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Almtraet--The applications of Runge-Kutta (RK) interpolation to global error estimation using the 
Zadunaisky and related techniques are considered. It is shown that the pseudo-problem can be based on 
dense output values within any one step and reliable global error estimates can be obtained at the 
integration mesh-points by using special RK formulae. Some special formulae of orders 2-6 are presented 
together with numerical results 

1. I N T R O D U C T I O N  

In earlier papers [1, 2] the application of the Zadunaisky technique [3, 4] of global error estimation 
with explicit Runge-Kutta  (RK) formulae was considered. Recently several authors [5-10] have 
investigated the development of RK interpolation. This paper considers the application of  RK 
interpolation to global error estimation. 

Without loss of generality [11] the first order system of autonomous ordinary differential 
equations 

y'(x) = f[y(x)], with Y(X0) known, (1) 

can be considered. This system can be solved using an embedded RK q(p) process with formulae 
of order q and p (q > p )  of the form: 

i - I  

y.+l = ~. + h~O(~, h.) = ~. + h. ~ big, (2) 
i - I  

where 

g~ = f n + h ,  aij , i = 1 , 2  . . . . .  s ,  

x ,+  l ffi xn + h , ,  h,  ffi O(x , )h ,  O < O(x ) ~< 1 and usually ~0 - y(x0). 
The embedded process is applied in local extrapolation or higher order mode [12] and yields 

numerical approximations ~, to y(x,) at the mesh points x , ,  n ffi O, 1 . . . .  , N .  Without loss of  
generality the FSAL idea [9] is assumed in which the last function evaluation at any step is the 
same as the first at the next step. Assuming appropriate smoothness of f the local truncation error, 
t ,+l ,  at x , + l ,  of the RKq process may be written [1]: 

~+i = y(x,) + h~4~ [y(xn), h~] - y(x,+,) 

q+w hi+ 1 

i=q jffil 

where the ~i+ i) and the ~i+ 1),j = I, 2 . . . . .  i + I, are the elementary differentials of  order i + 1 of 
f [I I] and the RK truncation error coefficients [I] respectively. 
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The global error, ~n at x,,  of process (2) is defined by 

~ = ~ - y(x~), n = 0 , 1  . . . . .  N. 

The Zadunaisky technique for estimation of ~n is based on the construction of a neighbouring 
problem (NP), with known true solution yh(x), which is "close" to the main problem (MP) (1). 
The basic idea is to integrate the NP with the same RKq formula and same step sequence as for 
the MP to produce a numerical solution y , .  The known error ~h~ = Yh~ -- yh(x,) is then used as an 
estimate of  ~ .  There are a number of ways to construct the NP. One form discussed in Ref. [2] 
is 

y:,(x) = fhIyh(x)] = f[yh(x)] + dh(x), 

Yh(X0) = y(x0) = P(x0) (3) 

and 

d , ( x )  = P ' ( x )  - f [ P ( x ) ] ,  

whose solution is yh(x)=P(x) .  In Ref. [2] P(x) was chosen as a piecewise polynomial 
function which interpolated the numerical solution of equation (1) in subintervals of [x0, x~]. 
Each subinterval or block was of size m, i.e. consisted of m + 1 points, and three cases were 
discussed: 

and 

(i) interpolation of  y~ values; 
(ii) interpolation of f(y~) values 

(iii) Hermite interpolation using both the Yi and f(yi) values. 

Frank [13] analysed the estimation process for case (i) with constant steps and further 
considerations can be found in Prince [14] and in Dormand and Prince [1, 2]. Valid asymptotic 
estimates of *n are obtained if En = ,~ - ,~ is O (h r), where r > q. In Ref. [2] it was shown that in 
cases (i) and (ii) valid estimation is possible i fm > q and m > q - 1, respectively, but that in case 
(iii) E~ is O (h q) irrespective of m. In each of the three cases an order bound for II En II was obtained 
in Ref. [2] which is dependent on an order bound for II d~°(x)II. Because the defect bound depends 
on the truncation error coefficients, fjo, it was found to be possible to construct special RKq 
processes in which certain of the fJ~) are zero with the consequence that for certain values of m 
an asymptotically valid estimate is obtained in case (iii). The same attack leads to better estimation 
in cases (i) or (ii). Despite these encouraging theoretical results, high order processes have been 
found to provide useful estimates only at very stringent local error tolerances. This is because high 
order RK formulae require large blocks, particularly in cases (i) and (ii), resulting in high degree 
polynomial interpolation. As might be expected, this causes problems, particularly when unequal 
step sizes are used. 

The basic idea of this paper is to form P(x) using RK interpolation. The main advantage is that 
the estimation process can be applied at each integration step and not after a block of m steps. 
Following Dormand and Prince [9] a third RK formula (called a dense formula) will be used to 
approximate the solution of equation (1) between x, and xn+t. This is accomplished by taking a 
step of size ah~ (0 < a < 1) from x~. The dense formula, of order p* and employing s* stages, may 
be written 

$* 

y*+ ~ = 9n + trh~ ~ b* g,, (4) 
i = l  

and produces estimates y*+o of y(x~ + ah~), n = 0, 1 . . . . .  N - 1. It should be noted that common 
function evaluations with the embedded pair have been assumed [5,6,9] and that if 
sm = max(s, s*) > s then Gj = bj = 0, i = s + 1, s + 2 . . . . .  sin. The embedded pair together with the 
dense formula constitute an RK triple using sm stages. Dormand and Prince [9] discuss the RKp* 
equations of  condition and also point out that for ~*+¢ = y * + , -  y(x~ + ah~) to be O(hq) then 
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p* >/q - 1. As pointed out by several authors [6, 9, 15] continuity of y*+ ~ as a function of o is 
desirable. The function y*+o is C ~ continuous if 

and 

b*(o = 1) = E, 

b* (a = 0) = 6,1 (5) 

~ + db* 
. -~a (o=l)=6L,, 

where 

0, i # j ,  = 1,2, 6iJ= 1, i=j ,  i,j .. Sin .  o ~ 

Various possibilities exist for the determination of P(x) within each step, [x., x.+ i]: 

(A) interpolation using only ~., ~.+l and y*+o values; 
(B) interpolation using f( j~)= gl, f(~.+ ~)= gs and f(y*+~) values 

and 

(C) interpolation using both y and f values. 

Possibility (B) is less attractive in practice since extra function evaluations, f(y,*+ o), are necessary. 
The modified Hermite form of (C) using y values and just the two known end values of f would 
seem to be the most attractive since no extra function evaluations are required. Peterson [16] 
considered the Zadunaisky technique as discussed in Refs [1, 2] and concluded that modified 
Hermite or Hermite-Birkhoff interpolation was preferable, these tending to require a smaller block 
size. A dense formula is a valuable addition to any RK code. Here we exploit it to reduce the block 
size to one. 

In Section 2 we will obtain bounds for IIEn II in the more practical cases (A) and (C) and indicate 
that as in Ref. [2] special RK processes can be developed giving valid asymptotic global error 
estimation. Section 3 is concerned with the more efficient process of directly solving for the error 
estimate. Some new estimation formulae are derived in Section 4 and numerical tests are presented 
in Section 5. 

2. E R R O R  B O U N D S  

Consider the step interval I. = [x., x.+ I] and let P.(x),  x e l . ,  be the polynomial of degree m ~< R 
X * . .  which interpolates at the R + 1 points ( .+ok, Y.+¢k),k = 1,2, . , r l ,  (x.+.pf[y*+¢k]), 

k = 1, 2 . . . . .  r~, where R = rx + r2 - 1, ok ~ [0, 1], o'l = 0, o2 = 1, y. + o~ = ~. and y*+ ~2 -- ~n + i [see 
equations (2), (4) and (5)]. Thus the cases discussed in Section 1 are now: (A) in which r2 = 0, (B) 
in which rt = 0 and (C) in which r~ > 0 and preferably r: = 2. If  the dense output formula is such 
that all the atj are independent of o then the b* and hence y.*+ o are polynomials in o'. In this case, 
assuming y.*+ ¢ is of degree d in a, the continuity conditions (5) are satisfied, R + 1 i> d and r: ~< 2, 
we have P ( x ) -  y*+¢ and m = d. Let V.(x) be the polynomial of degree m which interpolates the 
true solution and derivative at the same points. Then 

r I r2 

P.(x)= ~ Lk(X)y*+~ k + ~ Mk(x)f(y*+ok), (6) 
k = l  k f f i l  

r I r2 

V.(x) = ~ Lk(X)y(x.+, k) + ~ Mk(x)y'(x.+, k) 
k f f i l  k - I  

r I q + w  r 2 q + w  

= ~ Lk ~ (Okh.)'y~')(x.)/i! + ~ Mk ~ (okh.)'YC'+O(x.)/i! + O ( h  q+w+') (7) 
k - I  t - O  k - I  i - O  
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assuming suitable smoothness. Now V~(x) is exact for all polynomials of  degree less than m + 1 
and so with x = x~ + ah~ 

rl r 2 
~. Lka~+ ~ Mkta~-l/h~=cr t, t=O, 1 . . . . .  m. (8) 

k = l  k = l  

Using this together with the Taylor expansion of  y(x~ + ah~) then equation (7) gives 
q , w  [,; ]/ 

V ~ ( x ) - y ( x ) =  ~ hiy(°(x~) Lke~+ Mkie~-l/h~-a ' i!+O(h¢+~+l), 
i f m + l  1 k = l  

and since L~ 9 and M ~  are O(h-J)  and O(h ~-:) respectively f o r j  ~< m [6, 14], and both are zero 
for j > m, it follows that 

~ << K~h~+ l-:, 
II V~9(x) - yO)(x)11~1, ~. ~< K~2, 

Following Butcher [11] and the analysis in Ref. [1] 

and 

and so 

j = 0, 1 . . . . .  m, (9) 
j > m ,  

q+w n i 
y*+., = ~ + ak 2 (akh~)'/(i -- 1)! ~ fl}')$}')*(trk)~')(~.) + O(h q+w+ I) 

i l l  j = l  

q+w n i 
y(x~+,k ) = y(x~) + *k ~. (6khh)'/i't ~. ~}')~")[y(x~)] + O(h q+w+ I) 

iffil j f l  

*~ + #k Y*+ ek - y(x~ + ok ) 
q ni 

= ~n + E (6khn)i E T}O*(ffk)V}i)[y(xn)] + O(hq+ i ) .  
iffil j = l  

Now the dense formula is of  order p* and so 

z ) i ) * ( a k )  = O, i = 1, 2 . . . . .  p*, 

and when k = 2 

Thus 

j = 1, 2 , . . . ,  hi, 

z ) ° ' = f ) ° = 0 ,  i = l , 2 , . . . , q ,  j = l , 2 , . . . , n i .  

{n+ok = gn + O (  hmin[p''q]+ I),  

and so, differentiating equation (8) when t = O, equations (6) and (7) yield 

[ ~ K~n ) h min[q'p*+ i],_jj  = O, 

[1 l ~ n ) ( X )  - -  Vn(/)(X)1[ xEt,~ ~ K ~ h  mintq'p'l+ 1 <<.j <<. m, 

( = 0 ,  j > m .  

Use of this with equation (9) now gives 

[" ¢-  g1(0)/¢min[q,p* + l ,m+ I] |..~..~.3nt, . , j = O ,  
II 1 ~  (x) - yO(x)II x,~n~ <<- K~ h mm[q,p*,m]+t-J, 1 <~j <~ m, 

[ <~K~2, j > m .  

Similar to the analysis in Ref. [2] the following bounds are now obtained on [[ d~(x) II and [[ E~(x)II. 

f ~< Nyh =intq'p*'m3-j, 0 ~<j ~< m -- 1, 
IIdp(x) rlx~tx0.x,,l~ ~ N:hmi,.,-m+l.r-m+~J, j i> m, 

and 

max []EnH~ <~Ahq' q >~m, (10) 
O~ngN {.~<Ah m|nlq'p*l, q < m, 
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where it has been assumed that p* >t q - 1. Thus in either case (A) or (C) it would seem that 
asymptotically viable global error estimation is not possible. Note that in Ref. [2] estimation was 
possible, for certain values of  m, using interpolation on the y~ values. Numerical tests have 
confirmed result (10). 

We do not present the analysis for approach (B) here, but it can be found in Ref. [17] where 
the following bound on II E, II was obtained: 

iiE.ll{ <~Ahq, q >~m, (11) max O~n~N ~ Ah(min[q+ I,p*+ I], q < m. 

A consideration of  condition (11) reveals that in case (B) valid asymptotic estimation is possible 
if q < m and p* >1 q. Computational results have confirmed the validity of  condition (11). Although 
it would seem that valid estimation using dense output is only possible in this latter case, it was 
shown in Ref. [1] that the order of  E,, for q > 1 was governed by the expression 

2q n~ 
h *-] ~ ~!){F~)[y(x~)]- ~°[y(x,)]} + O(h~), (12) 

i f q + l  j = l  

where the term in brackets is a function of  f, dh and their derivatives. Similar to the analysis in 
Ref. [2], it is found that, depending on q, m, p* and the resulting order of  d~)(x), only certain of  
the ~!) will appear in the leading terms in expression (12). By choosing an R K  process with 
appropriate ~0 made zero, the order of  E. can be improved over that predicted by conditions (10) 
or (11). To facilitate this, the ~0 occurring in the h q and h q+l t e r m s  of expression (12) are given 
in Table 1 for q = 2 . . . . .  6 and various m for those cases when IIE. II is O(h q) in condition (10) 
and p* = q - 1 or p* = q. A table of  corresponding f~0 is not presented for the less practical case 
(B). 

3. SOLVING FOR THE E R R O R  ESTIMATE 

Peterson [16] compared the Zadunaisky block technique with other correction type methods and 
in particular with the idea of  "solving for the correction" discussed by Skeel in Ref. [18]. This 
approach is concerned with the differential system 

~, (x) = ]'[~h (x)] = P'(x) - f[P(x) - ~h (x)], 

~h(Xo) = ~hO = P(x0) - y(x0), (13) 

Table *. RK truncation coefficients for cases (A) or (C) 

p* q m h q h q+l 
I 2 2 2? ) , i = 1 , 2  213) , i = 1 , 2 ;  2~ 4), i ff i l ,  2 ,3 ,4  
2 3 2,3 214) , i = 1 , 3  214) , i = 1 , 2 , 3 , 4 ;  21 s), i = 1 , 4 , 5 , 8  
3 4 2 27 ), i = 1 , 4 , 5 , 8  

3,4 ~I s), i ff i l ,  5 ~?), i f f i l ,4 ,5 ,8 ;  2~ 6), i ff i l ,  6,7,15 
2 

4 5 3 216), iff i l ,  6,7,15 
4,5 216) , iff i l ,  7 216), i=1 ,6 ,7 ,15 ;  2~ 7), iffi1,10,11,29 
2,3 

5 6 4 217), iffi1,10,11,29 
5.6 i - l , ,  , - , . , 0 . , . 2 9 ,   =1,,,553 

2 2 2,3 ~i 3) 27 ), i - * , 2 ;  214), i=l ,3  
2 f~4), i = 1 , 3  2~ 4), i = 1 , 2 , 3 , 4 ;  215) , i = * , 4 , 5 , 8  

3 3 3,4 ~q4). 2~ 4), i = 1 , 3 ;  .¢(s) i ff i*,5 
5 2 ~4)'27); 2~ 4), i = * , 3 ;  f~), iffi*,5; i = * , 7  
2 2 ~5)'~, i = * , 4 , 5 , 8  

4,5 2i 5)', 2~ 5), iffi*,5; 2~ 6), l ff i*,7 
2 
3 216), i = * , 6 , 7 , , 5  

5 5 4 2~ 6), i = * , 7  216), i =1,  6, 7, ,5; 2~ '), i = * , * 0 , * * , 2 9  
5,6 f~6) 216), i = * , 7 ;  2~ '), i - * , 1 ,  
2, 3 
4 2 o) i ffi *, 10, **,29 

217)' 21 ') i : 1 ,*0 ,** ,29 ;  2~ s), i - * , , 4 , 1 5 , 5 3  6 6 5 ~7)'i i = *, ** 
6,7 21 '), iffi*,**; 2~ s), i = * , , 5  

C.A.M.W.A. 18/9--F 
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whose solution is ~h(X)= P(x)- -y(x) .  This system is solved using a RK method of  order 
employing ~ stages for the numerical solution ~h~ which is then used as an estimate of G. Usually 

= q but this formula need not be the same as the main RK integration formula. Similar to the 
analysis carried out in Ref. [1] we have 

"h'+l--{h(Xn+ l)''~'[hn-'h(xn)~- E hi E{~JJl)~Ji)['hn]--6~i)~jJ i)[~h(xn)]}'~'O(h~+~+l)' (14) 
i=1 j = l  

where l ~j° are the elementary differentials of 1", 

~ o =  fl~o~o/( i _ 1)! and 6) 0 = otJ°/i!. 

Now G(x~) = P.(xn) -.V(X~) = G, assuming P~(x) interpolates at (x~, : , ) ,  and so ~ - ~h(x~) = E~. 
Hence, similar to the analysis in Ref. [1], equation (14) may be written 

where 

E~+, = E~ + hG~(En) + hT~) E 0 known, 

~ + ~  ni 

Tn= E Y. (15) 
i=q+l j=! 

and ~ )  = ~-)i) _ 6~0 are the truncation coefficients pertaining to the RK formula used to integrate 
system (13). From the analysis in Ref. [1], it is this expression which governs the order of [IEn [l. 
Now y(x) = P(x) - ~,(x) and from system (3) fs [P(x)] = P'(x) thus'rich(x)] = fs 0P(x)] - fly(x)] and 
as indicated by Peterson [16] the linear independence of the elementary differentials implies that 

ix )] = - 

which with x = xn shows the similarity between equations (12) and (15). This allows the possibility 
of special RK~ processes being used in which certain of the truncation error terms are zero. In 
the case where P(x) is based on dense output points these can be obtained from Table 1 in the 
case ~ = q simply by replacing ~i) by ¥~0. 

Comparing this technique of solving for the error estimate with that of  Section 2, we see 
that it costs about 2s f evaluations per step compared to 3s. This is because system (13) only 
requires one f evaluation against the two required when using system (3). Also it is not necessary 
to integrate system (13) with the same RK formula used to integrate equation (1) as is the case 
if using system (3) with equation (1). Thus in addition to being more efficient this process of solving 
for the error estimate also allows greater flexibility with regard to the choice of the various RK 
processes. 

This means that we can integrate equation (1) with any RKq(p)  process, form P(x) using a dense 
output RK process and then integrate system (13) with a RKq process. It seems preferable to have 

as small as possible provided an asymptotically valid error estimate is available. If  ~ = q then 
the process must have the appropriate fj(.o zero. If  ~ > q, an asymptotically valid global error 
estimate is directly available. This, however, is usually more costly. If  ~ < q then more of the 
truncation error coefficients will have to be zero for an estimate to be possible. Thus, an estimate 
~hn + ~, of the global error, G + ~, at any mesh point, x~ + ~, n = 0, 1 . . . . .  N - 1, can be obtained as 
follows: 

(i) Use the RKq(p)  process, form (2), to obtain an acceptable (on local error grounds) 
estimate, ~ + 1, of y(x, + ~ ). 

(ii) Use the dense formula, equation (4), to obtain the required non-mesh point values, 
Y*+ ok, for specific values of k, and possibly intermediate f values. 

(iii) Using the values from (ii) together with the end point values form the polynomial 

(iv) Use a RK~ process to obtain from system (13) the estimate ~ +~. 

If  P.(x) = y*+o then the above procedure is even simpler and since ]" in system (13) is evaluated 
at x, ,+~jh, , ,  i.e. at a = ~ j ,  this allows the possibility that b*(~j) and db*/da~(~j) can be 
pre-determined with savings on the overhead of  divided differences and numerical differentiation. 
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4. SPECIAL RK F O R M U L A E  G I V I N G  G L O B A L  E R R O R  E S T I M A T I O N  

In the method of  Section 3 no restrictions are necessary on the ~)o, only on the ~)o of  the RK0 
used as the estimator formula. Thus it seems preferable to follow the strategy of  Dormand and 
Prince [1] and Prince and Dormand [19] and use RKq(p )  processes with small principal error 
truncation coefficients for the integration of  equation (1). All the dense formulae used in the 
following discussions satisfy the continuity conditions (5) and each polynomial P , (x)  required by 
system (13) is equal to the corresponding y*+¢. 

(a) RK2(1) 

Following Prince [14] the RK2(I)3FM can be used as the main integration pair. This processes 
has s = 3 and uses the FSAL idea. Reference to Table 1 shows that an estimation process with 
0 = 2 and p* = 1 is not possible since this would require both fl  3) and f~3) to be zero, and this would 
imply a third order process. Consideration of  the case where p* = 2 shows that principal term 
estimation is possible if f t  3) = 0 and m = 2 or 3. A dense formula, with s* = 3, p* = 2 and d = 3, 
with common function evaluations is possible. Since the main integration formula is such that 
i~ 3) = 0 this can also be used as the estimator. Thus we have a RK2 estimator with ~ = 2 and i = 2. 
The resulting process is presented in Table 2 as the RK2(I)3FD process. 

(b) RK3(2) 
In this case a process, using FSAL and s = 4, in which p* = 3, s* = 4 and d = 3 is possible. From 

Table I, assuming ~] = 3, with m = 3 we require ~I 4) = 0 so that one term estimation is possible. 
Since ~I 4) = 0 it is convenient to use the same formula as both integrator and estimator and so i = 3. 
The resulting process is presented in Table 2 as the RK3(2)4FD. 

(c) RK4(3) 
As in Ref. [I] it is possible to use an embedded process employing FSAL with s = 5, but the 

process with s = 6 is found to be superior since it allows p* = 4 and is capable of two term error 
estimation. A new 4(3) pair has been developed following the criteria outlined in Prince and 
Dormand [19]. For the dense process s* = 6 and d = 4 and thus reference to Table I with m = 4 
shows that, assuming 0 = 4, we need an estimator with fl 5) = f~5) = f~6) = f~o = 0. 

This is possible with ~ = 5 and the recommended process is presented as the RK4(3)6FD in 
Table 3. 

Table 2. Embedded R K  processes for global error estima- 
tion using dense output 

c~ a o = a o 5j = ~i b, b * 

(i) RK2(I)3FD 
I 202 - 50 + 4 

o ~ i 4 

2 2 3 30(3 - 20) 
~ ~ o 4 
1 3 

1 0 0 0(0 - I) 
4 4 

(iO RK3(2)4FD 
1 4a 2 -  9o + 6 

o g o 6 
1 I 2 20(3 - 20) 

~ ~ I 3 

1 0(3 - 20) 
1 - !  2 ~ o 6 

1 2 1 
I g ~ g 0 0 o(o--1) 

For (i) RK2(I)3FD. One term estimation is obtained: q = 2, 
s - 4 ,  p = l , p * = 2 ,  s * = 3 ,  d = m = 3 , ~ 2 , $ = 2 .  
For (ii) RK3(2)4FD. One term estimation is obtained: q = 3, 
s - 4 ,  p m2,  p * = 3 ,  s * - 4 ,  d = m  =3,  4 =~ 3, $ = 3 .  
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Table 3. The RK4(3)6FD process for global error estimation 

c, a~ ~1 bi b* 
Embedded integrator and dense output formula 

29 363 - (162cr 3 - 504# 2 + 551a - 238) 
0 238 2975 238 
7 7 

0 0 0 
27 27 
7 7 7 216 981 27a(27a 2 - 70~ + 51) 

18 72 24 385 1750 385 
17 3043 - 3 7 5 7  1445 54 2709 -27a(27cr  2 -  5(h7 + 21) 

18 3528 1176 441 85 4250 85 
17617 - 4 0 2 3  9372 - 6 6  - 7  - 3  7a(2232a 2 - 4 1 6 6 ~  + 1785) 

l "11662 686 1715 595 2"-2- 1--0- 3278 
29 216 54 - 7  - 1  a ( a  - I)(387cr - 2 3 8 )  

1 23--8 0 38-'-5 85 22 0 5--0- 149 

Estimation formula 
1 

o 1--~ 
1 1 1000 

I-0 4347 
3 - 198 345 16807 

343 34--3 43056 
4 654 - 7 5 6  8918 1375 

275 253 6325 4368 
233 10503 -28518  99 25 

I 
25 805 7475 91 432 

Two terms estimation is obtained: q = 4, s = 6, p = 3, p* = 4, s* ~ 6, d = m = 4, # = 4, .~ = 5. 

(d) RK5(4) 
In this case the RK5(4)7FM of Dormand and Prince [12] can be used as the main integration 

pair, possibly with the modification for the fourth order formula suggested by Shampine [7], and 
a 4th order dense formula with s* = 7 and d = 5 is given by Dormand and Prince [9]. Alternatively 
one of  the DPS triple forms [7] can be used which, at extra cost, allows p*---5. Assuming the 
embedded pair is used with the 4th order dense formula, no extra f/ruction evaluations are necessary 
and from Table 1, with m -- 5 and ~ -- 5, we require an estimator with £I 6) = 0, i = 1, 6, 7, 15 and 
f~7) = 0, i = l, 10, l 1, 29 which may be used to give two term error estimation. However, it was not 
found possible to obtain such a process in 6 stages. A 7 stage process is presented in Table 4 which 
has the above error terms zero, allowing two term estimation, and in addition has ~s)__ 0, 
i = 1, 14, 15, 53. Although this does not significantly help the dense implementation of  the global 
error estimation process, it means that 3 term estimation is possible if the block Hermite form in 
Refi [2] is used and it also permits this estimator to be used in conjunction with our new RK6(5) 
pair. 

Table 4. The RK5 estimator for use with the RK5(4)7FM and associated dense formula 

0 I 
20 

7 + R  7 + R  
21 21 0 

7 + R  7 + R  3(7:1: R) 0 
14 56 56 

7 ~ R 77 ::[: 16R - 2 7 3  + 60R 105 :]: 23R 49 

14 28 28 14 180 
1 - 6 2 7  + II9R 651 :[: 147R - 3 2 9 +  74R 91 + 13R 16 

384 128 96 192 4-'5 
7:I :R 1239:[:89R -3(35:1 :9R)  109:[:27R - 2 3 : ] : 4 R  4 ( 7 + R )  49 

14 1176 56 84 42 49 180 
- 5 8 3 + 9 5 R  7(31~:7R) - 2 5 4 1 + 5 6 3 R  1 2 6 + 2 3 R  4( I : [ :R)  7(7:[:R) 1 

I 
72 8 108 54 9 18 20 

Two term estimation is obtained [also for use with the RK6(5)9FM: q ~, 5, s = 7, p = 4 ,  p* = 4 ,  
s* = 7, d = m  =5, ~ =5, g = 7 ; R  = x / ~ .  
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(e) ~6(5)  
In this case we take the opportunity to re-evaluate the RK6(5) situation. Table 5 contains a new 

process, the RK6(5)9FM, developed following the strategy of Prince and Dormand [19], which has 
proved to be very competitive as an integrator particularly when compared to the RK5(4)7FM and 
the RK6(5)8M of Ref. [19]. However, it still appears preferable on global accuracy vs cost grounds 
to use a higher order process such as the RK8(7)13M for stringent tolerances. 

Regarding a 5th order dense formula, it was not found possible to obtain a process in which 
s* = 9 and all evaluations were in common with the integration pair. Thus s* = 10 was considered 
and the resulting dense process (a~0j and b*), with d = 5, is presented in Table 5. It would now 
be possible to consider an estimator with ~ = 6 and using Table 1 obtain the necessary restrictions 
on the f~. However, because of the specific f~ that are zero in the RK5 estimator (Table 4), it is 
possible, with m = 5, to obtain two term error estimation using the 5th order formula as estimator. 
Thus we have # = 5 and g = 7. 

It is interesting to compare the costs, in terms of function evaluations per step, incurred by each 
of the special processes, which as well as allowing global error estimation at each mesh point also 
permit dense output estimates to be obtained. Assuming no rejects, the number of evaluations per 
step, after the first step, for the 2nd-6th order processes is 4, 6, 10, 13 and 16 respectively. Orders 
2 and 3 yield one term estimation whilst the others give two term estimation. 

5. NUMERICAL TESTS 

To evaluate the efficiency of the new global error estimation procedure we have conducted tests 
using the formulae presented in Section 4. These confirm the analytical predictions for the order 
of E,. We present here some results of integrations with the processes of orders 4, 5 and 6. The 
two standard test problems, A3 and D5, used in Ref. [2] are considered and the more economical 
direct approach of Peterson [16] has been employed. As we have seen this allows greater flexibility 
and also gives superior results at lax tolerances [16]. Variable integration steps were used and were 
computed according to the mixed local error per step criterion as discussed by Shampine [20]. 

Figure 1 refers to problem A3 and contains two curves for each process. The efficiency of the 
main integrator is represented by the solid curve (logm0{max I~nl } over all steps) while the dashed 
curve shows the error of the global error estimate (log~0 {max I Enl} over all steps). Error estimation 
is effective in all cases and it is clear that, at the more stringent tolerances, at least three significant 
figures in the global error are obtained. In particular the new 6th order process yields very good 
efficiency with good global error estimation via the RK5 estimator (Table 4). An important 
property of the new method is the good performance at lax tolerances as compared with the 5th 
and 6th order cases presented in Ref. [2]. 

Figure 2 shows corresponding results for problem D5. In this case the maximum values of II ~, IL 
and IIEn II over ali steps and variables are considered. Again it is clear that the 6th order process 
is most efficient, yielding better results than the other two over any reasonable range of tolerances. 
Since the RK6(5)9FM process offers dense output it would appear to be a more practical formula 
for general usage than any one previously published. 

6. DISCUSSION 

The results reported above confirm our previous predictions in Ref. [2] regarding use of dense 
output in defect formation. The use of Peterson's [16] model has further enhanced the practicality 
of global error estimation: a reliable estimate can now be achieved at about double the cost of an 
ordinary integration. It is possible that users of a package based on these techniques would be 
tempted to perform global extrapolation on the results. Since the estimation technique is robust 
such a temptation would not be dangerous provided, of course, the user is aware of the solution 
to which the global error estimate refers. If the 6th order formula is used an extrapolated result 
would have global error of order h 8. Since this takes 16 function evaluations per step it is likely 
to be more expensive than the RK8(7)13M of Ref. [19] which uses 13 evaluations per step. 
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Fig. 1. Curves showing the variation of maximum global error e ( , )  over all steps and maximum 
error E of ~ ( - - - ) ,  with function evaluations for three formulae applied to problem A3. 
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Fig. 2. Curves showing the variation of maximum global error ~ ( ) over all steps and variables and 
maximum error E of ~ ( - - - ) ,  with function evaluations for three formulae applied to problem DS. 

Fu tu re  developments  of  the global error es t imat ion technique will be aimed at  an  8th order 
process and  at the provis ion of estimates of the global error at dense ou tpu t  points.  This  latter 
s i tuat ion will involve der ivat ion of  dense ou tpu t  formulae with properties akin to those of  the 

special formulae presented in this paper. 
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