Cycle-finite algebras

Andrzej Skowroński

Institute of Mathematics, Nicholas Copernicus University, Chopina 12/18, 87-100, Toruń, Poland

Communicated by E.M. Friedlander; received 19 February 1993

Abstract

Let A be a finite-dimensional K-algebra over an algebraically closed field K and $\text{mod} A$ be the category of finitely generated right A-modules. Following [1], A is said to be cycle-finite if, for every cycle $M_0 \rightarrow M_1 \rightarrow \cdots \rightarrow M_n = M_0$ of non-zero non-isomorphisms between indecomposable modules in $\text{mod} A$, the morphisms on this cycle do not belong to the infinite power of the Jacobson radical of $\text{mod} A$. In this article we describe the supports of stable tubes of the Auslander–Reiten quivers of cycle-finite algebras. As a consequence we get that every cycle-finite algebra is of polynomial growth. Moreover, we prove some characterizations of domestic cycle-finite algebras.

0. Introduction

Let K be an algebraically closed field, and A be a finite-dimensional K-algebra. Denote by $\text{mod} A$ the category of finite generated right A-modules. By a cycle in $\text{mod} A$ is meant a sequence $M_0 \rightarrow M_1 \rightarrow \cdots \rightarrow M_n = M_0$ of non-zero non-isomorphisms between indecomposable modules. Recent investigations in the representation theory of algebras showed that study of cycles in $\text{mod} A$ leads to important information on indecomposable A-modules, the Auslander–Reiten quiver of A, and the ring structure of A (see the author's survey article [19]). In this work we are concerned with the representation type of cycle-finite algebras. Recall that following [1] an algebra A is called cycle-finite if, for every cycle in $\text{mod} A$, all morphisms on this cycle do not belong to the infinite power $\text{rad}^\infty(\text{mod} A)$ of the Jacobson radical $\text{rad}(\text{mod} A)$ of $\text{mod} A$. Examples of cycle-finite algebras are all representation-finite algebras, tame tilted algebras [7, 14], tubular algebras [14], iterated tubular algebras [12], and multicoil algebras [2, 3]. It is known (see [1]) that every cycle-finite algebra is of tame representation type. Then, by [4], for any dimension $d > 0$, all but a finite number of isomorphism classes of indecomposable A-modules of dimension d lie in stable tubes of rank 1.
The main result of this paper describes the supports of stable tubes in the Auslander–Reiten quivers of cycle-finite algebras. Namely, we prove that the Auslander–Reiten quiver Γ_A of a cycle-finite algebra A admits a sincere stable tube if and only if A is either tame concealed or tubular. As a consequence we get that every cycle-finite algebra is of polynomial growth, that is, there is a natural number m such that the indecomposable modules occur, in each dimension $d \geq 1$, in a finite number of discrete and at most d^m one-parameter families. These results extend the corresponding results proved for multicoil algebras in [2]. Moreover, we prove that, for a cycle-finite algebra A, the following conditions are equivalent: (i) A is domestic, (ii) A does not contain a tubular algebra as a full convex subcategory, (iii) the infinite radical $\text{rad}^\infty(\text{mod} A)$ is nilpotent, and (iv) all but a finite number of components in Γ_A are stable tubes of rank 1.

The paper is organized as follows. In Section 1 we fix the notions and recall the needed definitions. Section 2 is devoted to semi-regular tubes. In Section 3 we describe the Auslander–Reiten components of cycle-finite algebras having sincere indecomposable modules lying in stable tubes. Sections 4 and 5 contain the proofs of our main results.

1. Preliminaries

Throughout this paper, K will denote a fixed algebraically closed field. By an algebra A is meant an associative finite-dimensional K-algebra with an identity, which we shall moreover assume to be basic and connected. In this case, there exists a connected bound quiver (Q_A, I) and an isomorphism $A \simeq KQ_A/I$. Also, $A = KQ_A/I$ can equivalently be considered as a K-category, of which the object class is the set $(Q_A)_0$ of vertices of Q_A, and the set of morphisms $A(x, y)$ from x to y is the quotient of the K-vector space $KQ_A(x, y)$ having as a basis the set of paths in Q_A from x to y by the subspace $I(x, y) = I \cap KQ_A(x, y)$, see [6]. If Q_A has no oriented cycle, then A is said to be triangular. A full subcategory C of A is said to be convex if any path in Q_A with source and target in Q_C lies entirely in Q_C.

Let A be an algebra. By an A-module is meant a finitely generated right A-module. We shall denote by mod A the category of A-modules, by $\text{rad}(\text{mod} A)$ the Jacobson radical of $\text{mod} A$, and by $\text{rad}^\infty(\text{mod} A)$ the intersection of all powers $\text{rad}^i(\text{mod} A)$, $i \geq 0$, of $\text{rad}(\text{mod} A)$. A path in $\text{mod} A$ is a sequence of non-zero non-isomorphisms $M_0 \to M_1 \to \cdots \to M_n$, where the modules M_i are indecomposable. If $M_0 \cong M_n$, such a path is said to be a cycle. A cycle in $\text{mod} A$ is said to be finite if no morphism on this cycle lies in $\text{rad}^\infty(\text{mod} A)$. If all cycles in $\text{mod} A$ are finite then A is said to be cycle-finite [1]. An indecomposable A-module M is said to be directing if it lies on no cycle in $\text{mod} A$. For $i \in (Q_A)_0$, we denote by $S_A(i)$ the corresponding simple A-module and by $P_A(i)$ the projective cover of $S_A(i)$. For an A-module M, its support $\text{supp} M$ is the full subcategory of A consisting of all objects $i \in (Q_A)_0$ such that $\text{Hom}_A(P_A(i), M) \neq 0$. If $\text{supp} M = A$ then the module M is said to be sincere.
For an algebra A, we shall denote by Γ_A the Auslander–Reiten quiver of A, and by $\tau_A = D\text{Tr}$ and $\tau_A^\perp = \text{Tr}D$ the Auslander–Reiten translations in Γ_A. We shall agree to identify the vertices of Γ_A with the corresponding indecomposable A-modules. By a component of Γ_A we mean a connected component in Γ_A. Let \mathcal{C} be a component of Γ_A. Then \mathcal{C} is said to be regular if \mathcal{C} contains neither a projective module nor an injective module, and semi-regular if \mathcal{C} does not contain both a projective and an injective module [9]. Following [14], \mathcal{C} is said to be convex if, for any path $M_0 \rightarrow M_1 \rightarrow \cdots \rightarrow M_t$ in mod A with M_0 and M_t from \mathcal{C}, all modules M_i belong to \mathcal{C}. We shall say that \mathcal{C} is standard if the full subcategory of mod A formed by the vertices of \mathcal{C} is equivalent to the mesh-category $K(\mathcal{C})$ of \mathcal{C} [14]. Finally, \mathcal{C} is said to be generalized standard if $\text{rad}^\infty(X, Y) = 0$ for all modules X and Y from \mathcal{C} [17]. It is known [10] that every standard component is generalized standard. Examples of convex and (generalized) standard components are provided by preprojective components and preinjective components (see [19]). Recall that a component \mathcal{C} is called preprojective (respectively, preinjective) if \mathcal{C} contains no oriented cycle and each module in \mathcal{C} belongs to the τ_A-orbit of a projective module (respectively, an injective module). Finally, the support $\text{supp}\mathcal{C}$ of \mathcal{C} is the full subcategory of A formed by all objects x such that $\text{Hom}_A(P_A(x), M) \neq 0$ for some $M \in \mathcal{C}$. An algebra A is said to be tame if, for any dimension d, there is a finite number of $K[x]$-A-bimodules M_i which are finitely generated and free as left $K[x]$-modules, and satisfy the following condition: all but a finite number of isomorphism classes of indecomposable A-modules of dimension d are of the form $K[x]/(x - \lambda) \otimes_{K[x]} M_i$ for some $\lambda \in K$ and for some i. Let $\mu_A(d)$ be the least number of bimodules M_i satisfying the above condition. Then A is said to be of polynomial growth (respectively, domestic) if there is a natural number m such that $\mu_A(d) \leq d^m$ (respectively, $\mu_A(d) \leq m$) for all $d \geq 1$. It was shown in [5] that this concept of a domestic algebra coincides with that introduced in [13]. Well-known examples of domestic algebras are tame concealed algebras [14]. On the other hand, the tubular algebras [14] are non-domestic of polynomial growth (see [15]). Moreover, it is known [1, (1.4)], that any cycle-finite algebra is tame.

For more details on the above notions we refer the reader to [14, 15].

2. Semi-regular tubes

A stable tube of rank r ($r \geq 1$) is a translation quiver of the form $\mathbb{Z}A_\infty/(\tau')$. By a coray tube (respectively, ray tube) is meant a translation quiver which can be obtained from a stable tube by a finite number of coray insertions (respectively, ray insertions). Recall that a coray in a translation quiver Γ is an infinite sectional path

$$\cdots \rightarrow X_{n+1} \rightarrow X_n \rightarrow \cdots \rightarrow X_2 \rightarrow X_1$$

in Γ with pairwise different vertices such that for each integer $i \geq 1$, the path $X_{i+1} \rightarrow X_i \rightarrow \cdots \rightarrow X_2 \rightarrow X_1$ is the unique sectional path of length i in Γ which ends.
at X_1. A ray of a translation quiver is defined dually. We shall agree, by abuse of the language, to consider a stable tube as a coray tube and as a ray tube. For more details on tubes we refer to [14]. It is known that a coray tube (respectively, ray tube) of an Auslander–Reiten quiver Γ_A is standard if and only if it is generalized standard (see [10, 20]).

We have the following theorem proved in [9, (2.6)].

Theorem 2.1. Let A be an algebra and \mathcal{C} be a semi-regular component of Γ_A containing an oriented cycle. Then \mathcal{C} is either a coray tube or a ray tube.

We shall need also the following facts.

Proposition 2.2. Let A be an algebra and B be a full convex subcategory of A. Assume that \mathcal{T} is a non-regular coray tube in Γ_B and \mathcal{C} a standard semi-regular component of Γ_A containing an oriented cycle and all non-directing modules of \mathcal{T}. Then \mathcal{C} is a non-regular coray tube and all corays of \mathcal{T} are complete corays of \mathcal{C}.

Proof. From the above theorem we know that \mathcal{C} is either a coray tube or a ray tube. Suppose that \mathcal{C} is a ray tube. Then all irreducible maps in mod A corresponding to the arrows of rays in \mathcal{C} are monomorphisms. Clearly, we may consider the B-modules as A-modules. Since \mathcal{T} is a coray tube of Γ_B containing an injective module, there exist two irreducible epimorphisms $I \xrightarrow{u} Z$ and $Y \xrightarrow{v} Z$ in mod B such that I, Y, Z are non-directing modules in \mathcal{T} and I is injective. Consider now the minimal right almost split map $M \oplus N \xrightarrow{u,v} Z$ in mod A ending at Z, where M is indecomposable, and N is indecomposable or zero. If $N \neq 0$, then one of the maps u or v, say v, is a monomorphism, because \mathcal{C} is a ray tube. But then N is a B-module and v is an irreducible monomorphism in mod B, a contradiction with our choice of Z; hence $N = 0$. Since \mathcal{C} is a standard ray tube, this implies that I and Y lie on one sectional path in \mathcal{C} with target Z, and so either $f = gh$ for some $h \in \text{Hom}_B(I, Y)$ or $g = fp$ for some $p \in \text{Hom}_B(Y, I)$. We have again a contradiction because f and g are irreducible maps corresponding to different arrows of \mathcal{T}. Therefore, \mathcal{C} is a coray tube and contains an injective module. Moreover, all irreducible maps in mod A corresponding to the arrows of corays in \mathcal{C} are epimorphisms. We then infer that every coray of \mathcal{T} is a complete coray of \mathcal{C}. This finishes our proof.

Dually, we have the following:

Proposition 2.3. Let A be an algebra and B be a full convex subcategory of A. Assume that \mathcal{T} is a non-regular ray tube in Γ_B and \mathcal{C} a standard semi-regular component of Γ_A containing all non-directing modules of \mathcal{T}. Then \mathcal{C} is a non-regular ray tube and all rays of \mathcal{T} are complete rays of \mathcal{C}.
3. Auslander–Reiten components of cycle-finite algebras

We shall need the following lemma proved in [2, (2.7)].

Lemma 3.1. Let A be a cycle-finite algebra and X be an indecomposable module lying in a stable tube of Γ_A such that, for all $m \geq 0$, $\tau^m X$ is sincere. Then

(i) If P is an indecomposable projective A-module, then for any $t \geq 0$, $\text{Hom}_A(\tau^{-t} P, \tau^{-t} X) \neq 0$.

(ii) If I is an indecomposable projective A-module, then for any $s \geq 0$, $\text{Hom}_A(\tau^s X, \tau^s I) \neq 0$.

The following proposition will play a crucial role in our investigations.

Proposition 3.2. Let A be a cycle-finite algebra having a sincere indecomposable module lying in a stable tube of Γ_A. Then every component in Γ_A is semi-regular.

Proof. Let \mathcal{F} be a stable tube of Γ_A which contains a sincere indecomposable module, say X. Then all but finitely many modules in \mathcal{F} are sincere. Therefore, we may assume that $\tau^m X$ is sincere for all $m \geq 0$. Then, by Lemma 2.1, we get $\tau^{-t} P \neq 0$ for any indecomposable projective A-module P and $t \geq 0$. Similarly, $\tau^s I \neq 0$ for any indecomposable injective A-module I and $s \geq 0$. Let \mathcal{C} be a component in Γ_A. Suppose that \mathcal{C} is not semi-regular. Consider the right stable part \mathcal{C}_r of \mathcal{C} obtained from \mathcal{C} by removing the A-orbits of injective modules. Then \mathcal{C}_r admits a connected component \mathcal{D} containing a projective module P. Since \mathcal{C}_r is connected and not semi-regular, there is in \mathcal{C} an arrow $I \rightarrow Z$ with I injective and Z from \mathcal{D}. Observe that \mathcal{D} contains a path from Z to some $\tau^{-r} P$, $r \geq 0$. Indeed, since \mathcal{D} is connected, there is a walk $Z = Y_m \rightarrow \cdots \rightarrow Y_1 - Y_0 = P$, $m \geq 1$, in \mathcal{D}, where $Y_i - Y_{i+1}$ means $Y_i \rightarrow Y_{i+1}$ or $Y_{i+1} \rightarrow Y_i$. Then we prove our claim by induction on m, using the right stability of \mathcal{D}. If $m = 1$, then either $Z \rightarrow P$ or $Z \rightarrow \tau_A^{-1} P$ is an arrow in \mathcal{D}. Assume that $m > 1$ and there is in \mathcal{D} a path from Y_{m-1} to $\tau_A^{-r} P$ for some $r \geq 0$. Then, either $Z \rightarrow Y_{m-1}$ or $Y_{m-1} \rightarrow Z$ is an arrow of \mathcal{D}. In the first case there is in \mathcal{D} a path from Z to $\tau_A^{-r} P$, and in the second case a path from Z to $\tau_A^{-r} P$. Therefore, \mathcal{C} contains a path from I to $\tau_A^{-r} P$. But, by Lemma 2.1, we get $\text{Hom}_A(\tau_A^{-r} P, \tau_A^{-r} X) \neq 0$, and $\text{Hom}_A(\tau_A^{-r} P, \tau_A^{-r} I) \neq 0$ because $\tau_A^{-r} X$ is sincere. Since $\mathcal{C} \notin \mathcal{F}$ and $\tau_A^{-r} X \in \mathcal{F}$, there is an infinite cycle $I \rightarrow \cdots \rightarrow \tau_A^{-r} P \rightarrow \tau_A^{-r} X \rightarrow I$, which gives the required contradiction.

Proposition 3.3. Let A be a cycle-finite algebra, and \mathcal{C} be a semi-regular component. The \mathcal{C} is generalized standard, convex, and one of the following forms: preprojective of Euclidean type, preinjective of Euclidean type, ray tube, or coray tube.

Proof. Without loss of generality, we may assume that \mathcal{C} has no injective modules. Consider first the case when \mathcal{C} contains an oriented cycle. Then, by Theorem 2.1, \mathcal{C} is a ray tube. In this case, there is a cofinite full translation subquiver \mathcal{D} of \mathcal{C}, formed by
all non-directing modules in \mathcal{C}, such that for any modules M and N in \mathcal{D} we have paths from M to N. Suppose that $\text{rad}^*(X, Y) \neq 0$ for some X and Y in \mathcal{C}. Then Y belongs to \mathcal{D} and there is a module Z in \mathcal{D} such that $\text{rad}^*(Z, Y) \neq 0$. Hence, there is an infinite path $Y \rightarrow \cdots \rightarrow Z \rightarrow Y$, a contradiction because A is cycle-finite. Consequently, \mathcal{C} is generalized standard. This implies that \mathcal{C} is also convex. Indeed, if this is not the case, then there is a path in $\text{mod } A$ of the form $X \rightarrow U \rightarrow \cdots \rightarrow V \rightarrow Y$ with X, Y in \mathcal{C} and U, V not in \mathcal{C}. Then $\text{rad}^*(X, U) \neq 0$, $\text{rad}^*(V, Y) \neq 0$, and so, as above, there is an infinite cycle $M \rightarrow U \rightarrow \cdots \rightarrow V \rightarrow N \rightarrow \cdots \rightarrow M$, for some M and N in \mathcal{D}.

Assume that \mathcal{C} does not contain oriented cycle. Then, by [9,(3.7)], there exists a quiver A containing no oriented cycle such that \mathcal{C} is isomorphic to a full translation subquiver of ZA which is closed under successors. Since A is cycle-finite, we infer that \mathcal{C} consists entirely of directing modules. Hence, by [21], A is finite. Moreover, then \mathcal{C} is generalized standard (see [16, Lemma 5]). Then, by [17,(3.8)], \mathcal{C} is a preprojective component of Euclidean type, because A is tame as a cycle-finite algebra. Clearly, for any path $X \rightarrow \cdots \rightarrow Y$ in $\text{mod } A$ with Y in \mathcal{C}, the module X also belongs to \mathcal{C}, and so \mathcal{C} is convex.

Corollary 3.4. Let A be a cycle-finite algebra such that every component of A is semi-regular. Then A is triangular.

Proof. Suppose that A is not triangular. Then there is a cycle in $\text{mod } A$ $P_0 \rightarrow P_1 \rightarrow \cdots \rightarrow P_m = P_0$ with all P_i projective. Since A is cycle-finite, the modules P_1, \ldots, P_m belong to one ray tube \mathcal{T}. From Proposition 2.3 we deduce that \mathcal{T} is (generalized) standard. But then there is no cycle in $\text{mod } A$ formed by projective modules from \mathcal{T}, a contradiction. Therefore, A is triangular.

4. Cycle-finite algebras with sincere stable tubes

We shall prove the following characterization of tame concealed and tubular algebras.

Theorem 4.1. Let A be an algebra. The following conditions are equivalent:

(i) A is cycle-finite and admits a sincere indecomposable module lying in a stable tube of Γ_A.

(ii) A is either tame concealed or tubular.

Proof. The implication (ii) \Rightarrow (i) follows from [14, (4.3) and (5.2)]. We shall prove that (i) implies (ii). The proof will be done in several steps.

Let A be cycle-finite and admits a sincere indecomposable module lying in a stable tube of Γ_A. Then, by Corollary 3.4, A is triangular. Moreover, by Propositions 3.2 and 3.3, we infer that every component in Γ_A is (generalized) standard, convex, and one of
the following forms: preprojective of Euclidean type, preinjective of Euclidean type, ray tube, or coray tube. We may assume that A is not tame concealed.

(1) We claim that Γ_A admits a preprojective component and a preinjective component. Let Σ_A be the set of all components in Γ_A. Since the components in Γ_A are generalized standard and convex, we may endow Σ_A with the partial order \leq being the transitive closure of: for \mathcal{C} and \mathcal{D} in Σ_A define

$$\mathcal{C} \leq \mathcal{D} \iff \text{Hom}_A(X, Y) \neq 0 \text{ for some } X \in \mathcal{C} \text{ and } Y \in \mathcal{D}. $$

We claim that a component \mathcal{C} of Γ_A is a minimal element of Σ_A, with respect to \leq, if and only if \mathcal{C} is preprojective. The sufficiency is clear because if \mathcal{C} is preprojective and $\text{Hom}_A(X, Y) \neq 0$ for some $Y \in \mathcal{C}$ then also X belongs to \mathcal{C}. Assume now that \mathcal{C} is a (ray or coray) tube. We shall show that there is an indecomposable projective A-module $P \not\in \mathcal{C}$ such that $\text{Hom}_A(P, Z) \neq 0$ for some $Z \in \mathcal{C}$. This will imply that \mathcal{C} is not minimal in Σ_A. It is enough to consider only the case when \mathcal{C} is a ray tube containing a projective module. In this case, there is an indecomposable projective module P' in \mathcal{C} such that a non-directing non-projective indecomposable direct summand Z. Since \mathcal{C} is a standard ray tube we get that $\text{Hom}_A(P'', Z) = 0$ for any projective module P'' from \mathcal{C}. Hence, $\text{Hom}_A(P, Z) \neq 0$ for some indecomposable projective module P which is not in \mathcal{C}. Similarly, we prove a component \mathcal{D} is a maximal element of Σ_A if and only if \mathcal{D} is preinjective. Clearly, Σ_A admits both a minimal and a maximal element because the number of non-regular components is finite.

(2) Let \mathcal{P} be a preprojective component of Γ_A. Since \mathcal{P} contains no injective module, there exists a hereditary algebra H of Euclidean type and a tilting H-module T without preprojective direct summands such that the tilted algebra $B = \text{End}_H(T)$ is a full convex subcategory of A and \mathcal{P} is the preprojective component of Γ_B (see dual of (2.5) in [21]). Moreover, then there is a full convex tame concealed subcategory C of B such that B is a domestic tubular coextension of C (see [14, (4.7) and (4.9)]). We shall show that $B = C$. Suppose this is not the case. Then Γ_B admits at least one coray tube \mathcal{O} containing an injective module. The non-directing modules in \mathcal{O} form a cofinite full translation subquiver Ω of \mathcal{O}, and for any two modules U and V in Ω there is a cycle in \mathcal{O} passing through U and V. Since B is a full convex subcategory of A, we may consider the B-modules as A-modules. Using now the fact that A is cycle-finite, we infer that all modules of \mathcal{O} belong to one component, say \mathcal{C}, of Γ_A. We known that \mathcal{C} is semi-regular and standard, and so, by Proposition 2.2, \mathcal{C} is a non-regular coray tube and all corays of \mathcal{O} are complete corays of \mathcal{C}. We claim that in fact $\mathcal{C} = \mathcal{O}$. Observe that A does not contain full subcategory which is a one-point coextension $[N]B$ of B by some non-zero B-module N. This follows from the duals of [14, p. 88] and the fact that \mathcal{P} is a full component of Γ_A containing all projective B-modules. By the same reason, A does not contain full subcategory which is a one-point extension $B[M]$ of B by a B-module M which has a direct summand from \mathcal{P}. Suppose now that $\mathcal{C} \neq \mathcal{O}$. Then, applying [14, p. 88] again, we deduce that there is inside A a one-point extension $B[L]$ of B by a module L which has a summand from \mathcal{O}, and hence
C contains a projective module. This contradiction shows that $C = \emptyset$. Therefore, we proved that every non-regular coray tube of Γ_b is a full component of Γ_a. As a consequence we get that, for any one-point extension $B[W]$ of B inside A, the module W has no indecomposable direct summand which belongs to a non-regular coray tube of Γ_b. Moreover, this implies that if M is an indecomposable A-module and $\text{Hom}_A(P, M) \neq 0$ for each indecomposable projective A-module P from \mathcal{P}, then M belongs to \mathcal{P} or to one of the non-regular coray tubes in Γ_b. But this contradicts the fact that A admits a sincere indecomposable A-module lying in a stable tube of Γ_a. Consequently, all tubes of Γ_b are stable, and so $B = C$.

(3) We claim now that there is a full convex subcategory D of A which is a non-dominant tubular extension of C. Then D will be a tubular algebra, because A is tame (see [11, (2.1)]). First observe that if $\mathcal{T}_x, x \in \mathbb{P}_1(k)$, is a stable tube in Γ_a then, by the above remarks and Propositions 2.2 and 2.3, we conclude that there is a ray tube \mathcal{T}_x' in Γ_a such that all rays of \mathcal{T}_x are complete rays in \mathcal{T}_x'. Moreover, if λ and ρ are different elements of $\mathbb{P}_1(k)$, then $\mathcal{T}_x' \neq \mathcal{T}_x$ since the tubes \mathcal{T}_x and \mathcal{T}_x' are orthogonal. Hence, there is a full convex subcategory D of A such that D is a tubular extension of C and all tubes $\mathcal{T}_x', x \in \mathbb{P}_1(k)$, are components of Γ_a. We shall show now that D is non-domestic. Suppose this is not the case. Then D is a tilted algebra of Euclidean type which admits a complete slice \mathcal{A} in its preinjective components \mathcal{I}. Applying again the duals of [14, p. 88], we get that A does not contain full subcategory which is a one-point coextension $[F]D$ of D, because \mathcal{P} and the tubes \mathcal{T}_x are components of Γ_a. Since $A \neq C$ and A admits an indecomposable sincere module lying in a stable tube, we have also that $D \neq A$. Then there is an integer m such that the full translation subquiver \mathcal{S} of \mathcal{I} formed by all predecessors of τ^mA is a full translation subquiver of Γ_a and there is an arrow in Γ_a from a module in τ^mA to a projective module. Hence, there is a component \mathcal{D} in Γ_a such that \mathcal{S} is a left stable full translation subquiver of \mathcal{D} which is closed under predecessors, and so \mathcal{D} is a preinjective component. On the other hand, \mathcal{D} is semi-regular and so \mathcal{D} is semi-regular and contains a projective module. This contradiction shows that D is a tubular algebra.

(4) We shall prove now that $A = D$. Recall from [14, (5.2)] that Γ_D is of the form

$$\mathcal{P}^0 \vee \mathcal{I}^0 \vee \left(\bigvee_{q \in \mathbb{Q}^+} \mathcal{I}^q \right) \vee \mathcal{I}^\infty \vee \mathcal{D}^\infty,$$

where \mathcal{P}^0 is a preprojective component, \mathcal{I}^∞ is a preinjective component, \mathcal{I}^0 is a $\mathbb{P}_1(k)$-family of ray tubes, \mathcal{I}^∞ is a $\mathbb{P}_1(k)$-family of coray tubes and each \mathcal{I}^q, $q \in \mathbb{Q}^+$, is a $\mathbb{P}_1(k)$-family of stable tubes. The ordering from the left to the right indicates that there are non-zero morphisms only from any of $\mathcal{P}^0, \mathcal{I}^q, q \in \mathbb{Q} \cup \{ \infty \}, \mathcal{D}^\infty$ to itself and to the families on its right. Further, the tubes from the same family are pairwise orthogonal. In our case, $\mathcal{P}^0 = \mathcal{P}$ and \mathcal{I}^0 is the family $\mathcal{T}_x, x \in \mathbb{P}_1(k)$. Moreover, there is a full convex tame concealed subcategory C' of D, different from C, such that D is a tubular coextension of C' and \mathcal{D}^∞ is the preinjective component of Γ_c. Since $C \neq C'$, we have also that \mathcal{I}^0 admits a non-regular ray tube and \mathcal{I}^∞ admits a non-regular coray tube. Finally, since A is tame, we get by [2, (3.2)] that, if $D[M]$
(respectively, $[M]D$) is a one-point extension (respectively, coextension) of D inside A, then all indecomposable direct summands of M belong to $\mathcal{F}^\infty \cup Q^\infty$ (respectively, $\mathcal{P}^0 \cup \mathcal{F}^0$). But then there is no one-point coextension of D inside A, because \mathcal{P} and the tubes $\mathcal{F}_\lambda, \lambda \in \mathcal{P}_1(k)$, are full components of Γ_A. In particular, we infer that all tubes from the families $\mathcal{F}^q, q \in \mathbb{Q}^+$, are also full components of Γ_A. Let now Γ be a non-regular coray tube from \mathcal{F}^∞. Then, by Proposition 2.2 and the cycle-finitness of A, there is a non-regular coray tube Φ of Γ_A such that all corays of Γ are complete corays of Φ. Observe that then $\Gamma = \Phi$ and hence Γ is a full component of Γ_A. Indeed, otherwise there is a one-point coextension $[N]D$ of D inside A by an indecomposable module N from Γ, which contradicts the above remarks. Since one of the ray tubes \mathcal{F}_λ in \mathcal{F}^0 is also non-regular, we then infer that every stable tube of Γ_A containing an indecomposable sincere A-module belongs to one of the families $\mathcal{F}^q, q \in \mathbb{Q}^+$. Therefore, $A = D$, and this finishes the proof.

Corollary 4.2. Let A be a cycle-finite algebra, and \mathcal{F} be a stable tube of Γ_A. Then the support B of \mathcal{F} is a full convex subcategory of A which is tame concealed or tubular, and \mathcal{F} is a component of Γ_B.

Proof. For the convexity of B inside A we may repeat the proof of Proposition 3.1 in [1]. Clearly, B is a cycle-finite algebra and admits a sincere indecomposable module lying in the stable tube \mathcal{F} of Γ_B. Hence, by Theorem 4.1, B is either tame concealed or tubular.

Theorem 4.3. Let A be a cycle-finite algebra. Then A is of a polynomial growth.

Proof. We may clearly assume that A is representation-infinite. Since A is cycle-finite, it is tame. Then, by [4, Corollary E], for any dimension d, all but a finite number of isomorphism classes of indecomposable A-modules of dimension d lie in stable tubes of rank 1. Let \mathcal{F} be a stable tube of rank 1 in Γ_A. Then, by Corollary 4.2, $B = \text{supp} \mathcal{F}$ is a full convex subcategory of A which is tame concealed or tubular, and hence is of polynomial growth. Since A admits only finitely many full convex subcategories we infer that A is of polynomial growth.

We get also the following characterization of minimal representation-infinite cycle-finite algebras.

Corollary 4.4. For an algebra A the following conditions are equivalent:

(i) A is tame concealed.

(ii) A is cycle-finite, representation-infinite, and every full convex subcategory of A is representation-finite.
Proof. The implication (i) ⇒ (ii) follows from [14, (4.3)]. Assume that (ii) holds. Then \(A \) is tame, and therefore, by [4], \(\Gamma_A \) admits a stable tube \(\mathcal{T} \). From Corollary 4.2 the support \(B \) of \(\mathcal{T} \) is a full convex subcategory of \(A \) which is tame concealed or tubular. Then \(A = B \) because \(B \) is representation-infinite. Moreover, by [14, (5.1)], every tubular algebra admits a proper full convex tame concealed subcategory. Hence, (ii) implies that \(A \) is tame concealed.

5. Domestic cycle-finite algebras

The aim of this section is to prove the following characterization of domestic cycle-finite algebras.

Theorem 5.1. Let \(A \) be a cycle-finite algebra. The following conditions are equivalent:

(i) \(A \) is domestic.
(ii) \(A \) does not contain a tubular algebra as a full convex subcategory.
(iii) \(\text{rad}^\infty(\text{mod} A) \) is nilpotent.
(iv) All but finitely many components of \(\Gamma_A \) are stable tubes of rank one.

Proof. It is known that every tubular algebra is non-domestic (see [15, (3.6)]) and hence (i) implies (ii). Conversely, if (ii) holds, then, by Corollary 4.2, the support of every stable tube in \(\Gamma_A \) is a tame concealed full convex subcategory of \(A \). Hence, as in the proof of Theorem 4.3, we get that \(A \) is domestic. Moreover, if \(C \) is a tame concealed algebra, then all but finitely many components in \(\Gamma_A \) are stable tubes of rank one. Hence, the implication (ii) ⇒ (iv) is a direct consequence of Proposition 3.3 and Theorem 4.1. Further, it was shown in [8, (1.5)] that, if \(B \) is a tubular algebra, then \(\text{rad}^\infty(\text{mod} B) \) is not nilpotent, and so (iii) implies (ii). Therefore, it remains to prove that (iv) implies (iii). We shall prove this implication in several steps.

1. Let \(\mathcal{C} \) be a component of \(\Gamma_A \). Consider the left stable part \(\mathcal{C}' \) of \(\mathcal{C} \) obtained from \(\mathcal{C} \) by removing the \(\tau_A \)-orbits of the projective modules and the arrows attached to them. Let \(\mathcal{D} \) be a connected component of \(\mathcal{C}' \). If \(\mathcal{D} \) contains no oriented cycle then, by [9, (3.4)], there exists a quiver \(A \) without oriented cycles such that \(\mathcal{D} \) is a full translation subquiver of \(\mathbb{Z}A \) which is closed under predecessors. Then \(\mathcal{D} \) admits a full translation subquiver \(\mathcal{D}' \) isomorphic to the translation quiver \(\mathbb{N}A \) and which is closed under predecessors in \(\mathcal{C} \). Since \(\mathcal{D}' \) contains no oriented cycle and every cycle in \(\text{mod} A \) is finite, we infer that all modules in \(\mathcal{D}' \) are directing. Hence, by [21, (2.4)], there is a representation-infinite hereditary algebra \(H \) and a tilting \(H \)-module \(T \) without preinjective direct summands such that the tilted algebra \(B = \text{End}_H(T) \) is a full convex subcategory of \(A \) and \(\mathcal{D}' \) is a full translation subquiver of the connecting component of \(\Gamma_B \) which is closed under predecessors. In particular, we get \(\text{rad}^\infty(X, Y) = 0 \) for all \(X \) and \(Y \) from \(\mathcal{D}' \), that is, \(\mathcal{D}' \) is generalized standard. Assume now that there is an oriented cycle in \(\mathcal{D} \). If \(\mathcal{D} \) contains a \(\tau_A \)-periodic module then \(\mathcal{D} \) is...
a stable tube. If D does not contain a τ_A-periodic module, then, by [9, (2.2) and (2.3)],
there is an infinite sectional path

$$\cdots \rightarrow \tau_A^r X_1 \rightarrow \tau_A^s X_2 \rightarrow \cdots \rightarrow \tau_A^s X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_2 \rightarrow X_1$$

in D with $r > s$ such that $\{X_1, \ldots, X_s\}$ is a complete set of representatives of
the τ_A-orbits in D. We may choose then $m \geq 0$ such that the full translation subquiver D' of D given by
the modules $\tau_A^i X_i$, $1 \leq i \leq s, j \geq mr$, has the following properties:

(a) For any two modules Y and Z in D' there is a path in D from Y to Z,

(b) No module in D' is a direct predecessor of a projective module in C.

Since every cycle in $\text{mod } A$ is finite, we infer from (a) that D' is generalized standard.
Repeating this procedure to any connected component of C, we get a finite family D_1', \ldots, D_t'
of left stable generalized standard full translation subquivers of C such that, for every $f \in \text{rad}(X, Y)$
with Y in C, we have $f = hg$ for some $g \in \text{rad}(X, Z), h \in \text{Hom}(Z, Y)$ and Z being a direct sum
of modules from D_1', \ldots, D_t'. Similarly, there exists a finite family E_1', \ldots, E_p' of right stable
generalized standard full translation subquivers of C such that, for every $u \in \text{rad}(X, Y)$ with X in C, we have $u = uv$
for some $v \in \text{Hom}(X, Z), w \in \text{rad}(Z, Y)$ and Z being a direct sum of modules from
E_1', \ldots, E_p'. Moreover, all but finitely many modules in C belong to the union of
$D_1', \ldots, D_t', E_1', \ldots, E_p'$.

(2) We claim now that A does not contain a tubular algebra as a full convex subcategory.
Suppose that B is a full convex tubular subcategory of A. Clearly, we may consider the B-modules as A-modules.
We know from [14, (5.2)] that Γ_B admits a family $\mathcal{T}_q, q \in \mathbb{Q}^+$, of stable tubes of ranks > 1 such that $\text{Hom}_B(\mathcal{T}_q, \mathcal{T}_q') \neq 0$ if and
only if $q - q'$. Observe that, for any fixed $q \in \mathbb{Q}^+$ and $U, V \in \mathcal{T}_q$, there exists a cycle in
$\text{mod } B$ passing through U and V. Since A is a cycle-finite, this implies that all modules
of any \mathcal{T}_q belong to one component of Γ_A. Moreover, if $\tau_A M \cong M$ for an indecomposable B-module M then $\tau_B M \cong M$, and so M lies in a stable tube of rank 1 in Γ_B.
Therefore, since all but finitely many components of Γ_A are stable tubes of rank 1, we
conclude that there is a component C in Γ_A which contains all modules from infinitely
many tubes \mathcal{T}_q. Then, in notation of (1), one of the translation quivers $\mathcal{D}_1, \ldots, \mathcal{D}_t, \mathcal{E}_1, \ldots, \mathcal{E}_p$
contains all modules of infinitely many tubes \mathcal{T}_q. Clearly, such a translation quiver consists of non-directing modules lying on finitely many infinite sectional paths. Then there exist $p, q \in \mathbb{Q}^+, p < q$, and a sectional path in Γ_A with the source in
a module $N \in \mathcal{T}_q$ and the target in a module $L \in \mathcal{T}_p$. Then $\text{Hom}_B(N, L) \neq 0$, and this is
a contradiction because $\text{Hom}_B(\mathcal{T}_q, \mathcal{T}_p) = 0$.

(3) From (2) and Corollary 4.2 we conclude that the support of any stable tube of
rank one in Γ_A is a tame concealed full convex subcategory of A. Since A admits only
finitely many full convex subcategories, we may divide the set Σ of all stable tubes of rank 1 in Γ_A
into a finite number of disjoint families $\Sigma_1, \ldots, \Sigma_r$ of pairwise orthogonal tubes.
Namely, we put two tubes \mathcal{F} and \mathcal{F}' from Σ to the same family Σ_i if and only if
there are $X \in \mathcal{F}$ and $X' \in \mathcal{F}'$ with the same dimension-vectors $\dim X = \dim X'$.
Then, by [18, (4.9)], we get that, if \(T \in \Sigma_i \), \(\Gamma \in \Sigma_j \) and \(\text{Hom}_A(T, \Gamma) \neq 0 \), then \(\text{Hom}_A(T', \Gamma') \neq 0 \) for any tubes \(T' \in \Sigma_i \) and \(\Gamma' \in \Sigma_j \).

(4) Since \(A \) is a cycle-finite and all but finitely many components in \(\Gamma_A \) are stable tubes of rank 1, combining (1) and (3) we easily infer that \((\text{rad}^\infty(\text{mod} A))^m = 0 \) for sufficiently large \(m \). This finishes our proof. \(\square \)

Acknowledgements

The research was partially supported by Polish Scientific Grant KBN No. 1222/2/91.

References