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Abstract

Some comparison results between Jacobi iterative method with the modi2ed preconditioned simultaneous
displacement (MPSD) iteration and other iterations, for solving nonsingular linear systems, are presented. It is
showed that spectral radius of Jacobi iteration matrix B is less than that of several iteration matrices introduced
in Liu (J. Numer. Methods Comput. Appl. 1 (1992) 58) under some conditions.
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1. Introduction

For solving linear system

Ax = b; (1.1)

where A∈Cn×n is nonsingular, b∈Cn is given and x∈Cn is unknown. Iterative methods are e@ective
and practical when the matrix A is large and sparse and are studied by many authors (cf., [1–14],
etc.).

In order to solve system (1.1) with iterative methods, the coeCcient matrix A is split into

A=M − N;
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where M is nonsingular, then a linear stationary iterative formula for solving the system (1.1) can
be described as follows:

x(i+1) =M−1Nx(i) +M−1b; i = 0; 1; : : : ;

where M−1N is the iterative matrix. It is well-known that the iterative method converges i@ the
spectral radius of iterative matrix is less than 1.

Let A = D − CL − CU where D = diag(A) is nonsingular, −CL and −CU are strictly lower and
upper triangular matrices obtained from A, respectively. We also let L= D−1CL; U = D−1CU . The
Jacobi iterative matrix is

B= L+ U = I − D−1A: (1.2)

The modi2ed preconditioned simultaneous displacement (MPSD) method is studied in [2,7,10]
and the MPSD iterative matrix is

S�;!1 ;!2 =M−1N; (1.3)

where M =D(I −!2U )(I −!1L); N =M − �A; !1; !2; �∈R and � �= 0. S�;!1 ;!2 can be speci2cally
written as follows:

S�;!1 ;!2 = (I − !1L)−1(I − !2U )−1[(1 − �)I + (�− !1)L+ (�− !2)U + !1!2UL]: (1.4)

Some special cases of MPSD method are studied in [4,5,9,14]. With special values of !1; !2 and
�, the corresponding iterative methods are given in the following table:

When 0¡!i¡�6 1; i = 1; 2, the following theorem is presented in [2].

Theorem 1 (Chen [2]). Let A be irreducible, B = L + U¿ 0. Then, for 0¡!i¡�6 1; i = 1; 2,
we have

(1) �(B)¿ 0; �(S�;!1 ;!2)¿ 1 − �,
(2) 0¡�(B)¡ 1 ⇔ 1 − �¡�(S�;!1 ;!2)¡ 1,
(3) �(B) = 1 ⇔ �(S�;!1 ;!2) = 1,
(4) �(B)¿ 1 ⇔ �(S�;!1 ;!2)¿ 1.

Theorem 1 shows that the Jacobi iterative method and the MPSD iterative method are either both
convergent, or both divergent. But, for the case that two iterative methods are both convergent,
which one is better? Theorem 1 does not give the answer. In this paper, we obtain the comparison
results between the iterative methods given in Table 1 with Jacobi iterative method when �(B)¡ 1,
and the results obtained show that Jacobi iterative method is better under some conditions.

Table 1

!1 !2 � Matrix M Iterative method

! ! !(2 − !) D(I − !U )(I − !L) SSOR
! ! ! D(I − !U )(I − !L) EMA
! 0 ! D(I − !L) SOR
0 0 ! D JOR
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2. Preliminary results

In the following, we need the following theorems:

Theorem 2 (Berman and Plemmons [1]). If A is a nonnegative square matrix, then

(1) �(A), the spectral radius of A, is an eigenvalue,
(2) A has a nonnegative eigenvector corresponding to �(A),
(3) At has a nonnegative eigenvector corresponding to �(A).

Theorem 3 (Berman and Plemmons [1]). For A¿ 0,

�x6Ax; x¿ 0; x �= 0 implies �6 �(A)

and

Ax6 �x; x¿ 0 implies �(A)6 �:

3. Main results

Let A be the coeCcient matrix in (1.1), B be Jacobi iterative matrix in (1.2) and nonnegative.
Then by Theorem 2, we know that B has an eigenvalue �= �(B)¿ 0.

For the � above and x¿ 0; x �= 0, we have

S�;!1 ;!2x−�x= (I−!1L)−1(I−!2U )−1[(1−�)I+(�−!1)L+ (�− !2)U + !1!2UL]x − �x
= (I − !1L)−1(I − !2U )−1[(1 − �)I + (�− !1)L+ (�− !2)U

+!1!2UL− �(I − !2U )(I − !1L)]x

= (I − !1L)−1(I − !2U )−1[(1 − �− �)I + (�− !1 + �!1)L

+ (�− !2 + �!2)U + (1 − �)!1!2UL]x: (3.1)

When 06!i6 �6 1, i = 1; 2, by (1.4), we know

S�;!1 ;!2 = (I − !1L)−1(I − !2U )−1[(1 − �)I + (�− !1)L+ (�− !2)U + !1!2UL]

= (I + !1L+ !2
1L

2 + · · ·)(I + !2U + !2
2U

2 + · · ·)[(1 − �)I + (�− !1)L

+ (�− !2)U + !1!2UL]

¿ (1 − �)I + (�− !1)L+ (�− !2)U + !1!2UL

¿ 0: (3.2)
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(a) When !1 = !2 = ! and �= !(2 − !), (1.4) becomes the SSOR iteration matrix

S!(2−!);!;! = (I − !L)−1(I − !U )−1[(!− 1)2I + (!− !2)B+ !2UL]:

Theorem 4. Let A be a nonsingular matrix. B¿ 0 the Jacobi iteration matrix in (1.2). If 06!6 1
and �(B)6 (1 − !)2, we have that

�(B)6 �(S!(2−!);!;!);

where S!(2−!);!;! is the iteration matrix of SSOR iterative method.

Proof. Since � = !(2 − !) = 2! − !2, we have �max = (4 × (−1) × 0 − 22)=(4 × (−1)) = 1. Thus
�6 1. We also know that

�¿ 0 when 06!6 2:

�− != (2!− !2) − != !− !2¿ 0 for 06!6 1;

i.e.,

�¿! for 06!6 1:

So we obtain, by (3.2), that S!(2−!);!;!¿ 0.
Now, we consider S!(2−!);!;!x − �x (where �= �(B) and x¿ 0; x �= 0). From (3.1), we know

S!(2−!);!;!x − �x= (I − !L)−1(I − !U )−1{[1 − !(2 − !) − �]I

+ [!(2 − !) − !+ �!]B+ (1 − �)!2UL}x:
It is obvious that

!(2 − !) − !+ �!= 2!− !2 − !+ �!= (1 + �)!− !2¿ 0 when 06!6 1

and

1 − !(2 − !) − �¿ 0 if and only if �6 (1 − !)2:

So, when �6 (1 − !)2, we have

S!(2−!);!;!x − �x = (I + !L+ !2L2 + · · ·)(I + !U + !2U 2 + · · ·){[1 − !(2 − !) − �]I

+ [!(2 − !) − !+ �!]B+ (1 − �)!2UL}x
¿ 0

i.e.,

S!(2−!);!;!x¿ �x:

Thus, by Theorem 3, we have

�(S!(2−!);!;!)¿ �(B):
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(b) When !1 = !2 = �= !, (1.4) becomes the EMA iteration matrix

S!;!;! = (I − !L)−1(I − !U )−1[(1 − !)I + !2UL]:

Theorem 5. Let A be a nonsingular matrix. B¿ 0 the Jacobi iteration matrix in (1.2). If 06!6 1
and �(B)6 1 − !, we have that

�(B)6 �(S!;!;!);

where S!;!;! is the iteration matrix of EMA iterative method.

Proof.

S!;!;! = (I − !L)−1(I − !U )−1[(1 − !)I + !2UL]

= (I + !L+ !2L2 + · · ·)(I + !U + !2U 2 + · · ·)[(1 − !)I + !2UL];

and S!;!;!¿ 0 when 06!6 1.
Considering S!;!;!x − �x, where � and x are the same as that in Theorem 4. By (3.1), we have

S!;!;!x − �x= (I − !L)−1(I − !U )−1[(1 − !− �)I + �!B+ (1 − �)!2UL]x

= (I + !L+ !2L2 + · · ·)(I + !U + !2U 2 + · · ·)
×[(1 − !− �)I + �!B+ (1 − �)!2UL]x:

It is obvious that

S!;!;!x − �x¿ 0 when 06!6 1 and �6 1 − !:
Or, equivalently

S!;!;!x¿ �x:

From Theorem 3, we obtain

�(B)6 �(S!;!;!):

(c) When !1 = !2 = 0 and �= !, (1.4) becomes the JOR iteration matrix

S!;0;0 = (1 − !)I + !B:

Theorem 6. Let A be a nonsingular matrix. B¿ 0 the Jacobi iteration matrix in (1.2). If 06!6 1
and �(B)6 1 − !, we have that

�(B)6 �(S!;0;0);

where S!;0;0 is the iteration matrix of JOR iterative method.
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Proof. S!;0;0 = (1 − !)I + !B and S!;0;0¿ 0 when 06!6 1.
Considering S!;0;0x − �x, where � and x are the same as that in Theorem 4.

S!;0;0x − �x = [(1 − !)I + !B]x − �x = [(1 − !− �)I + !B]x:

So we know that

S!;0;0x − �x¿ 0 when 06!6 1 and �6 1 − !
or

S!;0;0x¿ �x:

From Theorem 3, we have

�(B)6 �(S!;0;0):

(d) When !1 = �= ! and !2 = 0, (1.4) becomes the SOR iteration matrix

S!;!;0 = (I − !L)−1[(1 − !)I + !U ]:

Theorem 7. Let A be a nonsingular matrix. B¿ 0 the Jacobi iteration matrix in (1.2). If 06!6 1
and �(B)6 1 − !, we have that

�(B)6 �(S!;!;0);

where S!;!;0 is the iteration matrix of SOR iterative method.

Proof. S!;!;0 = (I −!L)−1[(1 −!)I +!U ] = (I +!L+!2L2 + · · ·)[(1 −!)I +!U ] and S!;!;0¿ 0
when 06!6 1.

For S!;!;0x − �x = (I − !L)−1[(1 − !− �)I + !U + �!L]x, we know that

S!;!;0x¿ �x when 06!6 1 and �6 1 − !:
So, by Theorem 3, we obtain

�(B)6 �(S!;!;0):

Remark. For iterative methods, the case that its spectral radius is smaller than 1 is worth noting.
Although [2] presents a comparison result of the convergent and divergent relationship between
Jacobi and the MPSD iterative method, it does not show which one is better when both methods
converge. In this paper, we discuss several special cases of the MPSD method, and show that SSOR
(SOR, EMA, JOR) iterative method is not better than Jacobi iterative method under some conditions.
So, Jacobi iterative method is simple and e@ective under these conditions.
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