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It is well known that the tri-bimaximal neutrino mixing pattern V 0 can be derived from a class of
flavor models with the non-Abelian A4 symmetry. We point out that small corrections to V 0, which
are inherent in the A4 models and arise from both the charged-lepton and neutrino sectors, have been
omitted in the previous works. We show that such corrections may lead the 3 × 3 neutrino mixing
matrix V to a non-unitary deviation from V 0, but they cannot result in a nonzero value of θ13 or any
new CP-violating phases. Current experimental constraints on the unitarity of V allow us to constrain the
model parameters to some extent.
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1. Introduction

Thanks to a number of convincing neutrino oscillation experi-
ments [1], we have known two neutrino mass-squared differences
(�m2

21 and |�m2
31|) and two neutrino mixing angles (θ12 and θ23)

to a good degree of accuracy [2]. The smallest neutrino mixing an-
gle θ13 remains unknown, but there are some preliminary hints
that it might not be very small (e.g., θ13 ∼ 7◦ [2–4]). Nevertheless,
current experimental data are consistent very well with a constant
neutrino mixing matrix—the so-called tri-bimaximal mixing pat-
tern [5]

V 0 = U T
ωU∗

ν = 1√
6

Q l

( 2
√

2 0
−1

√
2

√
3

1 −√
2

√
3

)
Q ν, (1)

where

Uω = 1√
3

( 1 1 1
1 ω ω2

1 ω2 ω

)
,

Uν = 1√
2

(1 0 −1
0

√
2 0

1 0 1

)
, (2)

ω = ei2π/3, Q l = Diag{1,ω,−ω2} and Q ν = Diag{1,1, i} [6]. The
diagonal phase matrix Q l can be rotated away by redefining the
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phases of three charged-lepton fields, but Q ν may affect the neu-
trinoless double-beta decay if neutrinos are the Majorana parti-
cles. Given the standard parametrization of the Maki–Nakagawa–
Sakata–Pontecorvo (MNSP) neutrino mixing matrix [7], V 0 corre-
sponds to θ12 = arctan(1/

√
2 ) ≈ 35.3◦ , θ13 = 0◦ and θ23 = 45◦ .

A more realistic form of the MNSP matrix V is expected to slightly
deviate from V 0 due to some nontrivial perturbations, such that
both nonzero θ13 and CP violation can emerge.

It is possible to derive the tri-bimaximal mixing pattern V 0
from some neutrino mass models with certain flavor symme-
tries [8]. In this connection the earliest and most popular appli-
cation is the non-Abelian discrete A4 symmetry (see, e.g., Refs. [9–
11]). But the neutrino mixing matrix derived from a specific A4
model is in general not equal to V 0 unless some approximations
are made. In other words, small corrections to V 0 are generally
inherent in the A4 models and can arise both from the charged-
lepton sector and from the neutrino sector. This observation is
particularly interesting for an A4 model built in the vicinity of
the TeV scale, because the resultant corrections to V 0 may not be
strongly suppressed. We show that such corrections can lead the
3 × 3 neutrino mixing matrix V to a non-unitary deviation from
V 0, although they cannot give rise to a nonzero value of θ13 or
any new CP-violating phases. We find that current experimental
constraints on the unitarity of V allow us to constrain the param-
eters of an A4 model to some extent.

The remaining part of this Letter is organized as follows. In Sec-
tion 2 we first outline the salient features of a typical A4 model
and then diagonalize the 6 × 6 mass matrices of charged lep-
tons and neutrinos. We show that both Uω and Uν in Eq. (2) get
modified in this framework. In Section 3 we work out the non-
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Table 1
The particle content and charge assignments of the model [11], where the subscript i (for i = 1,2,3) stands for the family index.

Q i dc
i uc

i Li ec
1, ec

2, ec
3 νc

i Ei Ec
i Hu Hd χi χ ′

i Sa,b

SU(2)L 2 1 1 2 1 1 1 1 2 2 1 1 1
U (1)Y 1/3 2/3 −4/3 −1 2 0 −2 2 1 −1 0 0 0
A4 1 1 1 3 1,1′,1′′ 3 3 3 1 1 3 3 1
Z4 1 1 0 1 3 0 1 1 1 0 2 2 2
Z3 1 2 0 0 0 1 0 0 2 0 0 1 1
unitary departure of the resultant 3 × 3 MNSP matrix V from the
tri-bimaximal mixing pattern V 0 = U T

ωU∗
ν . We also constrain the

model parameters to some extent by taking account of current ex-
perimental constraints on the unitarity of V . Section 4 is devoted
to a summary and some concluding remarks.

2. Corrections to Uω and Uν in a typical A4 model

Let us consider a simple but typical A4 model proposed by
Babu and He in Ref. [11]. The model is an extension of the standard
electroweak SU(2)L × U (1)Y model with some additional particles,
and it is supersymmetric and (A4 × Z4 × Z3)-invariant. The par-
ticle content and charge assignments are summarized in Table 1.
The discrete symmetries force the superpotentials of quarks and
leptons to have the following forms:

Wq = yd
i j Q id

c
j Hd + yu

ij Q iu
c
j Hu,

W� = ME Ei Ec
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)
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c
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i Sb
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+ (
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c
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)
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3

]
, (3)

where the notations are self-explanatory [11]. Note that the quark
sector is completely the same as that in the minimal supersym-
metric standard model, and the Z4 symmetry works as an R-parity
such that the superpotentials possess two units of charge. Thanks
to the supersymmetry and new scalars in Eq. (3), it is possible to
obtain the vacuum expectation values [11]

〈Sa〉 = 0, 〈Sb〉 = vs, 〈Hu〉 = vu, 〈Hd〉 = vd,

〈χ〉 = (vχ , vχ , vχ ),
〈
χ ′〉 = (0, vχ ′ ,0), (4)

where v2
u + v2

d = v2 with v 
 174 GeV. Thus the A4 symmetry is
broken after χ and χ ′ develop their vacuum expectation values.

In the basis of (e, E) versus (ec, Ec)T , we obtain the 6 × 6 mass
matrix of charged leptons from Eqs. (3) and (4):

M�E =
(

0 f�vd1
H ME 1

)
, (5)

where 1 denotes the 3 × 3 identity matrix, and

H =
⎛
⎝he hμ hτ

he ωhμ ω2hτ

he ω2hμ ωhτ

⎞
⎠ vχ = √

3 Uω

(he 0 0
0 hμ 0
0 0 hτ

)
vχ . (6)

Note that f� , ME and hα (for α = e,μ, τ ) can all be arranged to
be real in a suitable phase convention, and the mass scale ME is
assumed to be extremely large in comparison with the magnitudes
of f�vd and hα vχ . The 6 × 6 Hermitian matrix M�E M† can be
�E
diagonalized via the unitary transformation V †
l M�E M†

�E Vl , where
Vl is given by

Vl 

⎛
⎝1 + H H†

M2
E

f�vd
ME

1

− f�vd
ME

1 1 + H H†

M2
E

⎞
⎠(

Uω 0
0 1

)
(7)

as a good approximation. The masses of three standard charged
leptons turn out to be

mα 
 √
3

f�vd

ME
vχhα, (8)

where α runs over e, μ and τ . Eq. (7) shows that Uω receives a
small correction:

Uω → U ′
ω =

(
1 + H H†

M2
E

)
Uω. (9)

It is actually U ′
ω that characterizes the contribution of charged lep-

tons to the lepton flavor mixing in this A4 model.
Now we turn to the neutrino sector. The type-I seesaw mech-

anism [12] is implemented in the A4 model under consideration,
and thus the overall neutrino mass matrix is a symmetric 6 × 6
matrix:

Mννc =
(

0 fν vu1
fν vu1 MR

)
, (10)

where MR takes the form

MR =
⎛
⎝ f Sb vs 0 fχ ′ vχ ′

0 f Sb vs 0

fχ ′ vχ ′ 0 f Sb vs

⎞
⎠ . (11)

The symmetric neutrino mass matrix in Eq. (10) can be diago-
nalized via the orthogonal transformation V T

ν Mννc Vν , where the
unitary matrix Vν is given by

Vν 

⎛
⎝1 − 1

2 · | fν |2 v2
u

M∗
R MT

R

f ∗
ν vu
M∗

R

− fν vu
MR

1 − 1
2 · | fν |2 v2

u

MT
R M∗

R

⎞
⎠(

Uν Pν 0

0 U R

)
(12)

to a good degree of accuracy. In this expression Uν has been
given in Eq. (2), Pν denotes a diagonal phase matrix [11], and
U R is a unitary matrix responsible for the diagonalization of MR .
The masses of three light (active) neutrinos turn out to be m1 

|m0(1 + x)|, m2 
 |m0(1 + x)(1 − x)| and m3 
 |m0(1 − x)|, where

m0 = f 2
ν v2

u f Sb vs

f 2
Sb

v2
s − f 2

χ ′ v2
χ ′

, x = − fχ ′ vχ ′

f Sb vs
. (13)

Because both m0 and x are complex, it is possible to adjust their
magnitudes and phases such that the resultant values of mi (for
i = 1,2,3) satisfy current experimental data on the neutrino mass
spectrum [11]. Eq. (12) shows that Uν Pν , which signifies the con-
tribution of neutrinos to the lepton flavor mixing, receives a small
correction:

Uν Pν → U ′
ν Pν =

(
1 − 1

2
· | fν |2 v2

u

M∗ MT

)
Uν Pν . (14)
R R
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In other words, U ′
ν is not exactly unitary and its departure from Uν

is in general an unavoidable consequence in the type-I seesaw
mechanism [13].

3. Non-unitary corrections to V 0

With the help of the results obtained in Eqs. (9) and (14),
we are able to calculate the MNSP matrix V = U ′

ω
T
(U ′

ν Pν)∗ and
demonstrate its non-unitary deviation from the tri-bimaximal mix-
ing pattern V 0. We find

V = U T
ω

(
1 + H∗H T
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E

)(
1 − 1

2
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R

)
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ν P∗
ν
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(15)

where

V ′
0 = Q ∗

l V 0 = 1√
6

⎛
⎝ 2

√
2 0

−1
√

2
√

3

1 −√
2

√
3

⎞
⎠ Q ν, (16)

and Q l and Q ν have been given below Eq. (2). In obtaining Eq. (15)
we have omitted the higher-order and much smaller corrections.
Because of vu = v sin β and vd = v cos β in the supersymmetric A4
model under consideration, vd � vu might hold for a very large
value of tanβ . Depending on the magnitudes of f 2

� and | fν |2, the
term proportional to 1/( f 2

� v2
d) or 1/(| fν |2 v2

u) in Eq. (15) might
not be negligibly small. These two terms, which are inherent in
the model itself, measure the non-unitary contribution to V or the
departure of V from V ′

0 P∗
ν . This observation makes sense since it

indicates that the exact tri-bimaximal neutrino mixing pattern V 0
is not an exact consequence of a class of A4 flavor models.

One may parametrize the analytical result obtained in Eq. (15)
as follows:

V = Q l(1 − η)V ′
0 P∗

ν = V 0 P∗
ν − Q lηV ′

0 P∗
ν, (17)

where the Hermitian matrix η signifies the non-unitary deviation
of V from V 0 P∗

ν . Note that the diagonal phase matrix Q l in V
can always be rotated away through a redefinition of the phases of
three charged leptons, and the diagonal phase matrices Q ν and P∗

ν
in V only provide us with the Majorana phases which have noth-
ing to do with leptonic CP violation in neutrino oscillations. Note
also that η itself is real in this A4 model, as one can easily see
from Eq. (15), and thus the unitarity violation of V does not give
rise to any new CP-violating phases. Moreover, it is impossible to
obtain nonzero V e3 or θ13 from this typical A4 model, simply be-
cause ηeμ = −ηeτ holds. Such a disappointing observation implies
that the residual flavor symmetry remains powerful to keep V e3
or θ13 vanishing and forbid CP violation, even though the MNSP
matrix V is not exactly unitary.

Current experimental data allow us to constrain the matrix el-
ements of η and then constrain the model parameters to some
extent. A recent analysis yields [14]

|η| <
⎛
⎝ 2.0 × 10−3 6.0 × 10−5 1.6 × 10−3

6.0 × 10−5 8.0 × 10−4 1.1 × 10−3

1.6 × 10−3 1.1 × 10−3 2.7 × 10−3

⎞
⎠ . (18)

In view of Eqs. (15) and (16), we immediately obtain

ηeμ = −ηeτ = �m2
21

6| fν |2 v2
u

= �m2
21

6| fν |2 v2 sin2 β
,

ημτ = �m2
31 + 2�m2

32

12| fν |2 v2
u


 �m2
31

4| fν |2 v2 sin2 β
, (19)

where �m2
21 ≡ m2

2 − m2
1 
 7.6 × 10−5 eV2 and �m2

31 ≡ m2
3 − m2

1 

m2

3 −m2
2 ≡ �m2

32 
 ±2.4×10−3 eV2 [2]. Eq. (19) leads us to a sim-
ple but instructive relation for three off-diagonal matrix elements
of η:

ηeμ

ημτ
= − ηeτ

ημτ

 2

3
· �m2

21

�m2
31

. (20)

Therefore, |ηeμ|/|ημτ | = |ηeτ |/|ημτ | 
 2.1 × 10−2. Comparing this
prediction with Eq. (18), one may self-consistently get |ηeμ| =
|ηeτ | < 2.3 × 10−5 by taking |ημτ | < 1.1 × 10−3. So it is more ap-
propriate to use the upper bound of |ημτ | to constrain the lower
bound of | fν | by means of Eq. (19). We arrive at

| fν | = 1

2v sinβ
·
√

|�m2
31|√|ημτ | >

4.2

sinβ
× 10−12. (21)

This result, which depends on the value of tanβ in the supersym-
metric A4 model, implies that the Yukawa coupling of neutrinos
should not be too small in order to preserve the unitarity of V
at an experimentally-allowed level. It clearly indicates that an ar-
bitrary choice of fν in the neglect of small unitarity violation of
V is inappropriate for model building, because the correlation be-
tween fν and the deviation of V from the tri-bimaximal mixing
pattern is an intrinsic property of a class of A4 models.

The diagonal matrix elements of η consist of the contributions
from both the charged-lepton sector and the neutrino sector, as
shown in Eq. (15). Their competition depends on the sizes of f� ,
fν and tanβ . For simplicity, here we assume that the charged-
lepton contribution to ηαα (for α = e,μ, τ ) is dominant. Then it is
straightforward to obtain

ηαα 
 − m2
α

f 2
� v2

d

= − m2
α

f 2
� v2 cos2 β

. (22)

As a result,

ηee : ημμ : ηττ 
 m2
e : m2

μ : m2
τ 
 1 : 44 566 : 12 880 040, (23)

where we have input the central values of three charged-lepton
masses at the electroweak scale [15]. Comparing this prediction
with Eq. (18), one may self-consistently arrive at |ηee| < 2.1 ×
10−10 and |ημμ| < 9.3 × 10−6 by taking |ηττ | < 2.7 × 10−3. It is
therefore more appropriate to use the upper bound of |ηττ | to con-
strain the lower bound of | f�| with the help of Eq. (22). We find
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| f�| 
 mτ

v cosβ
√|ηττ | >

0.19

cosβ
, (24)

where mτ 
 1746.24 MeV has been input at the electroweak
scale [15]. This result, which also depends on the value of tan β

in the supersymmetric A4 model, shows that the Yukawa coupling
of charged leptons should be relatively large in order to preserve
the unitarity of V as constrained by current measurements. We
stress that an arbitrary choice of either f� or fν in the neglect
of small unitarity violation of V might be problematic for model
building, simply because they receive constraints both from the
model itself and from the experimental data. In this sense one
must be cautious to claim that an A4 flavor model can predict
the tri-bimaximal neutrino mixing pattern whose matrix elements
are constant and thus have nothing to do with the model parame-
ters [16]. In fact, the slight (non-unitary) deviation of V from the
tri-bimaximal mixing pattern is likely to impose a strong restric-
tion on some model parameters like f� , fν and tanβ .

4. Summary

We have examined a class of A4 flavor models to see whether
the tri-bimaximal neutrino mixing pattern V 0 is an exact conse-
quence of such models. We find that small corrections to V 0 are
actually inherent in the A4 models and may arise from both the
charged-lepton and neutrino sectors. We have demonstrated that
such corrections may lead the MNSP matrix V to a non-unitary de-
viation from V 0, but they cannot result in a nonzero V e3 (or θ13)
or any new CP-violating phases. In particular, the slight unitarity
violation of V is sensitive to several model parameters, includ-
ing the Yukawa couplings of charged leptons and neutrinos. We
have shown that current experimental constraints on the unitarity
of V allow us to constrain the model parameters to some ex-
tent.

We stress that the departure of V from V 0 explored in this
work is an intrinsic property of a class of flavor models with the
non-Abelian A4 symmetry. Different departures may result either
from the vacuum-expectation-value misalignments in a certain A4
model or from some purely phenomenological perturbations [17].
The non-unitary deviation of V from V 0 is in some sense more
interesting because it might give rise to new CP-violating effects
in a variety of long-baseline neutrino oscillation experiments [18].
Since a lot of attention has been paid to how to derive the tri-
bimaximal neutrino mixing pattern V 0, the points revealed in our
Letter should be taken into account when one attempts to build
specific flavor models with discrete family symmetries.
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