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1. Introduction

Suppose H is a group and L is an n-dimensional integral lattice. In [7], L. Charlap and A. Vasquez
defined characteristic classes for the second page of the Lyndon–Hochschild–Serre spectral sequence
associated to the extension

0 → L → L � H → H → 0 (1)

and showed that these classes can be seen as obstructions for the vanishing of differentials on the
second page of the spectral sequence. In [14], C.-H. Sah generalized their results by defining charac-
teristic classes with the same properties on every page of the spectral sequence. In this paper, we
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aim to expand this theory to split short exact sequences of Hopf algebras. The reason we use Hopf
algebras and not just algebras in general is because the existence of a cup product on cohomology is
vital to the theory. We now give a brief outline of the paper.

In Section 2, we introduce some notation and state a few preliminary definitions and results con-
cerning semi-direct products of Hopf algebras. This section is largely based on R. Molnar’s paper [11].
We merely include it here for the reader’s convenience. In Section 3, we recall some basic facts con-
cerning the cohomology of Hopf algebras and introduce the spectral sequence we will be studying.
Then, in Section 4, we define characteristic classes for the spectral sequence associated to a split short
exact sequence of Hopf algebras.

Definition 1.1. Let t � 0, r � 2. Suppose we have a split short exact sequence of Hopf algebras
A → B → C, and let (E∗(M),d∗) be the spectral sequence associated to this extension. We define
M t

r (A, B) to be the subclass in C-mod = {M ∈ B-mod | M A = M} consisting of the B-modules M for
which the differentials ds,t

p , with source Es,t
p (M), are zero for all s and all 2 � p � r − 1. We say (1) is

(t, r)-trivial if Ht(A,k) is in M t
r (A, B).

Assuming the split short exact sequence is (t, r)-trivial, a characteristic class vt
r of the spec-

tral sequence (E∗(Ht(A,k)),d∗) is defined as d0,t
r ([idt]) where [idt] is the class in E0,t

r (Ht(A,k)) ∼=
HomC (Ht(A,k),Ht(A,k)) corresponding to the identity map under the isomorphism.

Also, in Section 4, we give a generalization of a theorem of Sah (see Theorem 3 of [14]) which
shows that characteristic classes can be seen as obstructions for the vanishing of differentials in the
spectral sequence.

Theorem 1.2. Let t � 0, r � 2 and suppose we have a (t, r)-trivial split short exact sequence of Hopf algebras
A → B → C. Then the following hold:

(a) For all s � 0 and for all M ∈ C-mod, there is a canonical surjective homomorphism

θ : Es,0
r

(
Ht(A, M)

) → Es,t
r (M).

(b) The characteristic class vt
r ∈ Er,t−r+1

r (Ht(A,k)) has the property

ds,t
r (x) = (−1)s y · vt

r

∀s � 0, ∀x ∈ Es,t
r (M), ∀M ∈ C-mod and ∀y ∈ Es,0

r (Ht(A, M)) with θ(y) = x.
(c) vt

r is completely determined by the previous property.
(d) Suppose we have a Hopf algebra D together with a Hopf algebra map ρ : D → C that turns A into a

D-module bialgebra. Assume that A � D, given the standard coalgebra structure, is a Hopf algebra and
that the split short exact sequence associated to A � D is also (t, r)-trivial (denote its characteristic classes
by wt

r ). Then vt
r maps to wt

r under the map induced by ρ on the spectral sequences. In particular, vt
2 maps

to wt
2 .

In Section 5, we consider a split short exact sequence of Hopf algebras whose kernel A decomposes
into a tensor product of Hopf algebras A1 ⊗ A2 such that the action of the quotient factors over this
tensor product. For this type of extensions we prove the following decomposition theorem, which is
a generalization of Petrosyan’s work in [12].

Theorem 1.3. Let t � 0 and r � 2. Suppose the characteristic classes 1 vi
p and 2 v j

p , of 1 E∗(Hi(A1,k)) and
2 E∗(H j(A2,k)) respectively, are zero for all i, j � t and 2 � p � r − 1. Then the split short exact sequence
A → A � C → C is (t, r)-trivial. Furthermore, we have a decomposition formula

vt
r =

∑
i+ j=m

(
Pi, j

(1 vi
r ⊗ [2id j]) + (−1)i P i, j

([1idi] ⊗ 2 v j
r
))

.
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Here, Pi, j : 1 Er(Hi(A1,k)) ⊗k
2 Er(H j(A2,k)) → Er(Hi+ j(A,k)) is a morphism induced by a spectral

sequence pairing and [l ids] is the element in l E0,s
r (Hs(Al,k)) corresponding to the identity map in

HomC (Hs(Al,k),Hs(Al,k)). The following is a useful corollary.

Corollary 1.4. Suppose the spectral sequences associated to A1 � C and A2 � C collapse at the second page,
in coefficients Ht(A1,k) and Ht(A2,k) respectively, for each t � 0. Then the spectral sequence associated to
A � C will collapse at the second page, for all coefficients M for which M A = M.

In Sections 6 and 7, we specialize to the cases of split Lie algebra and group extensions. Since
the universal enveloping algebra functor and the group ring functor respectively map split Lie algebra
extensions and split group extensions to split short exact sequences of Hopf algebras, our general the-
ory of characteristic classes applies. In these special cases, the spectral sequence under consideration
is the well-known (Lyndon–)Hochschild–Serre spectral sequence. Using Theorem 1.2 in the context of
split Lie algebra extensions, we obtain the following results concerning their collapse.

Corollary 1.5. Let k be a field of characteristic zero and suppose 0 → n → n �ϕ h → h is a split extension
of finite-dimensional Lie algebras. Assume that Der(n) has a semi-simple Lie subalgebra s such that ϕ factors
through s, i.e. ϕ : h → s ⊆ Der(n). Then, the Hochschild–Serre spectral sequence (E∗(M),d∗) associated to the
split extension will collapse at the second page for any h-module M.

Corollary 1.6. If 0 → n → n �ϕ h → h → 0 is a split extension of Lie algebras such that ϕ(h) is one-
dimensional, then the Hochschild–Serre spectral sequence associated to this extension will collapse at page
two for all coefficients in h-mod.

A theorem of Barnes (see [2, Theorem 3]) asserts that the Hochschild–Serre spectral sequence col-
lapses at page two for all h-module coefficients when the kernel n is finite-dimensional and abelian.
If the base field has characteristic zero, using Corollary 1.4, we can expand this result to extensions
with reductive kernels.

Theorem 1.7. Suppose k is a field of characteristic zero. Consider the split extension of finite-dimensional Lie
algebras 0 → n → g → h → 0, and suppose that n is a reductive Lie algebra. Then the Hochschild–Serre
spectral sequence associated to this extension will collapse at the second page for all M ∈ h-mod.

It turns out that in the group case, for the split group extensions of type (1), all characteristic
classes have finite order. In Section 7, we expand several results of Sah from [14] about the order of
characteristic classes. Because of the technical formulations we omit the statements here and give a
corollary instead.

Corollary 1.8. The Lyndon–Hochschild–Serre spectral sequence associated to (1) collapses at the second page

for all H-modules M if and only if the characteristic classes v pn

r are zero for all primes p with (p − 1)|(r − 1),
for all n ∈ N0 and all r � 2.

2. Preliminaries on semi-direct products of Hopf algebras

We assume the reader is familiar with the basic concepts from the theory of Hopf algebras. A good
introduction can, for example, be found in [6,10,15]. Throughout the paper, we also assume a working
knowledge of homological algebra, spectral sequences (see [5,9,16]), and some introductory notions
from the cohomology theories of groups and Lie algebras (see [4,8,16]).

Let us now establish some notation. Suppose A is a Hopf algebra over the field k. With A ⊗ A we
mean the tensor product over the ground field k. Moreover, when there is no subscript present, the
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tensor product will always be over the ground field k. Multiplication in A will be denoted by

mA : A ⊗ A → A : a ⊗ b 	→ ab.

For the comultiplication, we will use the standard Sweedler notation

�A : A → A ⊗ A : a 	→
∑

a(1) ⊗ a(2).

So by coassociativity, we may unambiguously write

(�A ⊗ Id) ◦ �A(b) = (Id ⊗ �A) ◦ �A(b) =
∑

b(1) ⊗ b(2) ⊗ b(3).

The unit and counit of A are respectively denoted by ηA : k → A and εA : A → k. A also has an
antipode S A : A → A. The augmentation ideal A+ of A is by definition the kernel of εA .

Suppose A, B and H are Hopf algebras (in fact, we only need them to be (bi)algebras here) such
that A and B are H-modules, that is, we have an H-module structure map

τA : H ⊗ A → A : h ⊗ a 	→ h · a

and similarly a structure map τB for B . By Alg(A, B), we mean the set of algebra maps from A to B ,
and by AlgH (A, B), the set of algebra maps from A to B that are also H-module maps. We say A is
an H-module algebra if mA and ηA are H-module maps. Dually, we say A is an H-module coalgebra
if �A and εA are H-module maps (here k becomes an H-module via εH and A ⊗ A becomes an H-
module via �H ). Combining these two, we say A is an H-module bialgebra if it is both an H-module
algebra and an H-module coalgebra. Starting with bialgebras that are H-comodules, one can define
the notion of H-comodule (co/bi)algebra in a similar way.

Next, we recall the notion of (split) short exact sequences of Hopf algebras. Let H be the category
of Hopf algebras over the field k. It is well known that kernels and cokernels exist in this category.
If u : H → L is a map of Hopf algebras, following Molnar’s notation in [11], we will denote the cate-
gorical kernel and cokernel of u in H by KER(u) and COK(u), respectively. One can check that the
kernel and cokernel of u are given by

– KER(u) = (K (Ker(u)), j),
– COK(u) = (L/J (Im(u)), p),

where j is the canonical inclusion, p the canonical projection and

– K (Ker(u)) = the largest Hopf subalgebra of H contained in Ker(u) + k,
– J (Im(u)) = the smallest Hopf ideal of L containing Im(u)+ .

Definition 2.1. Let H be a Hopf algebra. The left adjoint action of H is defined by

adl
H : H ⊗ H → H : g ⊗ h 	→

∑
g(1)hS H (g(2)),

and right adjoint action of H is defined as

adr
H : H ⊗ H → H : h ⊗ g 	→

∑
S H (g(1))hg(2).

Dually, the left adjoint coaction of H is defined by

col
H : H → H ⊗ H : g 	→

∑
g(1) S H (g(3)) ⊗ g(2),
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and the right adjoint coaction of H is defined as

cor
H : H → H ⊗ H : g 	→

∑
g(2) ⊗ S H (g(1))g(3).

In [11], it is shown that adl
H turns H into an H-module algebra and col

H turns H into an H-
comodule coalgebra.

Definition 2.2. Let u : H → L be a map of Hopf algebras. We say u is normal if u(H) is stable under the
left and right adjoint actions of L. We say u is conormal if Ker(u) is a left and right H-cosubmodule
of H under the left and right adjoint coactions of H , respectively.

The following lemma is proven in [11].

Lemma 2.3. If u : H → L is a normal map between Hopf algebras H and L, then

u
(

H+)
L = Lu

(
H+)

.

We are now ready to explain what we mean by “a short exact sequence of Hopf algebras”.

Definition 2.4. Let A i−→ B π−→ C, be a sequence of Hopf algebra maps. We say this sequence is exact
if i is normal, π is conormal, (A, i) = KER(π) and (C,π) = COK(i). We say an exact sequence is split
if there is a Hopf algebra map σ : C → B , called a section, such that π ◦ σ = IdC.

Now, let us define the semi-direct product of two Hopf algebras.

Definition 2.5. Let A and C be two Hopf algebras such that A is a C-module bialgebra. The semi-
direct product (or smash product) A � C of A and C is an algebra with the underlying vector space
structure of A ⊗ C and the multiplication in A � C given by

(a ⊗ g)(b ⊗ h) =
∑

a(g(1) · b) ⊗ g(2)h.

There are algebra injections i : A → A � C and j : C → A � C , defined in the obvious way, that give
the semi-direct product the following universal property: if B is any algebra then for any g ∈ Alg(C, B)

and any f ∈ AlgC (A, B), the map

f � g : A � C → B : a ⊗ c 	→ f (a)g(c)

is the unique algebra map such that ( f � g) ◦ i = f and ( f � g) ◦ j = g . Here, B becomes a C-module
via the adjoint action of C on B associated to g , i.e. via the following structure map

C ⊗ B → B : c ⊗ b 	→
∑

g(c(1))bg
(

SC (c(2))
)
.

Note that given two coalgebras A and C , we can always give A ⊗ C the structure of a coalgebra
by defining the coproduct as �(a ⊗ g) = ∑

a(1) ⊗ g(1) ⊗ a(2) ⊗ g(2). While the counit is given by
ε : A ⊗ C → k : a ⊗ g 	→ εA(a)εC (g). One can easily check that these operations turn A ⊗ C into a
coalgebra. We call this the standard coalgebra structure on A ⊗ B .

It is also important to note that the algebra structure on A � C need not be compatible with
the standard coalgebra structure we have just defined. So, in general, A � C is not a Hopf algebra.
However, in [11], R. Molnar shows that if C is a cocommutative Hopf algebra then A � C is a Hopf
algebra with the standard coalgebra structure. Also, in [13], D.E. Radford gives explicit, necessary and
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sufficient conditions for A � C to be a Hopf algebra with the standard coalgebra structure. Actually,
Radford considers the more general case where A is also a C-comodule coalgebra and the coalgebra
structure on A ⊗ C is induced by this comodule structure. But our situation can be seen as a special
case of this.

The following theorem shows that split short exact sequences of Hopf algebras entail semi-direct
products of Hopf algebras that are a fortiori Hopf algebras.

Theorem 2.6. (See Molnar [11].) Suppose A i−→ B π−→ C is a split short exact sequence of Hopf algebras with a
section σ : C → B. Then A has a structure of a C-module bialgebra such that i ∈ AlgC (A, B) and for which the
universal property of the semi-direct product entails a Hopf algebra isomorphism i � σ : A � C

∼=−→ B, where
A � C is given the standard coalgebra structure.

Remark 2.7.

– If A → B → C is a split short exact sequence of Hopf algebras then B is a free A-module via
the inclusion of A into B . Indeed, by the theorem we may assume that B = A � C . So we need
to show that A � C is a free A-module via the inclusion A → A � C : a 	→ a ⊗ 1. But this is
clear, since if {cα}α∈I is a vector space basis for C , then {1 ⊗ cα}α∈I is an A-module basis for
A � C .

– The C-module structure on A is obtained as follows: by normality, A can be seen as a B-module
via the adjoint action of B , then σ : C → B gives A a C-module structure.

– Let A and C be two Hopf algebras such that A is a C-module bialgebra. If A � C equipped with
the standard coalgebra structure is a Hopf algebra, then A i−→ A � C π−→ C is a split short exact
sequence of Hopf algebras, with a section equal to the canonical inclusion j : C → A � C and π
defined by π : A � C → C : a ⊗ c 	→ εA(a)c.

– If in Definition 2.5, A is a trivial C-module, meaning c ·a = εC (c)a for all c ∈ C and a ∈ A, then the
product on A � C is just the ordinary tensor algebra structure (then we just write A ⊗ C instead
of A � C ). In this case, the algebra structure is compatible with the standard coalgebra structure
and thus, A ⊗ C is a Hopf algebra.

3. (Co)homology of Hopf algebras

Let A be a Hopf algebra over the field k. Given A-modules M and N , we turn M ⊗k N into an
A-module by defining a(m ⊗ n) = ∑

a(1)m ⊗ a(2)n. Also, we turn Homk(M, N) into an A-module via
(af )(m) = ∑

a(1) f (S(a(2))m). Furthermore, these A-module structures are compatible with each other
in the following sense. For A-modules M , N and K , there is a natural isomorphism

Ψ : HomA(M ⊗k N, K )
∼=−→ HomA

(
M,Homk(N, K )

)
(2)

where Ψ ( f )(m)(n) = f (m ⊗ n).

Definition 3.1. Let M be an A-module. The invariants of M is defined as the submodule M A =
{m ∈ M | A+m = 0} and the coinvariants of M , as the quotient M A = M/A+M.

One can easily check that −A and −A are functors from A-mod to k-mod. Furthermore, we have
the natural isomorphisms HomA(k,−) ∼= −A and k ⊗A − ∼= −A . Note that the isomorphism (2) implies
that HomA(N, K )

∼=−→ Homk(N, K )A for all A-modules N and K .

Definition 3.2. Let M be an A-module. The n-th homology of A with coefficients in M is defined as

Hn(A, M) := TorA
n (k, M) = Ln(−A)(M).
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The n-th cohomology of A with coefficients in M is defined as

Hn(A, M) := Extn
A(k, M) = Rn(−A)

(M).

Remark 3.3. It is well known that this definition of (co)homology is isomorphic to the Hochschild
(co)homology of A with coefficients in M , where M is turned into a bimodule via the augmentation
map ε (see [5]).

Now, suppose we have a split short exact sequence of Hopf algebras A i−→ B π−→ C . When M is
a B-module, one can verify using Lemma 2.3 that M A and M A are also B-modules. Because A acts
trivially on M A and M A , it follows that we can give these spaces a C-module structure.

Lemma 3.4. If M is a B-module such that M A = M, then we have an isomorphism of C-modules

Hn(A, M)
∼=−→ Homk

(
Hn(A,k), M

)
.

Proof. This follows directly from the Universal Coefficient Theorem. �
Let T be the exact functor that turns C-modules into B-modules via the map π .

Lemma 3.5. If N is a B-module and M is a C-module, then we have a natural isomorphism

HomB
(
T (M), N

) ∼=−→ HomC
(
M, N A)

,

which implies that the functor T is left adjoint to the functor −A , and that −B ∼= −C ◦ −A .

Since the functor −A : B-mod → C-mod is right adjoint to an exact functor, it follows that −A pre-
serves injective modules. Furthermore, because B is a free A-module (see Remark 2.7), B-resolutions
can be used to compute the right derived functors of −A : A-mod → k-mod. This implies that we
have natural isomorphisms of C-modules R∗(−A)(M) ∼= H∗(A, M) for every B-module M . These facts,
together with the composition −B ∼= −C ◦ −A , give us a convergent first quadrant cohomological
Grothendieck spectral sequence for every B-module M

E p,q
2 (M) = Hp(

C,Hq(A, M)
) ⇒ Hp+q(B, M). (3)

Lemma 3.6. If A i−→ B π−→ C is a split short exact sequence of Hopf algebras and M is a B-module such that
M A = M, then the differentials d∗,r−1

r from E∗,r−1
r (M), are zero for all r � 2.

Proof. The section is a Hopf algebra map σ : C → B , such that π ◦ σ = Id. Factoriality then entails
that the induced maps Hn(C, M) → Hn(B, M) are injective for all n. Since these maps are given by the
composition

Hn(C, M) = En,0
2 (M) � En,0

3 (M) � · · · � En,0∞ (M) ↪→ Hn(B, M),

we conclude that d∗,r−1
r = 0 for all r � 2. �

Since A, B and C are Hopf algebras, their cohomology is endowed with a cup product. Now, let us
suppose that there is a pairing of B-modules M ⊗k N → K . Then this, together with the cup product,
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induces a pairing of spectral sequences

E p,q
r (M) ⊗k El,m

r (N) → E p+l,q+m
r (K ) : a ⊗ b 	→ a · b.

Moreover, this pairing will satisfy

dp+l,q+m
r (ab) = dp,q

r (a) · b + (−1)p+qa · dl,m
r (b).

4. Characteristic classes

Suppose A i−→ B π−→ C is a split short exact sequence of Hopf algebras and consider the spectral
sequence (3).

Definition 4.1. Let t � 0, r � 2. We define M t
r (A, B) to be the class of B-modules M such that

M A = M and for which the differentials ds,t
p with source Es,t

p (M) are zero for all s and all 2 � p � r −1.
We say that the split extension is (t, r)-trivial if Ht(A,k) ∈ M t

r (A, B).

Now, suppose M is a B-module such that M A = M and assume that the extension is (t, r)-trivial.
Then, by Lemma 3.4, we have a non-degenerate C-pairing

Ht(A, M) ⊗k Ht(A,k) → M.

As stated earlier, this induces a spectral sequence pairing

E p,q
r

(
Ht(A, M)

) ⊗k El,m
r

(
Ht(A,k)

) → E p+l,q+m
r (M).

We also have isomorphisms

E0,t
r

(
Ht(A,k)

) = E0,t
2

(
Ht(A,k)

)
= H0(C,Ht(A,Ht(A,k)

))
∼= H0(C,Homk

(
Ht(A,k),Ht(A,k)

))
∼= Homk

(
Ht(A,k),Ht(A,k)

)C

∼= HomC
(
Ht(A,k),Ht(A,k)

)
.

Definition 4.2. Let t � 0, r � 2 and suppose that the extension is (t, r)-trivial. A characteristic class of
the spectral sequence (E∗(Ht(A,k)),d∗) is defined as

vt
r(A) := d0,t

r

([
idt]),

where [idt] is the image in E0,t
r (Ht(A,k)) of the identity map in HomC (Ht(A,k),Ht(A,k)) under the

isomorphisms above.

If M is a B-module such that M A = M , it turns out that these characteristic classes can be seen as
obstructions to the vanishing of differentials in (E∗(M),d∗).

Theorem 4.3. Let t � 0, r � 2 and suppose we have a (t, r)-trivial split short exact sequence of Hopf algebras
A → B → C . Then the following hold:
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(a) For all s � 0 and for all M ∈ M t
r (A, B), there is a canonical surjective homomorphism

θ : Es,0
r

(
Ht(A, M)

) → Es,t
r (M).

(b) The characteristic class vt
r ∈ Er,t−r+1

r (Ht(A,k)) has the property

ds,t
r (x) = (−1)s y · vt

r

∀s � 0, ∀x ∈ Es,t
r (M), ∀M ∈ M t

r (A, B) and ∀y ∈ Es,0
r (Ht(A, M)) with θ(y) = x.

(c) vt
r is completely determined by the previous property.

(d) Suppose we have a Hopf algebra D together with a Hopf algebra map ρ : D → C that turns A into a D-
module bialgebra. Assume that A � D, given the standard coalgebra structure, is a Hopf algebra and that
the split short exact sequence associated to A � D is also (t, r)-trivial (denote its characteristic classes
by wt

r ). Then vt
r maps to wt

r under the map induced by ρ on the spectral sequences. In particular, vt
2 maps

to wt
2 .

Proof. Since Ht(A, M)A = Ht(A, M), we have a canonical isomorphism

Es,0
2

(
Ht(A, M)

) ∼= Hs(C,Ht(A, M)
)

∼= Es,t
2 (M).

The splitting guarantees that Es,0
r (Ht(A, M)) = Es,0

2 (Ht(A, M)). In addition, if M ∈ M t
r (A, B), then it

follows that Es,t
r (M) is a quotient module of Es,t

2 (M). Combining these observations, we find a canon-
ical surjection

θ : Es,0
r

(
Ht(A, M)

) → Es,t
r (M),

proving (a).
To prove (b), we fix s � 0, M ∈ M t

r (A, C) and x ∈ Es,t
r (M). We have the following commutative

diagram

Es,0
r (Ht(A, M)) ⊗k E0,t

r (Ht(A,k)) Es,t
r (M)

Es,0
2 (Ht(A, M)) ⊗k E0,t

2 (Ht(A,k))

∼=

Es,t
2 (M).

Recall that we can take [idt] ∈ E0,t
2 (Ht(A,k)). We have that z · [idt] = z for all z ∈ Es,0

2 (Ht(A, M)) =
Es,t

2 (M). Indeed, if we fix [idt] ∈ E0,t
2 (Ht(A,k)), then the map p : Es,0

2 (Ht(A, M)) = Hs(C,Ht(A, M)) →
Es,t

2 (M) = Hs(C,Ht(A, M)) : z 	→ z · [idt] is a map induced by the C-module homomorphism
Ht(A, M) = Homk(Ht(A,k), M) → Ht(A, M) = Homk(Ht(A,k), M) : f 	→ f ◦ idt where idt is the iden-
tity morphism in Homk(Ht(A,k),Ht(A,k)). Since this C-module homomorphism is clearly the identity
morphism, the induced map p on cohomology is also the identity map.

Now, since θ is surjective, there is an element y ∈ Es,0
r (Ht(A, M)) such that θ(y) = x. The commu-

tativity of the diagram then implies that y · [idt] = x. Now, by using the product formula, we find



D. Degrijse, N. Petrosyan / Journal of Algebra 332 (2011) 366–385 375
ds,t
r (x) = ds,t

r

(
y · [idt])

= ds,0
r (y) · [idt] + (−1)s y · d0,t

r

([
idt])

= (−1)s y · vt
r,

which proves (b). This last equality follows from the definition of vt
r and the fact that ds,0

r lands in
Es+r,1−r

r (M), which is zero.
To prove (c), we consider the special case s = 0 and M = Ht(A,k). Notice that θ becomes

the identity map (under identifications). Now, suppose ut
r also satisfies property (b) and set x =

[idt] ∈ E0,t
r (M). It follows that

vt
r = d0,t

r (x) = θ−1(x) · ut
r = [

idt] · ut
r .

Furthermore, since our multiplication amounts to composition with the identity map in
HomC (Ht(A,k),Ht(A,k)) we find vt

r = ut
r , proving (c).

Finally, to prove (d), we let ( ′E∗, ′d∗) be the spectral sequence associated to A � D . Note that the
map induced by ρ on the spectral sequences maps [idt] ∈ E0,t

2 (Ht(A,k)) = HomC (Ht(A,k),Ht(A,k))

to [idt] ∈ ′E0,t
2 (Ht(A,k)) = HomD(Ht(A,k),Ht(A,k)). Since the map induced by ρ on the spectral se-

quences commutes with the differentials and vt
r = d0,t

r ([idt]), wt
r = ′d0,t

r ([idt]), we conclude that vt
r is

mapped to wt
r . �

Using this theorem inductively, one can easily see that M t
r (A, B) = C-mod if and only if the

extension is (t, r)-trivial.

Corollary 4.4. Let t � 0, r � 2. Then M t
r (A, B) = C-mod if and only if the edge differentials

d0,t
m : E0,t

m

(
Ht(A,k)

) → Em,t−m+1
m

(
Ht(A,k)

)
are zero for all 2 � m < r. So, M t

r (A, B) = C-mod if and only if A � C is (t, r)-trivial.

Corollary 4.5. The spectral sequence (E∗(M),d∗) collapses at the second page for all coefficients M ∈ C-mod
if and only if the edge differentials

d0,t
m : E0,t

m

(
Ht(A,k)

) → Em,t−m+1
m

(
Ht(A,k)

)
are zero for all t � 0 and m � 2. Said differently, the spectral sequence will collapse at the second page for all
coefficients M ∈ C-mod if and only if it collapses with coefficients Ht(A,k), for all t � 0.

5. A decomposition theorem

Let A1, A2 and C be Hopf algebras such that A1 and A2 are C-module bialgebras and assume
that A1 � C and A2 � C are Hopf algebras with the standard coalgebra structure. Then A = A1 ⊗ A2
naturally becomes a C-module bialgebra and one can check that A � C is also a Hopf algebra with
the standard coalgebra structure. It follows that we have three split short exact sequence of Hopf
algebras; namely

Ai → Ai � C → C (4)



376 D. Degrijse, N. Petrosyan / Journal of Algebra 332 (2011) 366–385
for i = 1,2 and

A → A � C → C . (5)

We denote the spectral sequence associated to (4) by (i E∗, id∗), and the spectral sequence associated
to (5) by (E∗,d∗). It follows from the Künneth formula that, for all i and j, we have a C-pairing

Hi(A1,k) ⊗ H j(A2,k) → Hi+ j(A,k).

This induces a spectral sequence pairing

E p,q
r

(
Hi(A1,k)

) ⊗k El,m
r

(
H j(A2,k)

) → E p+l,q+m
r

(
Hi+ j(A,k)

)
.

Note that the natural maps of A onto A1 and A2 induce two homomorphisms of spectral sequences

1Φ : 1 Er
(
Hi(A1,k)

) → Er
(
Hi(A1,k)

)
,

2Φ : 2 Er
(
H j(A2,k)

) → Er
(
H j(A2,k)

)
.

Together with the pairing, these entail the morphism

Pi, j : 1 E p,q
r

(
Hi(A1,k)

) ⊗k
2 El,m

r

(
H j(A2,k)

) → E p+l,q+m
r

(
Hi+ j(A,k)

) : x ⊗ y 	→ 1Φ(x)2Φ(y)

for all i and j.

Lemma 5.1. Let x ∈ 1 E p,q
r (Hi(A1,k)) and y ∈ 2 El,m

r (H j(A2,k)). Then

dp+l,q+m
r

(
Pi, j(x ⊗ y)

) = Pi, j
(1dp,q

r (x) ⊗ y
) + (−1)p+q P i, j

(
x ⊗ 2dl,m

r (y)
)
.

Proof. This follows immediately from the product formula for pairings and the fact that 1Φ and 2Φ

commute with the differentials. �
We can now derive the following.

Theorem 5.2. Let t � 0 and r � 2. Suppose the respective characteristic classes 1 vi
p and 2 v j

p , of 1 E∗(Hi(A1,k))

and 2 E∗(H j(A2,k)), are zero for all i, j � t and 2 � p � r − 1. Then the split short exact sequence A →
A � C → C is (t, r)-trivial. Moreover, we have a decomposition formula

vt
r =

∑
i+ j=m

(
Pi, j

(1 vi
r ⊗ [2id j]) + (−1)i P i, j

([1idi] ⊗ 2 v j
r
))

.

Proof. Proceeding by induction, let 2 � p � r − 1 and suppose that

A → A � C → C (6)

is (t, p)-trivial. So, vt
p is defined and equal to d0,t

p ([idt]), where idt is the identity map in

HomC (Ht(A,k),Ht(A,k)). Similarly, we have 1 vi
p = 1d0,i

p ([1idi]) and 2 v j
p = 2d0, j

p ([2id j]). Since
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Ht(A,k) =
⊕

i+ j=t

Hi(A1,k) ⊗k H j(A2,k),

we have a decomposition idt = ∑
i+ j=t idi j , with idi j ∈ HomC (Ht(A,k),Ht(A,k)) defined by

idi j(x ⊗ y) =
{

x ⊗ y if x ∈ Hi(A1,k) and y ∈ H j(A2,k),

0 otherwise.

Under the appropriate identifications one can consider idi j as an element of E0,t
p (Ht(A,k)) and denote

it by [idi j]. We then have [idt] = ∑
i+ j=t[idi j].

Now, consider the map

Pi, j : 1 E0,i
r

(
Hi(A1,k)

) ⊗k
2 E0, j

r
(
H j(A2,k)

) → E0,t
r

(
Ht(A,k)

)
.

One can check that Pi, j([1idi] ⊗ [2id j]) = [idi j] for all i + j = t , so the sum formula for the identity
implies

[
idt] =

∑
i+ j=t

P i, j
([1idi] ⊗ [2id j]).

It then follows from Lemma 5.1 and the definition of characteristic classes that,

vt
p = d0,t

p

( ∑
i+ j=t

P i, j
([1idi] ⊗ [2id j]))

=
∑

i+ j=t

d0,t
p

(
Pi, j

([1idi] ⊗ [2id j]))

=
∑

i+ j=t

(
Pi, j

(1d0,i
p

([1idi]) ⊗ [2id j]) + (−1)i P i, j
([1idi] ⊗ 2d0, j

p
([2id j)]))

=
∑

i+ j=t

(
Pi, j

(1 vi
p ⊗ [2id j]) + (−1)i P i, j

([1idi] ⊗ 2 v j
p
))

.

Since 1 vi
p and 2 v j

p are zero for all i, j � t , we have vt
p = 0. It now follows from Theorem 4.3 that

ds,t
p = 0 for all s and all B-modules M with M A = M . We conclude that (6) is (t, p + 1)-trivial and

this finishes the induction. Thus, the extension is (t, r)-trivial, and

vt
r =

∑
i+ j=m

(
Pi, j

(1 vi
r ⊗ [2id j]) + (−1)i P i, j

([1idi] ⊗ 2 v j
r
))

. �

The following corollary is immediate.

Corollary 5.3. Suppose the spectral sequences associated to A1 � C and A2 � C collapse at the second page,
in coefficients Ht(A1,k) and Ht(A2,k) respectively, for each t � 0. Then the spectral sequence associated to
A � C will collapse at the second page, for all coefficients M for which M A = M.
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6. The Lie algebra case

It is a well-known fact that the universal enveloping algebra U (g) of a Lie algebra g over a field
k is a Hopf algebra and that its (co)homology coincides with the ordinary (Chevalley) (co)homology
of g. One can also verify that the universal enveloping algebra functor U maps a (split) extension of
Lie algebras to a (split) short exact sequence of Hopf algebras.

Now, let us consider a split Lie algebra extension

0 n g
π

h 0. (7)

There is a Lie algebra homomorphism ϕ : h → Der(n), such that g is isomorphic to the semi-direct
product g ∼= n �ϕ h. Also, this extension has the associated Hochschild–Serre spectral sequence

E p,q
2 (M) = Hp(

h,Hq(n, M)
) ⇒ Hp+q(g, M)

for all M ∈ g-mod.
Throughout this section, we will identify h-mod with {M ∈ g-mod | Mn = M}.

Definition 6.1. Let t � 0 and r � 2. A split Lie algebra extension is called (t, r)-trivial if the associated
split short exact sequence of universal enveloping algebras is (t, r)-trivial.

We can now reformulate the results of the two previous sections in terms of split Lie algebra
extensions.

Theorem 6.2. Let t � 0 and r � 2. Suppose (7) is (t, r)-trivial, then the following hold:

(a) For all s � 0 and for all M ∈ h-mod, there is a canonical surjective homomorphism

θ : Es,0
r

(
Ht(n, M)

) → Es,t
r (M).

(b) The characteristic class vt
r ∈ Er,t−r+1

r (Ht(n,k)) has the property

ds,t
r (x) = (−1)s y · vt

r

∀s � 0, ∀M ∈ h-mod, ∀x ∈ Es,t
r (M) and ∀y ∈ Es,0

r (Ht(n, M)) with θ(y) = x.
(c) vt

r is completely determined by the previous property.

(d) Let σ : d → h be a homomorphism of Lie algebras and set ϕ′ = ϕ ◦ σ . Suppose the split extension associ-
ated to n �ϕ′ d is (t, r)-trivial and denote its characteristic classes by wt

r . Then vt
r maps to wt

r under the
map induced by σ on the spectral sequences. In particular, vt

2 maps to wt
2 .

Corollary 6.3. The Hochschild–Serre spectral sequence of (7) collapses at the second page for all coefficients
M ∈ h-mod if and only if the edge differentials

d0,t
m : E0,t

m

(
Ht(n,k)

) → Em,t−m+1
m

(
Ht(n,k)

)
are zero for all t � 0 and m � 2. In particular, the spectral sequence will collapse at the second page for all
coefficients M ∈ h-mod if and only if it collapses with coefficients Ht(n,k), for all t � 0.
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Next, let us suppose that n is a direct sum of two Lie algebras n = n1 ⊕ n2, and that we have
two Lie algebra homomorphisms ϕ1 : h → Der(n1) and ϕ2 : h → Der(n2). Because Der(n1) ⊕ Der(n2)

embeds in Der(n), we can use ϕ1 and ϕ2 to obtain a Lie algebra homomorphism ϕ : h → Der(n).
We then have three split Lie algebra extensions; namely, 0 → ni → ni �ϕi h → h → 0 for i = 1, 2,
and 0 → n → n �ϕ h → h → 0. By translating this situation to the universal enveloping algebras, we
find ourselves in the set-up of Section 5. We are ready to reformulate Theorem 5.2 for Lie algebra
extensions.

Theorem 6.4. Let t � 0 and r � 2. Suppose the characteristic classes 1 vi
p and 2 v j

p , of 1 E∗(Hi(n1,k)) and
2 E∗(H j(n2,k)) respectively, are zero for all i, j � t and 2 � p � r − 1. Then the split extension 0 → n → g →
h → 0 is (t, r)-trivial. Furthermore, we have a decomposition formula

vt
r =

∑
i+ j=m

(
Pi, j

(1 vi
r ⊗ [2id j]) + (−1)i P i, j

([1idi] ⊗ 2 v j
r
))

.

We will now discuss some corollaries of Theorems 6.2 and 6.4.

Corollary 6.5. Suppose the Hochschild–Serre spectral sequences of n1 �ϕ1 h and n2 �ϕ2 h collapse at the
second page, in coefficients Ht(n1,k) and Ht(n2,k) respectively, for each t � 0. Then the Hochschild–Serre
spectral sequence of n �ϕ h will collapse at the second page, for all coefficients M in h-mod.

Proof. This is immediate from Theorem 6.4. �
Corollary 6.6. Let k be a field of characteristic zero and suppose 0 → n → n �ϕ h → h is a split extension
of finite-dimensional Lie algebras. Assume that Der(n) has a semi-simple Lie subalgebra s such that ϕ factors
through s, i.e. ϕ : h → s ⊆ Der(n). Then, the Hochschild–Serre spectral sequence (E∗(M),d∗) associated to the
split extension will collapse at the second page for any h-module M.

Proof. The Lie algebra homomorphism ϕ : h → s induces a commutative diagram

0 n n �i s s 0

0 n

Id

n �ϕ h h

ϕ

0,

where i : s → Der(n) is just the inclusion. It is well-known fact that the Hochschild–Serre spectral
sequence for an extension with semi-simple quotient, in finite-dimensional coefficients, will collapse
at the second page. This implies that all its characteristic classes are defined and equal zero. If we
now use Theorem 6.2(d) iteratively, starting from r = 2, we find that all the characteristic classes of
the extension in the bottom row are defined and equal to zero for all t � 0, r � 2. It then follows
from Theorem 6.2(b) that dr = 0 for all r � 2 and all M ∈ h-mod. �
Remark 6.7. Let p � 3 and s be an arbitrary finite-dimensional semi-simple Lie algebra over a field of
characteristic zero. It can be shown (see [3,1]) that there exist a p-step nilpotent Lie algebra n1 and a
p-step solvable non-nilpotent Lie algebra n2 such that s is isomorphic to the Levi factor of Der(ni).

Corollary 6.8. If ϕ(h) is one-dimensional, then the Hochschild–Serre spectral sequence will collapse at E2 for
all coefficients in h-mod.
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Proof. This follows from Theorem 6.2(d), by an analogous argument as in the proof of Corollary 6.6
and by observing that extensions with one-dimensional quotients always collapse at the second
page. �
Definition 6.9. Suppose k is a field of characteristic zero. A finite-dimensional Lie algebra n is called
reductive if n decomposes as a direct sum of simple n-modules via the adjoint representation.

It is a standard fact that when n is reductive, there is an isomorphism n ∼= a ⊕ s, where a is the
center of n and s is semi-simple. Also, one has that Der(n) ∼= Der(a) ⊕ Der(s).

Theorem 6.10. Suppose k is a field of characteristic zero. Consider the split extension 0 → n → g → h → 0,

and suppose that n is a reductive Lie algebra. Then the Hochschild–Serre spectral sequence associated to this
extension will collapse at the second page for all M ∈ h-mod.

Proof. Let n ∼= a ⊕ s, where a is the center and s is semi-simple. By a result of Barnes (see [2]),
it follows that the spectral sequence associated to a finite-dimensional split Lie algebra exten-
sion with abelian kernel always collapses at the second page. For the semi-simple Lie algebra s,
one has s ∼= Der(s). So, the collapse of the spectral sequence of the extension 0 → s → s �

Der(s) → Der(s) → 0 follows immediately. Combining these results with Corollary 6.5, shows that the
Hochschild–Serre spectral sequence associated to the extension 0 → n → n � Der(n) → Der(n) → 0
collapses at the second page. Applying Theorem 6.2(d) finishes the proof. �
7. The group case

Recall that the integral group ring Z[G] of a group G is a Hopf algebra and that the group ring
functor maps (split) group extensions to (split) short exact sequences of Hopf algebras. Note that all
the necessary definitions and results from Sections 2 and 3 remain valid if we work over a principal
ideal domain. Now, consider the split group extension

0 N G
π

H 0. (8)

The extension induces a group homomorphism ϕ : H → Aut(N), such that G is isomorphic to the
semi-direct product G ∼= N �ϕ H . Also, to this group extension we associate the Lyndon–Hochschild–
Serre spectral sequence for every M ∈ G-mod. Just as in the case of Lie algebras, we will identify
H-mod with {M ∈ G-mod | MN = M}, when considering extensions as the one above. Next, we explain
what we mean by a (t, r)-trivial split group extension.

Definition 7.1. Let t � 0, r � 2. We call a split group extension (t, r)-trivial if the associated split short
exact sequence of group rings is (t, r)-trivial and if Ht−1(N,Z) is Z-free.

Now, let M be an H-module and assume that (8) is a (t, r)-trivial extension for given t � 0 and
r � 2. Since Ht−1(N,Z) is Z-free, the Universal Coefficient Theorem entails an isomorphism of H-
modules Ht(N, M) ∼= HomZ(Ht(N,Z), M). This isomorphism gives us a non-degenerate H-pairing

Ht(N, M) ⊗Z Ht(N,Z) → M.

Hence, Theorem 4.3 remains valid in this setting.

Theorem 7.2. Let t � 0 and r � 2 and suppose (8) is (t, r)-trivial split extension, then the following hold:
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(a) For all s � 0 and for all M ∈ H-mod, there is a canonical surjective homomorphism

θ : Es,0
r

(
Ht(N, M)

) → Es,t
r (M).

(b) The characteristic class vt
r ∈ Er,t−r+1

r (Ht(N,Z)) has the property

ds,t
r (x) = (−1)s y · vt

r

∀s � 0, ∀M ∈ H-mod, ∀x ∈ Es,t
r (M) and ∀y ∈ Es,0

r (Ht(N, M)) with θ(y) = x.
(c) vt

r is completely determined by the previous property.
(d) Let σ : P → H be a group homomorphism and set ϕ′ = ϕ ◦ σ . Assume the split extension associated to

N �ϕ′ P is (t, r)-trivial and denote its characteristic classes by wt
r . Then vt

r maps to wt
r under the map

induced by σ on the spectral sequences. In particular, vt
2 maps to wt

2 .

This is essentially the statement of Theorem 3 of Sah in [14]. The only difference is that we expand
to split extensions where the kernel is no longer required to be an integral lattice, but just to have a
Z-free integral homology group in a specific dimension.

Corollary 7.3. Let N be a group with Z-free integral homology. Then the Lyndon–Hochschild–Serre spectral
sequence of the split extension (8) collapses at the second page for all coefficients M ∈ H-mod if and only if
the edge differentials

d0,t
m : E0,t

m

(
Ht(N,Z)

) → Em,t−m+1
m

(
Ht(N,Z)

)
are zero for all t � 0 and m � 2. In particular, the spectral sequence will collapse at the second page for all
coefficients M ∈ H-mod if and only if it collapses with coefficients Ht(N,Z), for all t � 0.

From now on, let us assume that N is a product of two groups N1 and N2, both with Z-
free integral homology, and that we have two group homomorphisms ϕ1 : H → Aut(N1) and
ϕ2 : H → Aut(N2), which give rise to a group homomorphism ϕ : H → Aut(N). We obtain the split
group extensions

0 → Ni → Ni �ϕi H → H → 0

for i = 1,2, and

0 → N → N �ϕ H → H → 0.

By applying the group ring functor to these extensions and by noting that the Künneth formula for
homology remains valid, we can reformulate the decomposition theorem in terms of split group ex-
tensions. This is a generalization of the result obtained in [12].

Theorem 7.4. Let t � 0 and r � 2. Suppose the characteristic classes 1 vi
p and 2 v j

p , of 1 E∗(Hi(N1,Z)) and
2 E∗(H j(N2,Z)) respectively, are zero for all i, j � t and 2 � p � r − 1. Then the split extension 0 → N →
G → H → 0 is (t, r)-trivial. Furthermore, we have a decomposition formula

vt
r =

∑
i+ j=m

(
Pi, j

(1 vi
r ⊗ [2id j]) + (−1)i P i, j

([1idi] ⊗ 2 v j
r
))

.
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Corollary 7.5. Suppose the Lyndon–Hochschild–Serre spectral sequences of N1 �ϕ1 H and N2 �ϕ2 H collapse
at the second page, in coefficients Ht(N1,Z) and Ht(N2,Z) respectively, for each t � 0. Then the Lyndon–
Hochschild–Serre spectral sequence of N �ϕ H will collapse at the second page, for all coefficients M ∈ H-mod.

Proof. This is immediate from Theorem 7.4. �
Remark 7.6. Note that the preceding results remain valid when Z is replaced by any principal ideal
domain. For example, if we work over a field F , the split group extension 0 → N → G → H → 0
is (t, r)-trivial if the associated split short exact sequence of group rings F [N] → F [G] → F [H] is
(t, r)-trivial.

From now on, we restrict to the extension

0 → L → G = L �ϕ H → H → 0, (9)

where L is an n-dimensional integral lattice, and ϕ : H → GL(n,Z) is an integral representation
of H .

Since Ht(L,Z) ∼= Λt(L) for all t , L has Z-free homology. Hence, as before, we can define the char-
acteristic classes. It turns out that all characteristic classes will have finite order.

Lemma 7.7. (See Liebermann [14].) Let t � r � 2. Consider the extension (9), let M be a finite-dimensional Z-
free H-module and denote the associated Lyndon–Hochschild–Serre spectral sequence by (E∗(M),d∗). Then,
for each s � 0, the image of ds,t

r is a torsion group annihilated by the integers mt−r+1(mr−1 − 1), for all m ∈ Z

(when t < r, ds,t
r = 0).

Using this fact, Sah proves the following result about the order of the characteristic classes vt
r

associated to (9).

Proposition 7.8. (See Sah [14].) Let t � r � 2, then the order of vt
r is a divisor of Bt

r , where Bt
r = 2 when r

is even and Bt
r = ∏

pλt
r (p) when r is odd, where p ranges over primes such that (p − 1)|(r − 1) and λt

r(p) =
min(t − r + 1, ε(p) + ordp( r−1

p−1 )), where ε(p) = 1 for odd p and ε(2) = 2.

In what follows, we intend to improve this result.

Definition 7.9. Let t � r � 2. If p is a prime such that p − 1 divides r − 1, then we define

ξr(p) =
{

λt
r(p) if r is odd,

1 otherwise.

Now, suppose that (9) is (k, r)-trivial for all 2 � k � t . We define the following numbers iteratively
from k = r to k = t

χ r
r =

{
p if vr

r �= 0 and r = pn for some prime p with (p − 1)|(r − 1),

1 otherwise,

χk
r =

⎧⎪⎨
⎪⎩

p if vk
r �= 0 and k = pn for some prime p with (p − 1)|(r − 1)

and ordp(
∏k−1

i=r χ i
r ) < ξr(p),

1 otherwise.

We will use the following well-known property of the binomial coefficients, which can be seen as a
consequence of Lucas’ Lemma.
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Lemma 7.10. Let k � 2 be an integer, then

gcd

((
k

i

) ∣∣∣ i ∈ {1, . . . ,k − 1}
)

=
{

p if k = pn for some prime p and some n ∈ N,

1 otherwise.

Theorem 7.11. Let t � r � 2. Suppose that (9) is (k, r)-trivial for all 2 � k � t. Then, the order of vt
r is a divisor

of
∏t

k=r χk
r .

Proof. Since Hi(L,Z) = Λi(L), we have an H-pairing

Hi(L,Z) ⊗Z H j(L,Z) → Hi+ j(L,Z)

for all i, j � 0. We will use the multiplicative structure of the Lyndon–Hochschild–Serre spectral se-
quence associated to (9) induced by this pairing to prove the theorem by induction on t � r.

First, suppose that t = r. If vr
r = 0 then we are done, otherwise take [idi] ∈ H0(H,Hi(L,Hi(L,Z)))

and [id j] ∈ H0(H,H j(L,H j(L,Z))) for all i, j � 1 such that i + j = r. Then one can check that [idi] ·
[id j] = (r

i

)[idr]. Applying the differential d0,r
r and using the product rule, we find

(
r

i

)
vr

r =
(

r

i

)
d0,r

r

([
idr]) = d0,i

r

([
idi]) · [id j] + (−1)i[idi] · d0, j

r
([

id j]).
Since dp,q

r = 0 for all q < r, we see that
(r

i

)
vr

r = 0, and this is for all i ∈ {1, . . . , r − 1}. Hence, Proposi-
tion 7.8 and Lemma 7.10 imply that χ r

r vr
r = 0.

Now, assume that vs
r has order dividing

∏s
k=r χk

r for all s ∈ {r, r + 1, . . . , t − 1}. If vt
r = 0, then we

are done, otherwise using again the pairing and applying the product rule, we obtain

(
t

i

)
vt

r = d0,i
r

([
idi]) · [id j] + (−1)i[idi] · d0, j

r
([

id j])
= vi

r · [id j] + (−1)i[idi] · [v j
r
]

for all i, j � 1 such that i + j = t . It now follows that
∏t−1

k=r χk
r

(t
i

)
vt

r = 0 for all i ∈ {1, . . . , t − 1}. Since

gcd

(
t−1∏
k=r

χk
r

(
t

i

) ∣∣∣ i ∈ {1, . . . , t − 1}
)

=
t−1∏
k=r

χk
r gcd

((
t

i

) ∣∣∣ i ∈ {1, . . . , t − 1}
)

.

Proposition 7.8 and Lemma 7.10 imply that vt
r has order dividing

∏t
k=r χk

r . �
Remark 7.12. Note that

∏t
k=r χk

r is a divisor of Bt
r .

Corollary 7.13. If v pn

r = 0 for all primes p with (p − 1)|(r − 1), for all n ∈ N0 and all r � 2. Then the Lyndon–
Hochschild–Serre spectral sequence associated to (9) collapses at the second page for all H-modules M.

Proof. We will use induction on r to show that all differentials dr for r � 2 are zero for all coefficients
in H-mod. Suppose r = 2. By assumption, we have χ t

2 = 1 for all relevant t . So, Theorem 7.11 implies
that vt

2 = 0 for all t . It then follows from Theorem 7.2(b) that ds,t
2 = 0 for all s, t and all coefficients

in H-mod. Now, assume ds,t
k = 0 for all k ∈ {2, . . . , r − 1}, all s, t and all coefficients in H-mod. In
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particular, (9) is (t, r)-trivial for all t . It again follows that χ t
r = 1 for all relevant t . Therefore, Theo-

rem 7.11 shows that vt
r = 0 for all t . Using Theorem 7.2(b), we conclude ds,t

r = 0 for all s, t � 0 and all
coefficients in H-mod. �

Next, we show how the indexes of subgroups of H can be useful in determining the order of the
characteristic classes of (9).

Corollary 7.14. Let t � r � 2 and suppose the extension (9) is (t, r)-trivial. If K is a subgroup of H, then the ex-
tension restricted to K is also (t, r)-trivial. Denoting its characteristic class by wt

r and assuming [H : K ] < ∞,
we have that vt

r has order dividing [H : K ]ord(wt
r).

Proof. We have the following commutative diagram

0 L

id

L �ϕ′ K K

i

0

0 L L �ϕ H H 0,

where i is the inclusion of K into H , and ϕ′ = ϕ ◦ i. The fact that the extension in the top row is also
(t, r)-trivial follows directly from Theorem 7.2(d). It also shows that i∗(vt

r) = wt
r , where

i∗ : Hr(H,Ht−r+1(L,Ht(L,Z)
)) → Hr(K ,Ht−r+1(L,Ht(L,Z)

))
is the restriction map induced by i. If K is a finite index subgroup of H , we also have a transfer map

tr∗ : Hr(K ,Ht−r+1(L,Ht(L,Z)
)) → Hr(H,Ht−r+1(L,Ht(L,Z)

))
,

with the property that tr∗ ◦ i∗ = [H : K ]id. This gives [H : K ]vt
r = tr∗(wt

r) which implies that
[H : K ]ord(wt

r)vt
r = 0. �
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