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SUMMARY

5-methylcytosine is a major epigenetic modification
that is sometimes called ‘‘the fifth nucleotide.’’ How-
ever, our knowledge of how offspring inherit the DNA
methylome from parents is limited. We generated
nine single-base resolution DNA methylomes,
including zebrafish gametes and early embryos.
The oocyte methylome is significantly hypomethy-
lated compared to sperm. Strikingly, the paternal
DNA methylation pattern is maintained throughout
early embryogenesis. The maternal DNA methylation
pattern is maintained until the 16-cell stage. Then,
the oocyte methylome is gradually discarded
through cell division and is progressively reprog-
rammed to a pattern similar to that of the sperm
methylome. The passive demethylation rate and the
de novo methylation rate are similar in the maternal
DNA. By themidblastula stage, the embryo’s methyl-
ome is virtually identical to the sperm methylome.
Moreover, inheritance of the sperm methylome
facilitates the epigenetic regulation of embryogen-
esis. Therefore, besides DNA sequences, sperm
DNA methylome is also inherited in zebrafish early
embryos.
INTRODUCTION

Epigenetic modifications such as DNA methylation and histone

modifications play critical roles during embryogenesis (Li et al.,

1992; Okano et al., 1999). However, knowledge of how much

epigenetic information in gametes can be transferred to the
offspring is limited. Recent studies show that epigenetic modifi-

cations from gametes in general are cleared and reestablished

after fertilization (Blewitt et al., 2006; Daxinger and Whitelaw,

2010, 2012; Feng et al., 2010b; Henderson and Jacobsen,

2007; Wu and Zhang, 2010) except that a number of loci in

some model organisms are resistant to the clearing (Arteaga-

Vazquez and Chandler, 2010; Cavalli and Paro, 1998; Morgan

et al., 1999). However, this theory lacks evidence in the form of

high-resolution epigenetic maps in oocytes, sperm, and early

embryos.

DNA methylation is one major epigenetic modification that is

crucial for the development and differentiation of various cell

types in an organism (Li et al., 1992; Okano et al., 1999). In mam-

mals, DNA demethylation occurs in the whole-genome level after

fertilization, but not in some loci, such as intracisternal A particle

(IAP) (Daxinger and Whitelaw, 2010; Wu and Zhang, 2010).

To further understand how offspring obtain DNA methylation

information from parents, reduced representation bisulfite

sequencing (RRBS) was used to achieve the most comprehen-

sive genome-scale methylomes in mouse gametes and prespe-

cified embryos (Smallwood and Kelsey, 2012; Smith et al., 2012),

which explored the unique regulatory phase of DNA methylation

in early mammalian embryos. Unfortunately, the RRBS method

covers only 5% of the genome for the comparative analysis

(Ball et al., 2009; Harris et al., 2010; Smith et al., 2012). The

limited genome coverage in oocyte and early embryos prevents

a full understanding of howmuch DNAmethylation information is

inherited and how it is transferred from sperm and oocyte to

progenies, respectively. Moreover, the limited understanding

extends to the biological purposes and outcomes of DNA

methylation inheritance from gametes.

Although the genome-wide DNA demethylation is a hallmark

of mammalian embryogenesis, a controversy surrounds the

question of whether such a phenomenon is general for all verte-

brates. Some studies report the absence of genome-wide
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Table 1. Summary of Shotgun Bisulfite Sequencing

Sample Stage

Genome

Depths

BSConversion

Rate

Number of

CG (13)

CG (13)

Covered

Number of

CG (53)

CG (53)

Covered

Sperm gamete 31 99.53% 22.0 M 95.18% 20.6 M 89.25%

Egg 35 99.73% 22.1 M 95.93% 21.0 M 90.89%

16 cell cleavage 19 99.44% 21.6 M 93.76% 18.9 M 82.07%

32 cell 32 99.89% 22.1 M 95.69% 20.8 M 90.19%

64 cell 19 99.34% 20.8 M 90.19% 17.8 M 77.25%

128 cell blastula 22 99.51% 21.9 M 95.00% 19.9 M 86.14%

1,000 cell 38 99.53% 22.0 M 95.45% 20.8 M 90.15%

Germ ring gastrula 20 99.57% 21.7 M 94.09% 19.3 M 83.41%

Testis organ 21 99.44% 22.0 M 95.27% 20.1 M 87.03%

Paired reads were mapped uniquely to the reference genome (Zv9, UCSC) by Bismark. Number of CpG (13) or number of CpG (53) indicate total

number of CpG sites mapped at least one read or five reads. Covered indicates proportion of mapped CpG sites over total CpG sites in genome.

‘‘M’’ indicates million.
demethylation in zebrafish (Danio rerio) and Xenopus (Macleod

et al., 1999; Veenstra and Wolffe, 2001), but others argue for

the existence of genome-wide demethylation in zebrafish

embryos (MacKay et al., 2007; Mhanni and McGowan, 2004).

Here, we chose zebrafish as the model to measure DNA methyl-

omes at single-base resolution in gametes and early embryos.

We reveal that zebrafish inherit the DNAmethylome from sperm.

RESULTS

Single-Base Resolution DNA Methylomes of Zebrafish
Gametes and Early Embryos
The zebrafish is a commonmodel organism for vertebrate devel-

opmental studies. The annotated zebrafish genome is about

1.4 giga (G) bases, including 24.2 million CpG sites. Genetic

polymorphisms (SNPs) would potentially interrupt the calling

of methylation status of cytosines. Therefore, we performed

whole-genome resequencing of the Tübingen (TU) strain (depth

22-fold) used in this study and identified about 11 million SNPs

between our TU strain and the reference genome (Zv9, UCSC).

Indeed, 1.2 million CpG sites are disrupted by SNPs in the TU

genome. These sites were therefore excluded from further

analyses.

To explore how progenies inherit the DNA methylation infor-

mation from parents, we collected both sperm and oocytes, as

well as cleavage-stage embryos at the 16-cell, 32-cell, and

64-cell stages, the early-blastula stage at 128 cell, the midblas-

tula stage (MBT) at 1,000 cell (or 1k cell), the gastrula stage at the

germ ring, and testis from inbred TU strain. We generated single-

base resolution methylomes in these samples with MethylC-seq

(Lister et al., 2009). The average genomic depth among these

nine samples was 13-fold per strand (Table 1). We did not

observe significant methylation at non-CpG sites in any stage

of embryos (data not shown). Therefore, all subsequent analyses

were focused on the CpG sites.

First, we analyzed the genomic features of the zebrafish

methylome and calculated the methylation level of each CpG

site across the genome. In this study, we considered only CpG

sites that were covered at least ten times. In all samples, the

majority of CpG sites are either highly methylated (methylation
774 Cell 153, 773–784, May 9, 2013 ª2013 Elsevier Inc.
level between 75% and 100%) or unmethylated (less than

25%) (Figure S1A available online) (Lister et al., 2009; Molaro

et al., 2011). Then, we checked the methylation features in

various functional elements such as promoters, exons, and

CpG islands (CGI). The results show that the unmethylated

CpG sites are highly enriched in promoters and CGIs (Fig-

ure S1B). In general, the pattern of DNAmethylation in functional

regulatory elements in zebrafish is similar to that observed in

mammals (Lister et al., 2009; Molaro et al., 2011).

The Dynamics of DNA Methylomes in Gametes
and Early Embryos
Next, we were interested in the dynamic change in the DNA

methylome in zebrafish gametes and early embryos. We plotted

the average DNA methylation level across the whole genome in

gametes and early embryos. Surprisingly, the methylation level

of oocytes is lowest among all examined samples, whereas

sperm shows the highest methylation level (Figure 1A). Oocytes

(average methylation level, 80%) are globally hypomethylated

compared to sperm (91%). Interestingly, after fertilization, the

methylation level appears to be stable in early cleavage stages

of embryos compared to the predicted level in zygote, the

mean level of sperm and oocyte. From 32 cell onward, the

methylation level increases gradually to achieve a comparable

level to sperm upon MBT (Figure 1A).

For each pair of consecutive stages, we compared the

methylation level of each CpG site and called it as differentially

methylated CpG if the difference in methylation level exceeded

0.2 with p value < 0.05 according to Fisher’s exact test.

About 14% of CpG sites are differentially methylated CpGs

between sperm and oocyte genome wide (Figure 1B). The

methylation levels of most CpG sites are stable during the

transitions of consecutive stages (Figure 1B), but we identified

significant changes between oocyte and 1,000-cell embryos

(Figure 1C).

Early Embryos Reset to a DNA Methylome Almost
Identical to that in Sperm
The methylomes of oocyte and sperm are significantly different

(Figure 1A). But there is no significant difference between sperm



Figure 1. Dynamics of DNA Methylomes for

Gametes and Early Embryos

(A) The dynamics of the average DNA methylation

level. The average methylation level is calculated

as the percentage of methylated CpG in all CpG

content. ‘‘Z’’ means the mean of methylation level

between oocyte and sperm.

(B) Differentially methylated CpG sites between

consecutive stages.

(C) Sites with increasing or decreasing methylation

levels co-occur during each consecutive transition.

The last two bars represent the comparisons be-

tween sperm or oocyte with the 1,000-cell stage,

respectively.

See also Figure S1.
and 1,000-cell embryo (Figure 1B). To investigate the potential

similarities of the methylation landscape of sperm and 1,000-

cell embryo, we began our analysis from oocyte-specific methyl-

ated sites (mCpG percentage R 75% in oocyte and % 25%

in sperm) and oocyte-specific unmethylated sites (mCpG per-

centage R 75% in sperm and % 25% in oocyte). We plotted

their dynamic changes across all examined stages of embryos.

The methylation levels of both oocyte-specific unmethylated

sites and oocyte-specific methylated sites become intermedi-

ately methylated in 16-cell embryos, which is consistent with

the knowledge that the average methylation level in early em-

bryos (16-cell embryos) is close to the mean value of oocyte

and sperm (Figure 1A). Interestingly, those sites exhibit a gradual

change to the similar levels seen in sperm upon MBT stage

(Figures 2A and 2B). Similar results were also observed in the

other differentially methylated sites between sperm and oocyte

(Figures S2A and S2B). Sites with similar methylation levels

between gametes do not exhibit significant changes during

embryogenesis (Figures 2C, 2D, and S2C).

Analyses of the dynamics of CGIs further support this finding.

CGIs are known as important functional genomic regions

in the regulation of gene expression. The DNA methylation

state of CGIs is also reprogrammed to the sperm methylation

state upon MBT specification (Figures 2E, 2F, and S2D).

Further analysis shows that genome-wide correlation of
Cell 153, 77
methylomes between sperm and early

embryos becomes increasingly higher

upon specification to the MBT stage

(Figure 2G). In contrast, the change

of correlation between methylomes of

oocytes and early embryos presents

an entirely reversed trend (Figure 2G).

Additionally, six oocyte-specific methyl-

ated regions and ten oocyte-specific

unmethylated regions were independently

validated by bisulfite-sequencing PCR,

which provided further proof that all

the examined loci reset to sperm methyl-

ation state upon specification to MBT

stage (Table S1). In summary, evidence

of CpG sites, CGIs, and whole-genome

correlation all support the idea that sperm
defines the DNA methylome of early embryos upon specifica-

tion to MBT.

Upon specification to MBT, differentially methylated sites be-

tween sperm and oocyte are reset gradually to sperm methyl-

ation pattern, whereas from MBT onward, the methylome is

further programmed (Figures 2A, 2B, 2E, and 2G) and becomes

more and more different from sperm. But all the reprogramming

to the somatic cell is based on the sperm methylation pattern,

which is limited to specific regions. As a result, the methylome

of somatic cells is still close to the sperm pattern. These data

suggest that MBT is a transitional stage during DNA methylation

reprogramming in zebrafish early embryogenesis.

5hmC Is Not Involved in the DNA Methylation
Reprogramming in Zebrafish Early Embryos
Next, we were interested in how the early embryo methylome

becomes similar to sperm methylome upon the MBT stage.

Our previous results show that there is no genome-wide DNA

demethylation between gametes and early cleavage stages

of embryos but that a significant number of sites are demethy-

lated during early embryogenesis (Figure 1C). Previous reports

show that the AID/Gadd45 enzyme mediates DNA demethy-

lation in zebrafish (Rai et al., 2008). But, AID/Gadd45 has

no activity before 4 hr postfertilization (Rai et al., 2008).

Given that oocyte-specific methylated regions become totally
3–784, May 9, 2013 ª2013 Elsevier Inc. 775



Figure 2. Early Embryos Reset the Methyl-

ation Landscape to a Pattern that Is Almost

Identical to Sperm

(A and B) Box plots of methylation values of

CpG sites highlight the dynamic patterns of

oocyte-specific unmethylated sites (methylation

level R 0.75 in sperm and % 0.25 in oocyte)

and oocyte-specific methylated sites (methylation

levelR 0.75 in oocyte and% 0.25 in sperm) across

early embryogenesis. Black line indicates median,

edges stand for the 25th/75th percentile, and

whiskers stand for the 2.5th/97.5th percentile.

(C and D) Box plots of DNA methylation level for

sites with similar methylation level in both gametes

across early embryogenesis.

(E) Dot plots show pairwise comparisons of

average methylation level in CGIs.

(F) Graphical representation of methylation pattern

at two CGIs within a locus in gametes, 32-cell,

and 1,000-cell embryos. Green bars highlight the

positions of CGI. Vertical line height indicates the

methylation level.

(G) Pearson correlations coefficient heatmap

among methylomes. Correlation coefficients are

colored yellow to red to indicate low to high,

respectively.

See also Figure S2 and Table S1.
unmethylated by the MBT stage (around 3 hr postfertilization),

we chose not to pursue the potential role of AID/Gadd45 further

in this work. Several recent studies have suggested that

5hmC may be involved in paternal DNA demethylation after

fertilization (Inoue and Zhang, 2011; Iqbal et al., 2011). To

explore whether 5hmC mediates DNA demethylation in zebra-

fish early embryos, we used a glycosylation-mediated enrich-

ment method (Robertson et al., 2012) to detect the genomic

distribution of 5hmC in sperm, 2-cell, and 16-cell embryos.

Our data show a very limited number of 5hmC-enriched regions

(Table S2), none of which are associated with DNA demethyla-

tion regions, thereby suggesting that 5hmC does not mediate

DNA demethylation in early embryos. To further confirm this

result, we measured 5hmC in 32-cell embryos with single-

nucleotide resolution using Tet-assisted bisulfite sequencing

(TAB-seq) (Yu et al., 2012). The data demonstrate a small

number of 5hmC sites and no 5hmC enriched regions in 32-

cell embryos (Table S3). Additionally, 5hmC is not detectable

by immunofluorescence staining in zebrafish early embryos

(Figure S3). Taken together, 5hmC does not mediate the DNA

demethylation in zebrafish early embryos.
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Paternal DNA Copies Maintain
Sperm Methylome, and Maternal
DNA Copies Maintain Oocyte
Methylome in 16-Cell Embryos
Sperm and oocyte methylome are sig-

nificantly different, but embryos reset to

a methylome very similar to sperm upon

MBT. To understand how differentially

methylated regions (DMRs) between

oocyte and sperm reprogram to the
same state, we tracked the dynamic changes of oocyte-specific

unmethylated loci. In this analysis, we picked up the paired reads

covering at least four consecutive oocyte-specific unmethylated

sites (mCpG percentageR 75% in sperm and% 25% in oocyte)

from each stage and then calculated the methylation level

of these reads. As expected, almost all paired reads in oocyte-

specific unmethylated regions are highly methylated in sperm

(Figure 3A, first panel) and are unmethylated in oocytes (Fig-

ure 3A, second panel). While in the cleavage 16-cell embryos,

about half of the paired reads are unmethylated, and the other

half are highly methylated (Figure 3A, third panel). This result is

consistent with the previous finding that the average methylation

level in early embryos (16-cell embryos) is close to the mean

value of oocyte and sperm (Figure 1A). Similar findings were

also revealed for paired reads, which covered at least four

oocyte-specific methylated sites (mCpG percentage % 25% in

sperm andR 75% in oocyte) in the 16-cell stage (Figure 3B first,

second, and third panels). Two representative loci are shown in

Figures 3C and S4A. Additionally, results of bisulfite-sequencing

PCR show that the DNA methylation levels of both oocyte-

specific methylated loci and unmethylated loci in 8-cell embryos



Figure 3. The Methylome of Paternal DNA Is Maintained, and the Methylome of Maternal DNA Is Gradually Reset to Sperm Pattern

(A) Distribution of the average methylation values of paired reads, which include at least four consecutive oocyte-specific unmethylated CpG sites (mCpG

percentage R 75% in sperm and % 25% in oocyte) in gametes and early embryos. n is the number of paired reads in each stage.

(B) Distribution of average methylation values of paired reads covering at least four consecutive oocyte-specific methylated sites (mCpG percentage R 75% in

oocyte and % 25% in sperm). x axis represents methylation level. Bins are at 0.25 intervals (bins at 0.05 are shown in Figures S1C and S1D).

(C) Dynamic changes of DNA methylation for a representative locus located in chr7:21,315,648-21,315,662. Paired reads from whole-genome data covering all

five CpGs are shown. Open circles represent unmethylated CpGs, and filled circles represent methylated CpGs.

(D) Dynamic changes of DNAmethylation for a representative locus in chr6: 27,393,375-27,393,560 tracked with SNPs to distinguish maternal and paternal DNA.

The data are validated using bisulfite PCR. Ten reads were randomly picked for sperm and oocyte. Five reads from paternal DNA and five reads from maternal

DNA are randomly picked in 16-cell, 64-cell, and 1,000-cell stages of embryos. See also Table S4.

(E) Number of differentially methylated loci covered by oocyte-specific methylated and unmethylated paired reads.

(F) Genome-wide analysis of the proportion of differentially methylated loci covered by paired reads progressively resetting to spermmethylation state. Gray bars

represent oocyte-specific hypermethylated loci, and black bars represent oocyte-specific hypomethylated loci.

(G) Number of DMRs genome wide, methylation difference > 0.2.

(H) Genome-wide analysis of the proportion of DMRs progressively resetting to sperm methylation state. Methylation level difference of the DMRs was set

higher than 0.2, 0.3, and 0.5, respectively.

See also Figures S3 and S4 and Tables S2 and S3.
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are around 50% (Table S1). These results indicate that the

DNA methylomes of 8-cell and 16-cell embryos result from the

addition of sperm and oocyte methylome, thus suggesting that

paternal DNA may maintain sperm methylome and maternal

DNA may maintain oocyte methylome.

To validate this, we tracked DNA methylation states of

paternal and maternal DNA copies according to SNPs from

crossed zebrafish, TU strain female with Tupfel long fin (TL) strain

male. About two million homogenous SNPs were identified

between TL and TU strains. The bisulfite-sequencing PCR

method was used to examine the methylation states of 22

DMRs (Table S4). All of these loci contain SNPs, which can

distinguish maternal DNA from paternal DNA. As expected,

paternal DNA copies maintain the sperm methylation state,

and maternal DNA copies maintain the oocyte methylation state

in the 16-cell embryos. A representative locus is presented in

Figure 3D.

Collectively, our data demonstrate that paternal DNA copies

maintain the sperm methylome and maternal DNA copies main-

tain the oocyte methylome, indicating that both paternal and

maternal DNA use a DNA maintenance system to maintain the

methylome until the 16-cell stage. Our mRNA expression data

also demonstrate that maintenance methyltransferase DNMT1

is highly expressed across all of these early cleavage stages

(Table S5), which is consistent with a previous report (Rai

et al., 2006). Our data show that no whole-genome DNA

demethylation occurs after zebrafish fertilization, a finding that

goes against previous reports that have demonstrated whole-

genome DNA demethylation (MacKay et al., 2007; Mhanni and

McGowan, 2004).

For DMRs between Gametes, the Methylation Pattern
of Maternal DNAGradually Resets to SpermMethylation
State after the 16-Cell Stage
Next, we were interested in how the DNA methylome is estab-

lished after the 16-cell stage. Similar to the 16-cell stage, the

majority of paired-reads are still either highly methylated or

unmethylated in later stages (Figures 3A and 3B). Notably,

both oocyte-specific unmethylated reads (Figure 3A) and

oocyte-specific methylated reads (Figure 3B) genome wide

gradually decrease after the 16-cell stage, and the majority of

them are changed to the sperm methylation state upon MBT.

For an oocyte-specific methylated locus, the proportion of

the methylated reads also gradually decreases, and the locus

becomes the sperm unmethylated state in 1,000-cell stage

(Figure 3C). This result indicates that demethylation of this

oocyte-specific highly methylated locus occurs through passive

demethylation. For an oocyte-specific unmethylated locus, the

proportion of the unmethylated reads also gradually decreases,

and the locus is methylated in the 1,000-cell stage (Figure S4A),

indicating that de novo methylation occurs in this locus. Our

messenger RNA sequencing (mRNA-seq) results show that de

novo methyltransferases DNMT3, 4, 5, and 7 (mammalian

homology DNMT3b) are highly expressed at these stages

(Table S5).

Furthermore, the oocyte-specific differentially methylated loci

tracked by SNPs show that paternal DNA copies maintain the

sperm methylation state in the 64-cell and the 1,000-cell stages.
778 Cell 153, 773–784, May 9, 2013 ª2013 Elsevier Inc.
At the 64-cell stage, however, the number of maternal DNA

copies with oocyte-specific methylation state (OSMS) de-

creases, and some maternal DNA copies transform to the

sperm methylation state (Figure 3D and Table S4). In the

1,000-cell stage, the methylation state of maternal DNA is

similar to the methylation state of sperm (Figure 3D and Table

S4). In summary, for all of these loci, paternal DNA copies

maintain the sperm methylation state until the MBT stage and

maternal DNA copies with OSMS gradually decrease during

cell division and reprogram to a sperm methylation pattern

upon MBT stage.

We also examined how many oocyte-specific unmethylated

loci and oocyte-specific methylated loci progressively reset to

sperm pattern through cell division. Our whole-genome analyses

between sperm and oocyte show there are 14,288 differentially

methylated loci covered by paired reads, including 13,594

oocyte-specific unmethylated loci and 694 oocyte-specific

methylated loci (Figure 3E). When comparing sperm and MBT,

only 54 (0.38%) loci remain as differentially methylated loci

(adjusted t test, p < 0.05, methylation level difference > 0.2),

indicating that almost all of the gamete-specific methylated or

unmethylated loci reset to sperm methylation state. Then, we

calculated how many of the loci progressively reset to sperm

methylation state through cell division. Our data include the

methylomes of 16-cell, 32-cell, 64-cell, 128-cell, and 1,000-cell

stages. Therefore, we can calculate the methylation level

changes of all the specific loci in four consecutive transitions,

including 16-cell to 32-cell, 32-cell to 64-cell, 64-cell to 128-

cell, and 128-cell to 1,000-cell stages. We defined a locus that

was progressively reset to sperm methylation state through

cell division if the locus was transformed into sperm methylation

state upon the MBT stage, and the DNA methylation level of

this specific locus gradually increased (for oocyte-specific

unmethylated locus) or decreased (for oocyte-specific methyl-

ated locus) in at least three of four consecutive transitions. We

found that about 89% of oocyte-specific methylated loci and

87% oocyte-specific unmethylated loci follow our definition of

progressive resetting (Figure 3F).

Moreover, we applied the analysis to DMRs (methylation level

difference > 0.2). Between sperm and oocyte, there are 162,196

oocyte hypomethylated regions (HypoRs) and 7,037 oocyte-

specific hypermethylated regions (HyperRs) (Figure 3G). When

sperm are compared to MBT, only 69 of them (0.041%) are

still DMRs, indicating that almost all DMRs between gametes

reset to sperm methylation state. For all DMRs, 73% of

oocyte-specific HyperRs and 72% of HypoRs follow our

definition of progressive resetting (Figure 3H). To reduce the

effect of sequencing noises, we focused on the DMRs with a

methylation difference higher than 0.5. As expected, the

percentages of HyperRs and HypoRs following our definition of

progressive resetting increase to 87% and 92%, respectively

(Figure 3H). Representative regions of all six large HOX genes

clusters progressively reset to sperm methylation state (Figures

S4B–S4G).

In summary, paternal DNA maintains sperm methylome until

MBT stage. For maternal DNA, the oocyte-specific methylation

pattern is gradually discarded during cell division and progres-

sively resets to a sperm methylome pattern. Our data indicate



that maternal DNA involves passive DNA demethylation and de

novo methylation simultaneously.

The Methylome of Maternal DNA Could Reset
to the Sperm Pattern as One Unit
Next, we were interested in the progressively resetting rates of

the oocyte-specific HyperRs and HypoRs. To achieve the rate,

we needed to know the proportion of DNA copies with OSMS

to the total DNA copies in each stage. Because DNA presents

either sperm methylome state or oocyte methylome state (Fig-

ures 3A–3C), we can estimate the proportion of DNA copies

with OSMS in a developmental stage according to the methyl-

ation level of sperm, oocyte, and this specific stage. Therefore,

we got the estimated proportion of DNA copies with OSMS for

all DMRs (methylation level difference > 0.2) in each stage

(Experimental Procedures). Then, an exponential model was

used to fit the proportion-time curve. We calculated the fitting

curves of the de novo methylation rate for oocyte-specific

HypoRs and the demethylation rate for HyperRs across early

embryogenesis, respectively (Figures 4A and 4B). Excitingly,

the average de novo methylation rate of HypoRs is 0.278, and

the demethylation rate of HyperRs is 0.273. The two rates

are almost exactly the same. A representative locus is shown,

which includes one oocyte-specific HyperR, one HypoR, and

unchanged methylation regions. The proportion of DNA

copies with OSMS for each CpG site within the oocyte-specific

HyperR and HypoR is also calculated. In general, the CpG

sites within the HyperR and HypoR are reset at a similar rate

(Figure 4C). Unfortunately, for the unchanged regions, we cannot

track whether maternal DNA copies with oocyte methylation

states are reset because their methylation states show no

difference among gametes and remain stable across develop-

ment. Given that the resetting rates for the HyperR and

HypoR are the same, this 5 kb region should reset to sperm

methylation state as one unit. Additionally, a representative locus

(covered by paired reads) includes both common methylated

CpG sites and differentially methylated sites between sperm

and oocyte. In this locus, the paired reads with the oocyte

methylation state decrease as one unit and reset to sperm

methylation state (Figure 4D). These data suggest that the

whole oocyte methylome could reset to sperm pattern as one

unit during cell division.

DNA Methylome Reprogramming Associates
with Early Embryonic Developmental Transitions
DNA methylation is critical for proper embryonic and tissue-

specific development (De Carvalho et al., 2010; Jaenisch and

Bird, 2003; Kim et al., 2010). Therefore, we pursued the potential

functions of DNA methylation reprogramming during early

embryogenesis. Given that the DNA methylation level at pro-

moters is highly related to gene expression (Feng et al., 2010a;

Lister et al., 2009; Zemach et al., 2010), we pursued how the

DNA methylation pattern in promoter is reprogrammed among

gametes and early embryos. As shown in Figure 5A, the DNA

methylation pattern of promoters in sperm is significantly

different than oocyte but is very similar to MBT. Abundant

differences begin to emerge again during the transition from

MBT to gastrula. Moreover, genes with differentially methylated
promoters between oocyte and sperm are almost identical to

those between oocyte and MBT (Table S6), which is consistent

with the MBT methylome being virtually identical to sperm.

In order to explore the biological significance of inheriting

sperm methylome, we used gene ontology analysis to examine

the functional enrichments of genes with differentially methyl-

ated promoters (Table S6). All of the enriched categories are

listed (Figure 5B). Interestingly, consistent with the fact that

maternally stored mRNAs direct early embryonic development

prior to MBT (Korzh, 2009; Yasuda and Schubiger, 1992), genes

with oocyte-specific hypomethylated promoters (oocyte versus

sperm and oocyte versus MBT) show strong enrichment in the

processes that regulate very early embryogenesis such as

cellular component morphogenesis, cell motion, and lateral line

system development (Figure 5B, orange window).

Additionally, compared to oocyte, genes with MBT-specific

(also sperm-specific) hypomethylated promoters are strongly

enriched in posttranscriptional regulation, DNA modification,

and transcription factors (Figure 5B, purple window). These

data are consistent with the activation of zygotic genome

transcription at MBT stage (Kimmel et al., 1995). In sperm,

many developmental regulated genes, such as all 48 HOX

genes—which are known to be critical for the patterning of the

animal embryo’s anteroposterior (AP) axis (Prince et al.,

1998)—do not express (data not shown), even with unmethy-

lated promoters (Figures 5C and S4B–S4G). Moreover, the

majority of these genes still cannot express before the MBT

stage because zygotic genome transcription is absent during

that period. These data suggest that depositing those DNA

methylation patterns in sperm will direct later embryonic devel-

opment and will meanwhile prevent these genes from overex-

pressing too early to disturb the early embryogenesis.

We also explored the functional enrichment of genes with

differentially methylated promoters between MBT and gastrula

stage (germ ring). Interestingly, genes with MBT-specific hypo-

methylated promoters are highly enriched in RNA processing

(Figure 5B, purple window), which is consistent with the

activation of zygotic genome transcription at the MBT stage.

In addition, genes with gastrulation-specific hypomethylated

promoters versus MBT are highly enriched in gastrulation,

pattern specification, andmesodermmorphogenesis (Figure 5B,

blue window).

Collectively, our data indicate that DNA methylome reprog-

ramming associates with early embryonic developmental

transitions.

Inheriting Sperm Methylome Can Facilitate
the Epigenetic Regulation of Embryogenesis
Given that DNA methylation can regulate gene expression

(Feng et al., 2010a; Lister et al., 2009; Zemach et al., 2010), we

analyzed mRNA expressions of sperm, oocytes, 1,000-cell

embryos, and germ-ring embryos generated by mRNA-seq.

Combining analysis between mRNA expression and DNA

methylation shows that gene expression is anticorrelated with

methylated CpG density in promoter for each stage (Figure S5A).

Further analyses clearly show that gene expression varies

inversely with methylation levels of the TSS-proximal region

(Figures S5B and S5C). Taken together, these data indicate
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Figure 4. DNA Demethylation Rate of Oocyte-Specific HypoRs and De Novo Methylation Rate of HyperRs

(A and B) Fitting curves of the DNA demethylation rate of oocyte-specific HypoRs and de novo methylation rate of HyperRs. The methylation level difference of

HypoRs and HyperRs is greater than 0.2. HypoRs and HyperRs represent hypomethylated and hypermethylated regions versus sperm, respectively. OSMS

represents oocyte-specific methylation state, which is compared with sperm. Box plot of proportion DNA with OSMS was drawn for each stage. Black line

indicates median, edges stand for the 25th/75th percentile, and whiskers represent the 2.5th/97.5th percentile.

(C) Graphical representation of methylation dynamics of one region containing one oocyte-specific HyperR (demethylation locus, black bar) and one oocyte-

specific HypoR (de novomethylation locus, gray bar). The left panel shows the dynamics of the methylation level. The right panel shows the relative proportion of

DNA copies with oocyte methylation state for each CG site within the DMRs.

(D) Dynamics of a representative locus in chr16: 46,387,770-46,387,944 covered by paired reads containing common methylated sites and differentially

methylated sites (sperm versus oocyte). Paired reads with oocyte methylation landscape decrease and reprogram to sperm methylation state.

See also Table S5.
that the DNA methylation pattern associates with gene expres-

sions in early embryos.

MBT is the stage for the activation of zygotic genome tran-

scription (Kimmel et al., 1995). Because the majority of genes

are biallelically expressed except the imprinted ones, the meth-

ylomes of maternal and paternal DNAs becoming identical
780 Cell 153, 773–784, May 9, 2013 ª2013 Elsevier Inc.
should be important for the activation of zygotic genome tran-

scription. Our data show that the maternal and paternal DNA

methylomes become the same as sperm pattern by the MBT

stage. Although the differentially expressed genes among

various stages are not significantly correlated with the change

of DNA methylation genome wide, 14 genes (Table S7) with



sperm-specific HypoRs and overexpressed in the MBT embryos

versus the oocyte are still enriched in the categories of RNA

metabolism and regulation of transcription. Expression of these

genes would be important for the zygotic genome transcription.

Therefore, the MBT embryos using sperm methylome pattern

can facilitate the activation of zygotic genome transcription in

the MBT stage.

Moreover, genes with both hypomethylated promoters and

that are overexpressed in the germ-ring embryos versus the

1,000-cell embryos are enriched in appendage development,

cell adhesion, and pattern specification process (Table S7).

These data agree with the understanding that gastrulation is a

morphogenetic process in the formation of embryonic germ

layers and the segmentation pattern established in gastrula

stage. The expressions of a number of genes associated with

embryo developmental transition were further confirmed via

quantitative RT-PCR (Figure 5D). Taken together, the associa-

tions between DNAmethylation and mRNA expressions indicate

that inheriting spermmethylome is important for embryogenesis.

To further validate the function of sperm methylome pattern,

we performed androgenetic and gynogenetic assays. By trans-

ferring sperm nucleus into enucleated oocyte, we found that 7

embryos from 27 transplanted eggs reached the dome stage,

5 of them further reached the bud stage, and only 3 of them

finally survived beyond 18 hr (Figure S5D). Injecting another

oocyte’s nuclear to an enucleated oocyte does not yield any

developing embryos (0/63). Meanwhile, dechorionated oocytes

cannot show any gynogenetic cell cleavage event using SrCl2,

which has been shown to activate gynogenetic development

in mammals (O’Neill et al., 1991). Additionally, consistent with

the published data (Huang et al., 2003), nuclear transfer using

somatic cell nuclear can easily produce zebrafish larva (data

not shown), suggesting that unsuccessfully gynogenetic devel-

opment should not result from lacking sperm fertilization pro-

cess. Considering that somatic cells’ DNA methylome is close

to the sperm pattern (Figure 2G, germ ring), those results sug-

gest that the sperm methylation pattern should be critical for

embryogenesis.

DISCUSSION

It is believed that epigenetic information such as DNA methyl-

ation and histone modifications is cleared and re-established

after fertilization with the exception of a number of loci

(Arteaga-Vazquez and Chandler, 2010; Cavalli and Paro, 1998;

Morgan et al., 1999). However, with high-coverage DNA methyl-

omes, we found that the sperm DNA methylation landscape

is not cleared after fertilization; instead, sperm methylome is

inherited in zebrafish. Compared to oocyte, sperm has quite

smaller cellular volume with limited RNAs and proteins. There-

fore, it is commonly believed that the majority of information

for the embryogenesis of offspring is carried by egg, and sperm

carries just one set of DNA. However, our study illustrates that

besides DNA that can be inherited, sperm DNA methylome can

also be inherited in zebrafish. And the inheriting sperm methyl-

ome can facilitate the embryogenesis.

In mammals, active DNA demethylation in paternal DNA

and passive DNA demethylation in maternal DNA occurs after
fertilization, followed by de novo methylation after inner cell

mass (ICM) (Gu et al., 2011; Inoue and Zhang, 2011; Iqbal

et al., 2011). In zebrafish, however, paternal DNA methylome

maintained stable upon MBT stage, and maternal DNA methyl-

ome was maintained before the 16-cell stage but then gradually

discarded, a process that involves passive DNA demethylation

and de novo methylation simultaneously. These data indicate

that zebrafish and mammals use a different mechanism for

DNA reprogramming after fertilization. Our data show that

5hmC is not involved in the DNA demethylation during zebrafish

early embryogenesis. The proportion of oocyte-specific hyper-

methylated reads is gradually decreased, suggesting that

demethylation is passive rather than active. Interestingly, the

demethylation rate for these regions is about 27%, but not

50%, suggesting a mechanism of asymmetric division that

establishes the DNA methylation pattern during embryogenesis.

Perhaps new synthesized maternal DNAs maintain the oocyte

methylation pattern by DNMTs in some cells, but not in all of

them.

Zebrafish inherit sperm DNA methylome, but the underlying

molecular mechanism remains to be elucidated. It has been

shown that small RNA from germ-line cells mediates DNA

methylation reprogramming to guide epigenetic inheritance in

plant (Calarco et al., 2012). Previous studies also show that

Piwi-interacting RNA (piRNA) mediates DNA methylation of

transposon elements during germ cell maturation in mouse

(Aravin et al., 2007, 2008). Perhaps zebrafish early embryos

use a similar mechanism to reprogram the DNA methylation as

mediated by piRNAs, which is abundant in zebrafish sperm

(Houwing et al., 2007). Our data show that SrCl2-treated oocytes

cannot initiate gynogenetic development, whereas previous data

show that gynogenetic zebrafish can be generated for oocytes

fertilized by UV-light-irradiated sperm (Walker et al., 2009). UV

can break DNA into fragments, but UV-irradiated sperm should

still be able to carry piRNAs into oocyte, which may guide

the DNA methylation reprogramming. We cannot rule out that

other important factors from sperm play a crucial role in DNA

methylation inheritance.

Our data suggest that the whole oocyte methylome can act

as one unit to be discarded. The possibility remains that the

whole maternal DNA occurs through a de novo methylation

mechanism to re-establish themethylome. How embryos control

the switch from maintaining oocyte methylome to replace it with

sperm methylome later on also requires further exploration.

Additionally, future research should focus on how early embryos

distinguish maternal DNA from paternal DNA.

A great number of genes are highly expressed in oocytes, in

which the hypomethylated methylome can promote these genes

expressions during the oocyte maturation. But, in sperm, the

majority of genes expressions are silent even with the unmethy-

lated promoters, probably because the highly packed chromo-

some of sperm can prevent the DNA methylation information

from being accessed by transcriptional machinery. Therefore,

the DNA methylome blueprint for regulation of embryogenesis

can be deposited in the sperm, which will not disturb genes’

expression in the sperm. Upon the MBT stage, the blueprint

is successfully transferred to the embryos. Then the DNA meth-

ylome information is accessible, and the sperm methylome
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Figure 5. Functional Significance of Sperm Methylome Pattern

(A) Dot plots show pairwise comparisons of average methylation level in promoters (2 kb up TSS) based on RefSeq gene annotations. Differentially methylated

promoters are highlighted in green and red. See also Table S6.

(B) The heatmap represents the combination of GO term enrichment in genes with oocyte-specific, sperm-specific, MBT-specific, and gastrula-specific

hypomethylated promoters. The statistical significance of the heatmap is colored red to orange to indicate high to low, respectively. Yellow is background.

See also Tables S6 and S7.

(legend continued on next page)
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pattern can facilitate both the activation of the zygotic genome

transcription and the epigenetic regulation of embryogenesis.

At the same time, sperm methylome in MBT can help silence

or suppress the expression of oocyte-specific genes.

In summary, our study shows that zebrafish inherit DNA

methylome from sperm during early embryogenesis, which

sets the stage for further research on how progenies inherit

epigenetic information from their parents.

EXPERIMENTAL PROCEDURES

Zebrafish Stock and Collection of Gametes and Early Embryos

The wild-type zebrafish lines TU and TL were raised under standard condi-

tions. Sperm were released by gently but repeatedly disrupting the testis

with a pipette tip in Hank’s balanced salt solution (HBSS). Unfertilized oocytes

were collected by squeezing the abdomen of females about 5 min after

spawning. Embryos were grown in embryo medium at 28�C and were staged

according to standard morphological criteria.

MethylC-Seq, Reads Filtering, and Alignment

Genomic DNA (R100 ng) spikedwith 0.5%unmethylated cl857 Sam7 Lambda

DNA (Promega) was used to construct the DNA library. Bisulfite treatment

was performed according to EZ DNA Methylation-Gold kit (Zymo Research)

instruction manual. The library was sequenced by Hiseq 2000. Reads

trimming was performed by Trimmomatic with default parameters. Filtered

paired-end methyC-seq reads were mapped against the reference (Zv9) by

Bismark_v0.6.4 (Krueger and Andrews, 2011). A custom script was used to

examine whether paired-end reads were overlapped, and the overlapped

part was trimmed from one end to prevent double counting in the same

observation (see also Extended Experimental Procedures).

Resequencing

The inbred TU and TL strains were used to extract DNA for resequencing.

Reads were aligned to the reference (Zv9, UCSC) by BWA with default param-

eters. SNP calling was performed by SAMtools (http://samtools.sourceforge.

net), and SNP quality was set to be equal or greater than 20.

Estimated Proportion of DNA Strands with Maternal

Methylation Pattern

For each DMR j, between sperm and oocyte, we calculated the average

methylation level of CpGs within the region for each stage. For embryo stage

i (i means cell division times since 16-cell stage, thus, i = 0, 1, 2, 3, and 6 for

16-cell, 32-cell, 64-cell, 128-cell, and 1,000-cell stages, respectively), the

proportion of DNA strands with maternal methylation pattern was estimated

as Pi,j. The methylation level for stage i in region j is formulated:

MLi;j =MLoocyte;j � Pi;j +MLsperm;j � ð1� Pi;jÞ:

Therefore, the formula above could be rewritten as:

Pi;j =
ðMLi;j �MLsperm;jÞ�

MLoocyte;j �MLsperm;j

�;

MLoocyte, j means methylation level of oocyte in the region j. Then, an expo-

nential model y = a*exp(b*x) is used for decoding the functional relationship

of P�i, with sperm-specific HypoR data set and egg-specific HypoR data

set, respectively. The analyses were implemented with R software.
(C) Graph represents methylation at one HOXa gene cluster region in gametes a

(D) RT-qPCR validates the expression changes for genes with methylation level si

show mean ± SD from one representative experiment in triplicate; at least two in

See also Figure S5.
Identification of Differentially Methylated Promoters

and GO Annotation

Only promoters (2 kb upstream from the transcriptional start site) containing at

least five CG sites that were each covered by at least five reads were consid-

ered. The methylation level of each promoter was determined as the ratio of

the number of alignments with C (methylated) over the number of alignments

with either C or T for all CG sites in the promoter. Promoters with differences

in methylation levels larger than 20% between any two developmental stages

(two-tailed Fisher’s exact test, p value < 0.05) were finally defined as differen-

tially methylated promoters. Gene ontology (GO) analysis of genes with differ-

entially methylated promoters was performed using DAVID (http://david.abcc.

ncifcrf.gov/). GO terms with p value of less than 0.05 were determined to be

statistically significant.

5hmC Sequencing

5-hmC DNA enrichment (hMeDIP-seq) sequence libraries were constructed

according to Quest 5-hmC DNA Enrichment Kit (Zymo Research). TAB-seq

of 5-hmC sequencing was performed as described (Yu et al., 2012) (see also

Extended Experimental Procedures).
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