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Abstract--The quantum hydrodynamic model is primary used for the simulation of resonant 
tunneling diodes. The current-voltage characteristics of these diodes show negative differential re- 
sistance (NDR) effects. For two simplified one-dimensional quantum models derived by means of 
asymptotic analysis, explicit formulas of the current-voltage characteristics are given. It turns out 
that not only the quantum correction term but also the convection term are mathematically responsi- 
ble for the NDR effects. This observation is confirmed by numerical simulations of the full isothermal 
quantum hydrodynamic model. 

Keywords - -Quan tum hydrodynamics, Quantum drift-diffusion model, Asymptotic analysis, Nu- 
merical solution. 

1. I N T R O D U C T I O N  

For ultra-small electronic devices in which quantum effects are present, the mathematical  semi- 
conductor models have to incorporate the quantum mechanical phenomena. Recently, various 
so-called quantum hydrodynamic models were used in semiconductor simulations of tunneling 
diodes [1,2]. These models are macroscopic models describing the electron flow in semiconductor 
crystals, in terms of macroscopic variables like the electron density and the electron current den- 
sity. They  are dispersively regularized versions of the classical hydrodynamic equations, where 
the (scaled) Planck constant plays the role of the dispersivity. The quantum hydrodynamic equa- 
tions can be derived from a many-particle SchrSdinger-Poisson system [3] or from the Wigner 
equation via the moment method [1]. 

The primary application of the quantum hydrodynamic model is the simulation of quantum 
devices tha t  depend on particle tunneling through potential barriers, like resonant tunneling 
diodes. One-dimensional simulations of tunneling diodes show negative differential resistance 
in the current-voltage characteristic (see [1,2]). In this note, we make evident that  not only the 
quantum correction but  also the convection term are mathematically responsible for these effects. 
If the convection term is neglected in the model, no negative differential resistance appears. 
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meinschaft, Grant Numbers MA1662/-1 and -2. 
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The stationary isothermal quantum hydrodynamic equations in one space dimension read: 

- -  n x  - -  - - n  ( V  -}- Y e x t )  x . . . .  
m m ] x  

Jx = O, 6,Vxx = q(n - C), in ~. 

(1.1) 

(1.2) 

Here, n denotes the electron density, J the electron current density, and V the electric potential. 
The external potential Vext(X) modelling (interior) quantum wells, and the doping profile C(x) 
modelling background "ions" are given functions. The physical constants are the elementary 
charge q, the Boltzmann constant k, and the reduced Planck constant h. We assume that the 
temperature T, the effective mass of the electrons m, the relaxation time r, and the semiconductor 
permittivity 68 are constant. The relaxation time is given by the expression r =- ~/vo, where t is 
the mean flee path of the particles and vo = v/-k~/m is the characteristic velocity of the electrons. 
Finally, the semiconductor domain is the interval gl = (0, L) C ]R, L > 0 being the device length. 

In this paper, we consider the following different cases of the order of magnitude of the device 
length (for the details, see Section 2). 

(i) If the device length is much larger than the mean free path, the convection term in (1.1) 
can be neglected and we get the so-called quantum drift-diffusion model. 

(ii) If the device length is much smaller than the mean free path and the de Broglie length 
Lb ---- h / ~ ,  the convection and quantum terms dominate the remaining terms in (1.1) 
and we get a reduced quantum model. 

(iii) In the case where the device length is of the same order as the mean free path, we obtain, 
after an appropriate scaling, a dimensionless version of (1.1),(1.2), the full quantum model, 

where no term is neglected. 

We choose the following boundary conditions. The electron density n, the electric potential V, 
and the velocity potential S (defined by S~ = J /n )  are prescribed on the boundary x = 0, L. In 
the numerical simulations of Section 4, we also use Dirichlet boundary conditions for n and V and 
homogeneous Neumann boundary conditions for n as in [1]. The parameter U = V(L)  - V(O) is 
called the applied voltage. We are interested in the properties of the current-voltage characteristic 
J = J(U).  

We summarize the main results of this note. 

(a) The current-voltage characteristic of the reduced quantum model is 

J(V) = V  oSin U 
V 6o' 

for 0 < U < ,¢~5o7r, 

where ~o > 0 is some constant. Thus, we get negative differential resistance, i.e., da ~-U < 0, 
in some interval. 

(b) The current-voltage characteristic of the quantum drift-diffusion model for constant doping 
profile is given by 

J(U) = U, for U _> 0. 

(c) Numerical simulations of a resonant tunneling diode using the full quantum model show 
effects of negative differential resistance. If the convection term is neglected (quantum 
drift-diffusion model), the current J(U) increases monotonically with the applied volt- 
age U. 

In Section 2, we give the details of the scaling for the models (i)-(iii). The current-voltage curves 
for the quantum drift-diffusion and the reduced quantum model are computed in Section 3. 
Finally, Section 4 is devoted to the numerical simulation of the quantum drift-diffusion and the 
quantum hydrodynamic model. 
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2. SCALINGS 

In this section, we scale appropriately the quantum hydrodynamic equations and we derive the 

quantum drift-diffusion and the reduced quantum model. 
Let Cm be the maximal value of the doping profile, and recall that ~ = TVo and Lb ---- h/x/2mkT 

are the mean free path and the de Broglie length, respectively, introduced in Section i. Using 

the scaling (cf. [4]) 

in (1.1),(1.2), we get 

n --* Cmn, C ~ CmC, x ~ Lx,  

V --~ k T v ,  Vext ---, __kTVext ' j --* q k T C m T j  
q q L m  

- ~  + nx - n ( Y - b  Yex t ) x  -- n = = \ ~ ) ~  -J,  

ax = 0, A2Vx= = n - C, in f~ = (0, 1), 

where A s = eskT/q2L2Cm is the squared scaled Debye length. 
same notations for the scaled and unscaled variables. 

(2.1) 

( 2 . 2 )  

Notice that  we have used the 

2.1. T h e  Ful l  Q u a n t u m  H y d r o d y n a m i c  M o d e l  

Consider a device with the parameters (cf. [1]) 

T = 100K, r : 10 -12  S, L = 0.1 #m. 

Then the free mean path is ~ = 150 nm, and we get ~/L ~ 1. The parameter 6 = Lb /L  << 1 (here 
~ 0.08) is called the (scaled) Planck constant. 
The  equations (2.1),(2.2) can be formulated as an elliptic system. Indeed, assume that  the 

density n is positive. Then, defining the velocity potential S (up to an additional constant) by 
Sx = J / n ,  dividing (2.1) by n and integrating, we find 

12 ( v'~xx ~ ~s~ + ln(n) - v - v ~  - ~2n k v ~  )= + s = 0. 

The integration constant can be assumed to be zero by choosing a reference point for the electric 
potential. Setting w = v ~ ,  the equations (2.1),(2.2) can be written as 

52w=x = w ( 1 5 2  + ln (w 2) - V - yext + S )  , (2.3) 

( w ~ S ~ ) =  = o ,  ~ 2 v ~ x  = w 2 - c.  (2.4) 

The boundary data  are assumed to be the superposition of the thermal equilibrium functions 
and the applied potential 0(0) = 0, 0(1) = U, which implies (fixing here the constant for S; 
cf. [ 5 ] )  

w = x / C ,  S = U ,  V = I n ( C ) + U ,  o n 0 f l .  

In the following, we assume that  we are modelling devices with an n+nn + structure (see Section 4) 
such that  C(0) = C(1) = 1 holds. Hence, we impose the boundary conditions 

w(0) = w(1) = 1, S(0) = V(0) = 0, S(1) = V(1) = U. (2.5) 

In the simulation of tunneling devices, other boundary conditions for (2.1),(2.2) are also used 
(see, e.g., [1]): 

n(0) = n(1) = 1, nx(0) = nx(1) -- 0, V(0) = 0, V(1) -- U. (2.6) 

The system (2.3)-(2.5) is studied in [5]. It is shown that for sufficiently small [U[, there exists 
a solution (w, S, V) to (2.3)-(2.5) with strictly positive w. Therefore, the problems (2.3),(2.4) 

and (2.1),(2.2) are equivalent. 
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2.2. T h e  Q u a n t u m  Dr i f t -D i f fu s ion  M o d e l  

In a quantum device with the data  

T = 100K, r = 10-13s, L = 0.1 pro, 

( r  corresponds to a low-field mobility in GaAs; see [1]) the mean free path is equal to L = 15 nm. 
Thus, the parameter ~ = t / L  is small compared to one. Letting formally e ~ 0 in (2.1), we get 

the equation 

n=--n(V+Vex')=--~\ 4-a / . =  

or, as in Section 2.1, 

= ( In  - V -  Vex, + S ) ,  

(w2S=)= = O, A2V== = w 2 - C, in ~2, 

(2.;) 
(2.8) 

which, with the boundary conditions (2.5) or (2.6), is referred to as the quantum drift-diffusion 
equations. They  are motivated in [6] and mathematically analyzed in [7]. 

2.3. T h e  R e d u c e d  Q u a n t u m  M o d e l  

For ultra-small devices with data  

T = 1 K, r = 10 -11 s, L = 20nm, 

(cf. [8]) the mean free path t = 150nm and the de Broglie length Lb = 80nm are much larger 
than the device length. Then e = L/~ and Cb = L / L b  are "small" parameters. Thus, letting 
formally e ~ 0 and eb --* 0 such that  e/eb ~ 62 > 0, we obtain the reduced model equations 

~2oWxx 1 2 = 5~s;, (~2sx)= = o, (2 .9)  

with the boundary conditions (2.5) for w and S. For such ultra-small devices, we expect that  
quantum boundary effects may occur so that  the boundary conditions (2.5) are only approxi- 

mately satisfied. 

3. A N A L Y T I C A L  C U R R E N T - V O L T A G E  C H A R A C T E R I S T I C S  

In this section, we compute explicit solutions for the reduced quantum model and the quantum 
drift-diffusion model, from which the current-voltage characteristics can be derived. The current 
J = J ( U )  is defined by J = w2S= E R (see (2.4)). Let Vext -- 0 in ~l. 

PROPOSITION 3.1. For the reduced quantum model  (2.5),(2.9), it holds J ( U )  = V~6os in (U/  

v~/5o) for a11 0 < U < V ~ o r .  

PROOF. Let a = U / v ~ o .  A computation shows that  the functions 

w ( x )  = ((1 - 2x) 2 + 2(1 + cosa)x(1 - x)) 1/2 , 

1 - (1 - c o s a ) x  
S(=) = JS~o arc cos w(=) , = e (0,1),  

solve (2.5),(2.9), and that  J ( U )  = w(x)2S=(x)  = V ~ o s i n a  for a e [0, r ) .  | 

For applied voltages near the limit value U = v~6o~r, the so-called valley current can be very 
small (compared to the peak current V~5o). We expect that  the diffusion term in (1.1) (and hence, 
a nonvanishing temperature)  leads to a positive current for the full model. Physical experiments 
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show tha t  the valley current can be very small (compared to the peak current) and decreases as 
the t empera ture  decreases [8]. 

PROPOSITION 3.2. Let C(x)  = 1 for x E (0, 1). Then, for the quantum drift-diffusion model, it 
holds J(U) = U for a]1 U >_ O. 

PROOF. The  functions w(x)  = 1, S(x)  = V(x )  = Ux, x E (0, 1), solve (2.7), (2.8), and (2.5). 
Thus J(U)  = w2Sx = U. | 

Clearly, the equations with constant doping profile do not model a diode. However, in the next 
section we present a numerical example for a tunneling diode, where a similar behavior of the 
current-voltage curve as in Proposition 3.2 can be observed. 

4. N U M E R I C A L  C U R R E N T - V O L T A G E  C H A R A C T E R I S T I C S  

We present a numerical simulation of a resonant tunneling diode. The experiments were per- 
formed employing the general purpose two-point-boundary-value-problem solver Colsys/Colnew, 
which uses piecewise polynomial collocation at Gaussian points [9]. The scaled parameters  and 
functions for the diode are as follows. The doping profile is given by C(x)  = 1 for x < 0.3 

and x > 0.7, and C(x) = 0.1 for 0.3 < x < 0.7. The external potential  is Vext(X) = 1 for 
0.4 < x < 0.45 and 0.55 < x < 0.6, V~xt(X) = 0 for x < 0.4 and x > 0.6, and Ve×t(x) is a 
quadratic polynomial in (0.45,0.55) defined by Vext(0.45) = Vext(0.55) = 1 and Ve×t(0.5) = 0. 
Furthermore,  6 = 0.5 and A = 0.1 (see [10]). These values correspond to the unscaled parameters  
L -- 0.11 #m,  T -- 4K,  T = 10-12 S, and Cm = 1.8- 1015 cm -3. 

In Figure 1, the current-voltage curves for the full quantum hydrodynamic model (QHD) and 

the quantum drift-diffusion model (QDD) for the above parameters  and boundary  conditions (2.6) 
are shown. The characteristic for the quantum hydrodynamic equations show negative differential 

resistance in some region, whereas the curve for the quantum drift-diffusion model is nearly linear. 
This means tha t  if the convection te rm in (1.1) is neglected, the negative differential resistance 
disappears. 
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Figure I. Current-voltage characteristics of a tunneling diode (J in 250 Acre -2, U in 
0.4 mV). 
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