum vulgare L. [9]. The wheat genes were originally described to be linked in the short arms of chromosomes 7A, 7B and 7D, but recent investigations by us and others (M. Gale pers. commun.) using typespecific probes, indicate that while Ssl genes are actually located in the chromosomes mentioned above, the Ss 2 ones are in a different location.

We report here the complete cDNA cloning and sequencing of type 1 sucrose synthase (Ss1) in barley, and the chromosome mapping of both types of sucrose synthase ($\mathrm{Ss} 1, \mathrm{Ss} 2$), using as specific probes the non-crosshybridizing C -terminal portions of their corresponding cDNAs. Evidence for a translocation event between chromosomes 7 H (syn. 1) and 2H in barley is discussed.

2. MATERIALS AND METHODS

2.1. Biological material

Developing barley endosperm from Hordeum valgare L. cy Abyssinian 2231 was the source of the poly(A) ${ }^{+}$mRNA for the construction of the eDNA library in the lambda vector, NM 1149. Hexaplcid wheat, Triticum aestivum cv. Chinese Spring, diploid barley, Hordeum valgare L. cv. Belzes, and the disomic addition lines of chromosomes $2 \mathrm{H}, 3 \mathrm{H}, 4 \mathrm{H}, 5 \mathrm{H}$ (formerly 7), 6 H and 7 H (formerly 1) from barley cv .

Belzes on a wheat Chinese Spring background were obtained from K.W. Shepherd and A.K.M.R. Islam [10]. The ditelosomic addition lines corresponding to chromosomes 2 H and 7 H were also analysed: 2 HS (short arm of 2 H), 2 HL (long arm of 2 H); $7 \mathrm{H} \alpha$ (probably long arm of 7 H) $7 \mathrm{H} \beta$ (probably short arm of 7 H). These lines were used for the chromosomal location of the sucrose synthase genes.

2.2. cDNA cloning cutd Southern blot mapping

The cDNA library was screened with an equimolar mixture of labelled cDNA inserts from the plasmids, pST3 and pST8 [7], corresponding to the two types of wheat sucrose synilhase genes. To complete the 5^{\prime} end of the cDNA corresponding to the barley Ssl gene, a PCR strategy was adopled [11]. Amplification was carried out under standard conditions using as template eDNA from developing barley endosperm with primers (5° ATGGCTGCCAAGCTGAC3') and (5^{\prime} CTTCTCCAAGCTGGCAG3') derived from the genomic sequence or barley Ss1 [12] and an appropriate region of the incomplete cDNA, respectively.

Plant total DNA for chromosome mapping was isolated from $7-$ day-old eliolated seedings, essentially as described [7]. Barley sucrose synthase type l-specific probe was the Sall/EcoRI C-terminal frag-
ment of 269 bp , ineluding the last 8 amino acids plus the 3^{\prime} non-coding region. An analogous 257 bp C-terminal fragment specific for barley Ss2 was a gifl from O. Martinez de Ilarduya (unpublished). All other molecular biology manipulations were according to standard procedures [13].

3. RESULTS AND DISCUSSION

3.1. Isolation and characterization of barley sucrose synthase cDNA clones

A cDivA library from developing barley endosperm was screened at $65^{\circ} \mathrm{C}$ with a mixture of cDNA probes (pST3 and pST8) corresponding to the two types of sucrose synthase genes from wheat [7]. Three positive plaques were identified, which hybridized more strongly with wheat pST8 (type 1 sucrose synthase cDNA) than to the pST3 probe. Sequencing of the longest recombinant phage of the three ($\lambda \mathrm{SCl}$), revealed a truncated

1	M A A A K
121	
241	
36	GATGAGCATGCCAGCAGGAAATTGTGCTTGAGCTTGATTTTGAGCCTTICAATGECTCGTTCCCACGCCCTTCCATGTCCAAGTCCTACGGAAAGGEGGTGCAUTTCCTTAACCGTCAC
201	
86	
321	
1201	
1324	
14	
1561	
${ }^{6} 6$	
18	
6	
20	$\underset{\text { TGTGGTCTGCCGACAATTGCGACATGCCACGGTGGCCCTGCTGAGATCATCGTGAAGGAGTGTCTGATCTGCACATTCATCCTTACCACAGCGACAAGGCCGCAGATATCTTGGTCAAC }}{ }$
2161	
2281	
$\begin{array}{r} 801 \\ 2401 \end{array}$	
25021	TCTGTCGTGGGCTGTGCGATTTGATCYCTCGGCACATTGGTGAGGTCTTGGGCAGTGCTGCTTCCTGGTTCATGCCAGLCGECTCGAATAAACGCCTGCCCGTGGTGTTCATCTTTCATC
2641	AGAgAGTTCAATGCAATGTTGGAATTC

Fig. 1. Nucleotide and amino acid-derived sequence of type 1 sucrose synthase (Ss 1) eDNA from barley. A vertical arrow indicates sine \mathbf{j}^{\prime} und of the longest truncated clone obtained from a cDNA library. Horizontal arrows sorrespond to the regions from which PCR primers were derived in order to complete the eDNA sequence. The 3^{\prime} end of the clone, up to the shaded Sall site, was used as a specific probe for Ssl in chromosome mapping experiments. The polyadenylation signil is underlined.

Fig. 2. Alignment of deduced protein sequences of type 1 sucrose synthases from barley (B), wheat (W) and maize (M). The only reported type for potato (P) and Arabtdopsis (A) sucrose synthases are also included. Dots represent perfect matches with respect to the barley sequence, and deletions are indicated by dashes (note that the wheat sequence is only partial) [7].
cDNA of $2,001 \mathrm{bp}$ with its 5^{\prime} end extending up to a region homologous to that corresponding to exon 6 in the maize Shl gene [6]. To complete the sequence of the

Table 1
Percentage of coincident residues between sucrose synthase protein sequences from different origins

	BARLEY*	WHEAT*	MAIZE*	POTATO
WHEAT*	(96.8)			
MAIZE* *	92.7	(88.8)		
POTATO*	73.4	(7.9)	69.9	
ARABIDOPSIS $^{+}$	65.5	(69.0)	66.5	67.3

*: Sequences correspond to lype I sucrose synthases.
+: Only one type reported in the EMBL library.
(): Comparisons involving wheat refer to the partial sequence reported [?].

Ss1 cDNA, the missing 5^{\prime} end fragment was amplified by PCR. The availability of a genomic clone corresponding to type 1 barley sucrose synthase, sequenced in its promoter region and 1st exon [12], permitted us to design a perfectly matching sense primer of 17 nucleotides, beginning at the ATG translation initiation codon. The antisense primer was derived from a favourable sequence in the 5^{\prime} region of the truncated cDNA (Fig. 1). This figure also displays the complete cDNA sequence for type 1 sucrose synthase from developing barley endosperm. The deduced protein sequence corresponding to this CDNA has been aligned with the sequences for type 1 sucrose synthases of wheat and maize and for the only type described so far in potato and Arabidopsis in Fig. 2. Binary comparisons of all these sequences expressed as percentages of identical residues appear in Table I. As expected, the three type 1 cereal genes are more closely related ($>88 \%$ matches per compared length) than barley Ssl is to potato and Arabidopsis (73% and 65% similarity, respectively).

3.2. Chromosomai location of sucrose synthase genes in barley

Total DNA from the different genetic stocks described in Materials and Methods, was separately digested with the restriction enzymes, HindIII and Bg/II, and used in Southern blot experiments using specific non-cross-hybridizing probes (data not shown) for each type of barley sucrose synthase gene. The result of the hybridization is shown in Fig. 3. The Ssl probe showed one band of ca. 1.3 kb that appears in the 7 H addition line and in the parental barley cv. Betzes. The weaker band at 0.9 kb corresponds to wheat type 1 sucrose synthase that cross-hybridizes with its homologue from barley ($\mathbf{~} 90 \%$ coincident residues), and appears in the parental wheat and in all the addition lines as expected (Fig. 3A). When a specific probe for Ss 2 is used, a $\mathrm{Bg} / \mathrm{II}$ band of 1.7 kb that appears only in the 2 H addition line and in the parental Betzes barley is detected (Fig. 3C). A similar analysis of the ditelosomic addition lines reveals that the short arm of $2 \mathrm{H}, 2 \mathrm{HS}$, carries the gene for Ss2, while the gene for the Ss1 gene is in the β-arm of 7H (syn. 1) (Fig. 3B,D).

Fig. 3. Chromosomal location of genes corresponding to barley sucrose synthases, Ss1 and Ss2. Southern blot hybridization of the following genolypes: hexaploid wheat, Triticum aestivum cv. Chinese Spring (W), diploid barley, Hordeum vilgare cv. Betzes (B), Chinese Spring wheat-Betzes barley addition lines ($2,3,4,5,6$ and 7) and Chinese Spring wheal-Betzes barley ditelosomic addition lines ($7 \mathrm{Ha}, 7 \mathrm{H} \beta, 2 \mathrm{HL}$ and 2 HS). Addition line 1 was nol available. (A and B) Hybridization patterns of total DNA digested with HindIII using the Ssi-specific probe. The band of 1.3 kb in Betzes barley is present only in addition line 7 H and ditelo $7 \mathrm{H} \beta$. (C and D) Hybridization patterns of total DNA digested with Bg/l using a Ss2-specifie probe. The band of 1.7 kb in Betzes barley is present only in addition line 2 H and ditelo 2 HS .

Since the DNA segments assigned to the SsI and Ss2 genes are located in different chromosomes (2 H and 7 H), these two types of sucrose synthases are non-allelic and non-linked. In maize, two non-allelic, linked genes on chromosome 9 have been described for sucrose synthase. The high degree of conservation between Ssl and Ss2 in maize, wheat and barley seems to indicate that both sucrose synthase genes are derived from a common ancestor and probably originated after a gene duplication followed by divergent evolution. In contrast with maize, their different chromosomal location in barley suggests that a translocation event could have taken place afterwards. In the Triticeac, translocations are well documented between chromosomes 4 and 7 [14] in
wheat, 2 R and 6 R in rye [15], and 2 H and 6 H in barley [16]. To our knowledge, this is the first molecular evidence of a translocation event implicating chromosomes $7 \mathrm{H} \beta$ (syn. I) and 2 HS . In this context it would be worth exploring if other genes mapped to the short arm of chromosome 2 H in barley have homologous counterparts in the β-arm of 7 H (syn. 1).

Acknowledgeneents: We thank O. Martinez de llarduya for sharing unpublished results and providing the Ss2-specific probe, and L. Latmoneda and J. Garcia for help in the preparation of the manuseript. This work was finaned by Giant DGCYT PDegolgo from the Spanish Ministry of Education and Science. P.S. de la H. and J.Y.-C. are recipients of dectoral and postdoctoral fellowships, respectively, of the MEC (Spain).

REFERENCES

[1] Beek, E. and Ziegler, P. (1989) Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 95-117.
[2] Preiss, J. (1991) in: Oxford Surveys, Plant Molecular and Cellular Biology, vol. 7 (B.J. Miflin, ed.) pp. 59-114, Oxford University Press.
[3] Stitt, M. and Quick, P. (1989) Physiol. Plant. 77, 633-641.
[4] Burr, B. and Burr, F.A. (1981) Genetics 98, 143-156.
[5] Gupta, M., Chourey, P.S., Burr, B. and Still, P.E. (1988) Piant Mol. Biol. 10, 215-224.
[6] Werr, W., Frommer, W.B., Maas, C. and Starlinger, P. (1985) EMBO J. 4, 1373-1 380.
[7] Maraña, C., Garcia-Olmedo, F. and Carbonero, P. (1988) Gene 63, 253-260.
[8] Marafla, C., Garcia-Olmedo, F. and Carbonero, P. (1990) Gene 88, 167-172.
[9] Marana, C., Garcia-Olmedo, F. and Carbonero, P. (1988) FEBS Lett. 234, 417-420.
[10] Shepherd, K.W. and Islam, A.K.M.R. (1992) in: Barley: Genetics, Biochemistry, Molecular Biology and Biolechnology (P.R. Shewry, ed.) pp. 99-114, CAB International.
[11] Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A. and Arnheim, N. (1985) Science 230, 1350-1354.
[12] Sánchez de la Hoz, P. (1992) Clonación y análisis funcional del gen de sacarosa sintelasa Ssl en cebada, Ph.D. Thesis, Universidad Politecnica de Madrid, Spain.
[13] Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual (2nd edn.) Cold Spring Harbor, N.Y.
[14] Chao, S., Sharp, P.J., Worland, A.J., Waham, E.J., Kocbner, R.M.D. and Gale, M.D. (1989) Theor. Appl. Genet. 78, 495-500.
[15] Shewry, P.R., Parmar, S. and Miller, T.E. (1985) Heredity 54, 381-383.
[16] Mena, M., Sanchez-Monge, R., Gomez, L., Salcedo, G. and Carbonero, P. (1992) Plant Mol. Biol. (in press).

[^0]: Correspondence address: P. Carbonero, ETS Ingenieros AgrónomosUPM, Ciudad Universitaria, 28040-Madrid, Spain. Fax: (34) (1) 543 4879.

 The nucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number X65871.

