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Thenotionof communicationcomplexity seeks tocapture theamount

of communication between different parties that is required to find

the output of a Boolean function when each party is provided with

only part of the input. Different variants of the model governing the

rules of this communication lead todifferent connectionswithprob-

lems in combinatorial linear algebra. In particular, problems arise in

this context that concern the rank of a (0, 1)-matrix and the min-

imum rank of a matrix meeting a given combinatorial description.

This paper surveys these connections.
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1. Introduction

Combinatorial matrix theory is a branch of linear algebra devoted to problems that call for the

properties of a matrix as a linear operator to be related to some combinatorial description of the

matrix. As it turns out, this sort of problem arises naturally in the context of computational complexity

theory [1], where it is of interest to study the “complexity” of a Boolean function f in terms of the

resources required to compute it.
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In this paper, we discuss some particular connections of this type which came to our attention

during the 2010 BIRS workshop Theory and Applications of Matrices Described by Patterns. In particular,

the notion of the communication complexity of a Boolean function (introduced in [26]) has in several

instances been connected to problems of the sort usually referred to as “minimum rank problems” in

the linear algebra literature.

The essence of a “minimumrank problem” is to determine, given some combinatorial description of

amatrix, the smallest possible rankof amatrixmeeting thatdescription. (For a surveyof suchproblems,

see [7], updated with [8].) Some variation exists in terms of what sort of combinatorial description is

considered, but often the essential quality is that themagnitudes of the entries of thematrix are disre-

garded, and only their signs or zero/nonzero character is retained. In the context of the present survey,

the most important combinatorial description of a matrix is provided by the following definition.

Definition 1.1. Given a real m × n matrix A, the sign pattern of A is the unique m × n matrix A with

entries from the set {+, −, 0} that results by replacing each positive entry of Awith the symbol+ and

each negative entry with the symbol −. That is,

A(i, j) =
⎧⎪⎨
⎪⎩
+ if A(i, j) > 0,

0 if A(i, j) = 0,

− if A(i, j) < 0.

What does the sign pattern of a real matrix imply about its rank? In particular, how small might

the rank of a matrix be, given that it has a particular sign pattern? This question arises in connection

with problems in computational complexity theory.

Computational complexity theory is an area of computer science that aims to study and classify

various fundamental computational problems based on the resources needed to solve them. In a

situation where the various inputs required to solve a computational problem are split among many

parties or processors, the parties need to communicate with each other using messages and the total

amount of communication becomes an important resource worth investigating.

In computational complexity theory, mathematical models are needed to capture the intuitive no-

tion of efficient computation. While the Turing machine model serves this purpose in order to study

the usage of resources such as time and space, no such mathematical model was available in order to

study communication as a resource until Yao in [26] proposed the following two-party communica-

tion model.

1.1. The model

Let X and Y be finite sets. Alice and Bob are two players or processors interested in computing

a Boolean function f of two inputs, f : X × Y → {0, 1}. Alice is given an input x ∈ X and Bob is

given an input y ∈ Y and they need to compute f (x, y). We assume that both of them have unlimited

computational power. Since Alice does not know y and Bob does not know x, they have to communicate

by sending messages to one another, so they must agree in advance upon a communication protocol

they will use to exchange information about their inputs in order to compute f . Of course, they wish

to minimize the total communication needed.

A communication protocol to compute f describes a complete set of rules that Alice and Bob agree

to follow while they send messages to each other. In particular, it must do two things:

(1) For every sequence of bits exchanged so far, the protocol specifies whether or not the commu-

nication is complete. If it is, both Alice and Bob must know the output bit, i.e. the value of the

function f on their pair of inputs.

(2) If the communication is not complete, then the protocol specifies which player is responsible

for transmitting the next bit, and how that player is to determine this bit based upon their input

and the total communication (sequence of bits transmitted) so far.
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It is natural to view a communication protocol as a binary tree, called the protocol tree. Each internal

node of this tree indicates which player is responsible for transmitting the next bit of information, and

how that bit is determined based on the “knowledge” of that player. Each leaf node is labeled by a

Boolean value indicating the protocol’s output. To follow the protocol, Alice and Bob start at the root

node, and then at each node traverse the tree to the left if the responsible player transmits a 0 and to

the right if the player transmits a 1. We will return to this representation of a protocol often.

We wish to study howmuch communication Alice and Bob use to compute the function. However,

the total number of bits communicated in following a protocol to completion may not be the same for

all input pairs. Hence, we focus on theworst case performance of the protocol; that is, we consider the

maximum, over all input pairs (x, y) ∈ X × Y , of the total number of bits that Alice and Bob transfer in

computing f (x, y). This maximum is the cost of the protocol. This cost has a very simple interpretation

in terms of the protocol tree; it is simply the depth of this tree.

1.2. Two examples

In this survey, we are interested in techniques to prove upper and lower bounds on the amount of

communication required to compute explicit functions. We will use the following two examples.

Definition 1.2. The EQUALITY function, EQn : {0, 1}n × {0, 1}n → {0, 1}, is defined by

EQn(x, y) =
{
1 if x = y,

0 otherwise.

Definition 1.3. The INNER PRODUCT function, IPn : {0, 1}n × {0, 1}n → {0, 1}, is defined by

IPn(x, y) =
n∑

i=1

xiyi (mod 2).

Definitions 1.2 and 1.3 each define a family of Boolean functions, i.e. one function with domain

{0, 1}n for each natural number n. (For convenience, we will refer to the two families as EQ and IP,

respectively.) Thenotionof sucha familyof functions is a fundamentalone incomputational complexity

theory, where the central question of interest is usually how the complexity of the functions in the

family behaves as n grows.

Having described communication protocols, we now ask ourselves the following question: What

does it mean for a communication protocol to compute a function f ? As we shall see in the rest of this

survey, there aremanypossible answers to this question, resulting inmany interesting communication

models.

2. Rank and deterministic communication complexity

The most straightforward way in which a protocol may compute a function is captured by the

deterministic communication model.

A deterministic communication protocol over the domain X × Y is a binary tree in which every

internal node is labeled by a Boolean function on X or a Boolean function on Y . Every leaf is labeled by

0 or 1. On any input (x, y), the output of the protocol is the label of the leaf reached by the following

process: Start at the root andwalk down the tree. For each internal node labeled by a Boolean function

f on X , walk left if f (x) = 0 and right if f (x) = 1. Similarly, for each internal node labeled by a Boolean

function g on Y , walk left if g(y) = 0 and right if g(y) = 1.

At any internal node labeled by a Boolean function on X , walking to the left child corresponds

to the communication of a 0 bit from Alice to Bob while walking to the right child corresponds to

communication of a 1 bit from Alice to Bob. Similarly, at any internal node labeled by a Boolean

function on Y , walking to the left child corresponds to communication of a 0 bit from Bob to Alice

while walking to the right child corresponds to the communication of a 1 bit from Bob to Alice.
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Definition 2.1. A protocol P is said to compute the function f deterministically if, for every input

(x, y) ∈ X × Y , the output of P on input (x, y) is equal to f (x, y).

Recall that the cost of a protocol, viewed as a binary tree, is the depth of the tree, as this represents

the maximum amount of communication between Alice and Bob on any input pair.

Definition2.2. Thedeterministic communicationcomplexityof f ,whichwedenoteD(f ), is theminimum

cost of a protocol that computes f deterministically.

For any function f , there is a naive protocol, called the trivial protocol, that computes f determinis-

tically. In this protocol, Alice sends her entire input x (comprising n bits) to Bob. Bob then knows both

x and y and computes f (x, y) and sends this single bit back to Alice. The existence of this protocol gives

the following result.

Theorem 2.3. For any function f : {0, 1}n × {0, 1}n → {0, 1},
D(f ) ≤ n + 1.

For either of our examples EQ and IP, is there a deterministic protocol that does better? This is a

question that can be answered with linear algebra.

To any function f : X × Y → {0, 1}, we associate a (0, 1)-matrixMf . ThisMf is a |X| × |Y | matrix

with the rows indexed by X and the columns indexed by Y , and the (x, y) entry defined to be f (x, y).
Let rank(Mf ) denote the real rank of Mf . Melhhorn and Schmidt [18] proved the following result. 1

Theorem 2.4. For any function f , D(f ) � log(rank(Mf )).

Proof. Recall that a deterministic protocol to compute f can be viewed as a binary tree. On every input,

the protocol starts at the root and walks down the tree moving either left or right at each step until

it reaches a leaf. As each input from X × Y leads to a unique leaf, the protocol induces a partition of

X × Y into many sets, one for each leaf, in the following way. For a fixed leaf l, let Sl denote the set of

input pairs (x, y) that reach l. It is easy to check, by induction on the depth of a node, that Sl is of the

form A × B for some A ⊆ X and B ⊆ Y .

Now let us denote by L1 the set of all leaves labeled by 1. For each l ∈ L1, define a matrixMl by

Ml(x, y) =
{
1 if (x, y) ∈ Sl ,

0 otherwise.
(1)

It follows from the form of Sl that rank(Ml) = 1 for each l ∈ L1. Moreover, since each input reaches a

unique leaf, Mf = ∑
l∈L1

Ml . Therefore,

rank(Mf ) �
∑
l∈L1

rank(Ml) = |L1|.

Now D(f ) is at least the depth of the binary tree for this protocol, and this in turn is at least the

logarithm of the number of leaves in the tree. Thus, we conclude that D(f ) � log(rank(Mf )). �

Noting that MEQ is the 2n × 2n identity matrix, we see that it has full rank, and thus, by Theorem

2.4, D(EQ) ≥ n. Similarly, the matrix MIP can be obtained by adding the matrix of all 1s to a 2n × 2n

Hadamardmatrix, and then scaling the result. (See [12, Chapter 14] for the basics facts aboutHadamard

matrices used here.) It follows that MIP has rank 2n − 1 and hence D(IP) ≥ n for n ≥ 2. In light

of Theorem 2.3, this means that it is impossible for any deterministic protocol for EQ or IP to do

significantly better than the trivial protocol.

1 All logarithms in this paper are taken with a base of 2.
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Theorem2.4gives an important relationshipbetween thedeterministic communication complexity

of f and the real rank of Mf . The following conjecture from [17], known as the log-rank conjecture,

proposes a strengthening of this relationship.

Conjecture 2.5. There is some positive constant c such that, for any function f , D(f ) � (
log(rank(Mf ))

)c
.

The resolution of this conjecture remains the biggest open problem in communication complexity.

One remarkable result of [19] is that the truth of the conjecture is unchanged if D(f ) is replaced by

− log(mono(M)), where mono(M) is the largest fraction of the entries of M to be found within a

single monochromatic submatrix, i.e. a submatrix in which either every entry is 1 or every entry is 0.

Also in [19], a construction is given of an explicit function f with communication complexity at least(
log(rank(Mf ))

)α
for α = log3 6 ≈ 1.63, giving the best known lower bound on the c of Conjecture

2.5. For details about this conjecture and related research subjects in linear algebra, the survey [4] is

highly recommended.

3. Nonnegative sign rank and nondeterministic communication complexity

When studying the power of a certain model of computation, it is often illuminating to investigate

its nondeterministic analog. (Most famously, in the case of Turingmachine time complexity, this gives

rise to the P vs. NP problem.) In the communication protocol model, nondeterminism is introduced by

allowing certain points in the protocol at which a bit is to be sent nondeterministically. That is, at such

a point, whether the next bit to be sent is 0 or 1 is not determined by the input, nor by anything else

– hence the term “nondeterminism”. (One way to think of this is that the protocol may occasionally

require Alice or Bob to send a bit based simply on a “guess”.)

Formally, a nondeterministic protocol P over the domain X × Y is a binary tree in which each

internal node is labeled by a function f : X → {0, 1, ∗} or a function g : Y → {0, 1, ∗} while each

leaf is labeled by 0 or 1. On input (x, y), the output of such a protocol is the label of the leaf reached

by the following process: Start at the root and walk down the tree. For each internal node labeled by

a function f on X , walk left if f (x) = 0, right if f (x) = 1 and choose nondeterministically to move

either left or right if f (x) = ∗. Similarly, for each internal node labeled by a function g on Y , walk left

if g(y) = 0, right if g(y) = 1 and move either left or right if g(y) = ∗.
In contrastwith the deterministic case, the output of a nondeterministic protocol is not determined

solely by the input, but also by the (possibly empty) sequence of nondeterministic ‘guesses’ the players

make for the appropriate bits in the communication. Thus, it is necessary to explain what it means for

a protocol to compute a function f with respect to this nondeterministic model. That is the purpose of

the following definition.

Definition 3.1. Aprotocol is said to compute the function f nondeterministically if both of the following

hold.

(1) If f (x, y) = 1, then the protocol on input (x, y) gives an output of 1 for at least one sequence of

choices for the nondeterministic bits.

(2) If f (x, y) = 0, then on input (x, y) every possible sequence of choices for the nondeterministic

bits results in an output of 0.

Note the asymmetry in this definition: The protocol is allowed to give an incorrect output some of

the time if f (x, y) = 1, but must give the correct output every time if f (x, y) = 0.

We have discussed above how a nondeterministic protocol may be represented as a binary tree. As

always, the cost of the protocol is the depth of this tree.

Definition3.2. Thesmallest costof aprotocol computing f nondeterministically is thenondeterministic

communication complexity of f , which we denote N(f ).



4464 L. Deaett, V. Srinivasan / Linear Algebra and its Applications 436 (2012) 4459–4472

In the tree for a deterministic protocol, each possible input leads to a unique leaf. In the tree for

a nondeterministic protocol, a given input may lead to any one of a set of leaves. Hence, in the tree

for a nondeterministic protocol computing f , the leaves no longer induce a decomposition of Mf into

(0, 1)-matrices of rank one as they did (c.f. the proof of Theorem2.4) in the deterministic case; instead,

they induce a covering of the 1s inMf by suchmatrices.Wemake this notion precisewith the following

definition.

Definition 3.3. Let M and C1, . . . , Ck be (0, 1)-matrices of dimension m × n. The matrices Ci cover

the 1s in M if it is the case that M(x, y) = 1 if and only if Ci(x, y) = 1 for some i.

Definition 3.4. Let M be a (0, 1)-matrix. The 1-cover number of M, denoted C1(M), is the smallest k

such that there exist (0, 1)-matrices L1, . . . , Lk of rank one that cover the 1s in M.

The 1-cover number provides a combinatorial description ofMf that completely captures the non-

deterministic communication complexity of f .

Theorem 3.5. 	log C1(Mf )
 ≤ N(f ) ≤ 	log C1(Mf )
 + 2.

Proof. Consider the protocol tree for a nondeterministic protocol computing f with cost d. For each

leaf l, the input pairs (x, y) that reach l (for some sequence of choices for the nondeterministic bits)

form a set Sl = A × B ⊆ X × Y . For each leaf l labeled with a 1, let Ml be defined as in (1).

Now if f (x, y) = 1, then there is at least one leaf l reachable on input (x, y) that is labeled with

a 1 and hence Ml(x, y) = 1. Thus, the matrices Ml together cover the 1s in Mf . Hence, C
1(Mf ) ≤ 2d,

implying that 	log C1(Mf )
 ≤ d ≤ N(f ).
On the other hand, given a collection of (0, 1)-matrices L1, . . . , Lk of rank one that cover the 1s

in M, a suitable protocol to compute f proceeds as follows. On input (x, y), Alice sends 	log k
 bits

nondeterministically that are then interpreted by both parties as a “guess” of one of the Li. As Li has

rank one, its support is some A× B ⊆ X × Y . Alice now sends a 1 to Bob if and only if x ∈ A. Then Bob

is able to check if (x, y) ∈ A × B, sending a 1 if this is so and a 0 otherwise; this final bit is the output

of the protocol. It is easy to see that this protocol computes f nondeterministically, and that therefore

N(f ) ≤ 	log k
 + 2. �

Wenow show that the combinatorial description ofM provided by C1(M) is in fact equivalent to an

algebraic descriptionwith a “minimumrank”flavor. To this end,we introduce the followingdefinitions.

Definition 3.6. Given a nonnegative m × n matrix M, the nonnegative rank of M is the smallest p

such that there exist nonnegative matrices A of dimensionm × p and B of dimension p × n such that

M = AB.

Of course, if we remove from Definition 3.6 the requirement that A and B be nonnegative, what

results is the ordinary rank of M. As M is itself nonnegative, the fact that its nonnegative rank may

differ from its rank is perhaps surprising; see [5] for a detailed discussion of nonnegative rank.

A connection between the nondeterministic communication complexity of f and the nonnegative

rank ofMf has been noted in [25]. In order to strengthen this connection, we define the corresponding

minimum rank notion. We believe that this notion has not been explicitly introduced previously, but

it arises quite naturally in the present context.

Definition 3.7. Given a nonnegativem × nmatrixM, the nonnegative sign rank ofM is the smallest p

such that there exist nonnegative matrices A of dimensionm × p and B of dimension p × n such that

the sign pattern of AB is the same as that of M. We denote this value by sign-rank+(M).

Note that the nonnegative rank of M depends only on its sign pattern. The following well-known

argument shows that the nonnegative sign rank of a (0, 1)-matrix and its 1-cover number are identical.
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Theorem 3.8. For any (0, 1)-matrix M, sign-rank+(M) = C1(M).

Proof. Suppose M is a (0, 1)-matrix. Let k = C1(M) and p = sign-rank+(M). By definition, there

exist (0, 1)-matrices L1, . . . , Lk of rank one that cover the 1s inM. It follows that
∑k

i=1 Li has the same

sign pattern as M. Each Li can be written as uiv
T
i , where ui is the unique nonzero column of Li and vTi

is the unique nonzero row of Li. Thus, taking A to be the n × k matrix whose columns are the ui and B

to be the k × nmatrix whose rows are the vi yields M = AB. This shows that k ≥ p.

For the other direction, take nonnegative matrices A of dimension n × p and B of dimension p × n

such that AB has the same sign pattern asM. Then, writing ai for the ith column of A and bTi for the ith

row of B, we have

AB =
p∑

i=1

aib
T
i .

Each term aib
T
i in the above is an n× nmatrix of rank one, and so each of its nonzero columns has the

same support. As a result, if we let Li be the unique (0, 1)-matrix obtained by replacing each nonzero

entry in aib
T
i with a 1, then each Li has rank one, and it is clear that L1, . . . , Lp cover the 1s inM. Hence,

p ≥ k. �

Theorems 3.5 and 3.8 together give the following connection between nondeterministic commu-

nication complexity and the minimum rank notion introduced in Definition 3.7.

Corollary 3.9. 	log(sign-rank+(Mf ))
 ≤ N(f ) ≤ 	log(sign-rank+(Mf ))
 + 2.

Generally, the important questions about communication complexity concern how the complexity

of a family of functionsmay growasymptotically as n becomes large. Hence, the gap between the lower

and upper bounds in Corollary 3.9 (and the analogous gap in Theorem 5.4) are of little significance.

Given that MEQ is the 2n × 2n identity matrix, clearly sign-rank+(MEQ ) = C1(MEQ ) = 2n. By

Corollary 3.9, then, n ≤ N(EQ) ≤ n + 2. By Theorem 2.3, together with the obvious fact that N(f ) ≤
D(f ) for every f , this means that N(EQ) is essentially as large as possible.

On the other hand, if we define the functionNEQn : {0, 1}n×{0, 1}n → {0, 1} byNEQn(x, y) = 1 if

and only if x �= y, then a simple nondeterministic protocol for NEQ has Alice begin by sending 	log n

bits nondeterministically to “guess” a certain integer k ∈ {1, . . . , n}. Then Alice sends the value of the

kth bit of her input. Bob then sends the final bit, the output of the protocol, as 1 if his input differs in

the kth bit, and 0 otherwise. This shows thatN(NEQ) ≤ 	log n
+2. Thus,NEQ requires exponentially

less communication than EQ in the nondeterministic model; this reflects the fundamental asymmetry

of nondeterminism, manifest in Definition 3.1.

To settle N(IP), we examine the size of a largest monochromatic submatrix in MIP . Suppose some

submatrixMIP[R, S] has every entry equal to 0. Note that the subspace of Fn
2 spanned by the vectors in

R has dimension at least log |R|, while that spanned by the vectors in S has dimension at least log |S|.
SinceMIP[R, S] has only zero entries, the two subspaces are orthogonal, so log |R|+ log |S| ≤ n, giving

|R||S| ≤ 2n. Hence, any zero submatrix of MIP may have no more than 2n entries.

On the other hand, if every entry of MIP[R, S] is 1, choose any vr ∈ R and vs ∈ S. Neither of these

vectors can be zero, so

R̃ = {vr + w : w ∈ R} and S̃ = {vs + w : w ∈ S}
are disjoint from R and S, respectively, with |R| = |R̃| and |S| = |S̃|. AsMIP[R̃, S̃] has every entry equal

to zero, |R̃||S̃| = |R||S| ≤ 2n.

Having shown that a submatrix of MIP containing only 1s has at most 2n entries, it follows that

C1(MIP) ≥ 22n/2n = 2n. By Theorem 3.5, then, n ≤ N(IP) ≤ n + 2. Again, this is essentially as large

as possible.
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4. Bounded-error randomized communication complexity

In a randomized protocol for computing a Boolean function f , the player whose turn it is to speak

computes the next bit of communication with a random coin flip whose distribution is a function of

the player’s input and the sequence of communication up to that point. One can imagine that each

non-leaf node in the protocol tree comes with a bag of weighted coins, one for each of the inputs that

may have led the player to that point in the protocol. At each step, Alice and Bob simply select from

that bag the coin that corresponds to their input, flip it, and transmit a 0 or 1 accordingly.

Of course, for a fixed input (x, y), such a protocol can result in different communication transcripts

– and hence possibly in different outputs – depending on the outcomes of the coin flips. This is similar

to the way in which a nondeterministic protocol may result in different outputs depending on the

results of the nondeterministic “guesses” involved.

Formally, a randomized protocol P over the domain X × Y is a binary tree in which each internal

node is labeled by a function f : X → [0, 1] or a function g : Y → [0, 1] while each leaf is labeled

by 0 or 1. On any input (x, y), the output of the protocol is the label of a leaf reached by the following

process: Start at the root and walk down the tree. For each internal node labeled by a function f on X ,

walk left with probability p = f (x) and right with probability 1 − p. Similarly, for each internal node

labeled by a function g on Y , walk left with probability p = g(y) and right with probability 1−p. Thus,

for a randomized protocol P on input (x, y), the output of the protocol P(x, y) is a Boolean random

variable.

When shouldwe say that a randomized protocol P computes a function f ? A natural choice is to say

that it should do better than a random guess. That is, the output of P should coincide with the value of

f with probability 1/2+ ε for some ε > 0. This sounds simple enough, but an important choice needs

to bemade regarding how ε is allowed to change as the input size grows.We canmerely require that ε
be positive for each n (possibly with ε → 0 as n → ∞) or we can fix some bound δ > 0 and require

that ε ≥ δ for all n. These two choices lead to two different probabilistic communication models that

we study in this and the next section.

We say that P computes f with bounded error if, for some fixed δ > 0, the output of P on any

input (x, y) is equal to f (x, y) with probability 1
2

+ ε for ε > δ. (That is, the error probability is

bounded above by 1
2

− δ.) Note that, given a protocol whose error is bounded in this way for some

value of δ, the error probability can be brought below any fixed bound by repeating the protocol some

fixed number of times and choosing the majority answer. Moreover, this will affect the cost by only

a constant factor. Given that the value of δ is arbitrary according to this consideration, we will take

δ = 1/6 for convenience. This results in the following formal definition.

Definition 4.1. A randomized protocol P computes f : X × Y → {0, 1} with bounded error if, for all

(x, y) ∈ X × Y ,

Pr[P(x, y) = f (x, y)] � 2

3
.

As with deterministic protocols, we will be interested in the most efficient randomized protocol

for computing a function f . This motivates the following definition.

Definition 4.2. The bounded-error randomized communication complexity of a function f , which we

denote by R(f ), is the minimum cost of a randomized protocol that computes f with bounded error.

The following theorem shows that randomized protocols for the equality function require signif-

icantly less communication than deterministic protocols. 2 This result is due originally to Rabin and

Yao (see [27]). The proof presented here is that in [15].

2 We recommend [11, Chapter 9] to any reader unfamiliar with the O and � notations used here.
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Theorem 4.3. R(EQ) = O(log n).

Proof. Our goal is to exhibit a randomized protocol for EQ with cost O(log n) and error probability at

most 1/3.

For convenience, we will refer to the input string for Alice as a = a0 . . . an−1 and the input string

for Bob as b = b0 . . . bn−1. In the protocol, both Alice and Bob view their input string as a polynomial

of degree n − 1. That is, Alice has the polynomial a(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 and Bob

has the polynomial b(x) = b0 + b1x + b2x
2 + · · · + bn−1x

n−1.

The protocol proceeds as follows:

(1) Alice picks a prime p, 3n � p � 6n. Then Alice picks a random element r ∈ {0, 1, . . . , p − 1}.
Alice sends (p, r, a(r) mod p) to Bob.

(2) Bob computes b(r) mod p and checks if a(r) mod p = b(r) mod p. He sends a 1 to Alice if the

equality holds, and sends a 0 otherwise.

Alice sends three numbers between 3n and 6n, and Bob replieswith a single bit, so the total number

of bits of communication is O(log n). We now check that the error probability is at most 1/3. If a = b,

then a(r)mod p = b(r)mod p and theprotocol always outputs 1 irrespective of the choice of the random

element r. If a �= b, then the probability (over all possible choices for r) that the protocol outputs 1 is

at most the probability that r is a root of the nonzero polynomial a(x) − b(x) of degree at most n − 1.

Therefore, the probability is at most (n − 1)/3n < 1/3. �

In contrast, randomized protocols for the inner product function require asymptotically the same

amount of communication as deterministic protocols. A general technique for proving lower bounds on

the complexity of randomized protocols by relating it to the distributional complexity of deterministic

protocols was introduced by Yao [27]. Using this technique, Vazirani [24] showed the following result.

The proof technique described here is from [3].

Theorem 4.4. R(IP) = �(n).

The proof of this result is somewhat technical, so we simply discuss the ideas behind it. Recall that

a deterministic protocol P of cost k for computing a function f induces a partition ofMf into at most 2k

monochromatic submatrices. Each such submatrix corresponds to a leaf in the protocol tree of P. So

a strategy that works quite well to prove lower bounds for deterministic communication complexity

is to show that any monochromatic submatrix in Mf is small in size and hence any partition of Mf

into monochromatic submatrices must contain many such matrices. More concretely, if we can show

that any partition of Mf into monochromatic matrices is of size at least m, we can conclude that the

deterministic communication complexity of f is at least logm.

Since randomized protocols are allowed to make a small error, lower bounds for randomized pro-

tocols can be obtained by considering partitions of Mf into “nearly monochromatic” submatrices, i.e.

submatrices with mostly 0s and a few 1s or vice versa. The number of such submatrices required to

partition the matrix is related to the notion of discrepancy, defined as follows.

Definition 4.5. Given f : X × Y → {0, 1} and R = A× B ⊆ X × Y , let n0(f , R) (resp. n1(f , R)) denote
the number of entries (a, b) in R such that f (a, b) = 0 (resp. f (a, b) = 1). Then

Disc(f ) = max
R

|n1(f , R) − n0(f , R)|
|X| |Y | . (2)

Intuitively, a small value forDisc(f ) implies that large submatrices ofMf have almost equal numbers

of 0s and 1s. Therefore, any nearly monochromatic submatrix must be small in size and hence any

partition of Mf will require many such submatrices. Formally, it has been proved [27, Lemma 3] that

R(f ) = �(log(1/Disc(f ))). In other words, small discrepancy implies good lower bounds for R(f ).
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Can we prove that Disc(IP) is small? Indeed, it is shown in [3] (by adapting an argument of J. H.

Lindsey,presented in [6], bounding thesumof theentriesof aHadamardmatrix) thatDisc(IP) � 2−n/2.

This is sufficient to prove Theorem 4.4, that R(IP) = �(n).
Finally, we note that the notion of the cut norm of a matrix, introduced in [10] in the context of

approximation algorithms for graph-theoretic optimization problems, is equivalent to discrepancy in

the sense that the discrepancy of f is the cut norm of Mf . (Some authors define the cut norm exactly

as in (2), while others omit the denominator.)

5. Sign-rank and unbounded-error randomized communication complexity

In this section, we study randomized protocolswith unbounded error. A randomized protocol is said

to compute a function f with unbounded error if it computes f correctly with probability better than

a random guess. In other words, the success probability of such a protocol on input (x, y) is 1/2 + ε
for some ε > 0.

Definition 5.1. A randomized protocol P computes f : X × Y → {0, 1} with unbounded error if, for

all (x, y) ∈ X × Y ,

Pr[P(x, y) = f (x, y)] >
1

2
.

Definition 5.2. The unbounded-error randomized communication complexity of a function f , which we

denote U(f ), is the minimum cost of a randomized protocol that computes f with unbounded error.

Unbounded-error randomized communication complexity turns out to have a very close relation-

ship with the following “minimum rank” notion, which should be compared to that introduced in

Definition 3.7.

Definition 5.3. The sign rank of a real matrix A is the smallest rank of a real matrix having the same

sign pattern as A. We denote the sign rank of A by sign-rank(A).

Hence, the sign rank is simply the smallest rank of a real matrix with the given sign pattern. Little

seems to be understood about the combinatorial behavior of this parameter; the current state of

knowledge is laid out in [13]. The most powerful general result about sign rank is due to Forster [9]

and has an analytic flavor; we present it as Lemma 5.7 below.

With any function f : X × Y → {0, 1}, we associate an |X| × |Y | matrix Nf in which the rows are

indexed by X and the columns are indexed by Y . The matrix is defined by

Nf (x, y) =
{

1 if f (x, y) = 1, and

−1 if f (x, y) = 0.

The following theorem of Paturi and Simon [20] says that the unbounded-error randomized com-

munication complexity of f is essentially captured by sign-rank(Nf ).

Theorem 5.4. 	log(sign-rank(Nf ))
 � U(f ) � 	log(sign-rank(Nf ))
 + 1.

Recall that the rank of a realm×nmatrixA is equal to the smallest dimension d such that there exist

vectors x1, . . . , xm and y1, . . . , yn in R
d with A(i, j) = 〈xi, yj〉 for every i and j. Thus, sign-rank(A) is

the smallest d such that there exist vectors x1, . . . , xm and y1, . . . , yn in R
d with

sign(A(i, j)) = sign(〈xi, yj〉).
The following application of Theorem 5.4 shows that, for the equality function, when we do not

require the success probability of a randomized protocol to be bounded away from 1/2 by a constant,
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we get amazing savings in communication. This result was originally shown in [20]; the argument

here is from [23].

Theorem 5.5. U(EQ) = O(1).

Proof. First note that

NEQ (i, j) =
{

1 if i = j,

−1 otherwise.

By Theorem 5.4, it suffices to show that sign-rank(NEQ ) is a constant independent of n. To see this,

pick 2n distinct unit vectors u1, u2, . . . , u2n in the first quadrant of R
2. Let ε > 0 be smaller than

1 − maxi �=j(〈ui, uj〉). Then it is easy to check that the matrix A defined by

A(i, j) = 〈ui, uj〉 − (1 − ε) (3)

has the same sign pattern as does NEQ . It follows from the choice of the vectors u1, u2, . . . , u2n that

their Gram matrix has rank 2, so from (3) it is clear that the rank of A is at most 3. �

In contrast, moving from the bounded-error to the unbounded-error model has no impact asymp-

totically on the amount of communication required to compute the inner product function.

Theorem 5.6. U(IP) = �(n).

To establish this theorem, Forster [9] proved the following general result relating the sign rank of

a (−1, 1)-matrix to its spectral norm. It says that if the spectral norm of the matrix is small, then its

sign rank must be high.

Lemma 5.7. For any (−1, 1)-matrix A of dimension m × n, sign-rank(A) � √
mn/‖A‖.

Proof. Let d = sign-rank(A) and let x1, . . . , xm and y1, . . . , yn be unit vectors in R
d such that for

each i and j, sign(〈xi, yj〉) = sign(A(i, j)). To prove the lemma, we will focus on the parameter

S =
n∑

j=1

⎛
⎝ m∑

i=1

|〈xi, yj〉|
⎞
⎠2

.

The method is to establish upper and lower bounds on S.

Claim 1. S � m‖A‖2.

Proof of claim 1. For any j with 1 � j � n,

m∑
i=1

|〈xi, yj〉| =
m∑
i=1

aij〈xi, yj〉 =
〈

m∑
i=1

aijxi, yj

〉
�

∥∥∥∥∥∥
m∑
i=1

aijxi

∥∥∥∥∥∥ ,

where the inequality is by Cauchy–Schwartz. Therefore,

S =
n∑

j=1

⎛
⎝ n∑

i=1

|〈xi, yj〉|
⎞
⎠2

≤
n∑

j=1

∥∥∥∥∥∥
m∑
i=1

aijxi

∥∥∥∥∥∥
2

=
n∑

j=1

〈
m∑
i=1

aijxi,
m∑
l=1

aljxl

〉

= ∑
k,l

(AAT )kl〈xk, xl〉.

(4)
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It is easily verified that the matrix ‖A‖2Im − AAT is positive semidefinite. As the cone of positive

semidefinite matrices is self-dual (see e.g. [2, Example 2.24]) the entry-wise inner product of any

two positive semidefinite matrices must be nonnegative. In particular,∑
k,l

(‖A‖2Im − AAT )kl〈xk, xl〉 ≥ 0,

so that∑
k,l

(AAT )kl〈xk, xl〉 ≤ ∑
k,l

(‖A‖2Im)k,l〈xk, xl〉.

Combining this with (4) gives

S ≤ ∑
k,l

(‖A‖2Im)k,l〈xk, xl〉 = ‖A‖2
∑
k

〈xk, xk〉 = ‖A‖2m,

as claimed.

The bulk of the effort in Forster’s proof (which we are following here) comes in establishing that

the vectors x1, . . . , xm can be taken to be “balanced” in the sense that

m∑
i=1

xix
T
i = m

d
Id. (5)

This fact is used to establish the following bound.

Claim 2. S � n(m/sign-rank(A))2.
Proof of claim 2. Since

m∑
i=1

|〈xi, yj〉| �
m∑
i=1

〈xi, yj〉2 =
m∑
i=1

yTj xix
T
i yj = yTj

⎛
⎝ m∑

i=1

xix
T
i

⎞
⎠ yj,

we may apply (5) above to obtain

m∑
i=1

|〈xi, yj〉| � yTj

⎛
⎝ m∑

i=1

xix
T
i

⎞
⎠ yj = yTj

(
m

d
Id

)
yj = m

d
(yTj yj) = m

d
.

Therefore,

S =
n∑

j=1

⎛
⎝ m∑

i=1

|〈xi, yj〉|
⎞
⎠2

�
n∑

j=1

(
m

d

)2

� n

(
m

d

)2

,

as claimed.

Combining the two claims yields ‖A‖2m � n(m/d)2, and hence d � √
mn/‖A‖. �

Proof of Theorem 5.6. By observing that NIP is a Hadamard matrix, it follows that ‖NIP‖ = 2n/2. By

Lemma 5.7, this gives

sign-rank(NIP) �
√

22n/2n/2 = 2n/2.

By Theorem 5.4, then, U(IP) � log(sign-rank(NIP)) � n/2. �
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6. Discussion and further reading

This survey article gives only a glimpse into the wonderful world of communication complexity.

Motivatedbyapplications,manyothermodels of communicationhavealsobeen studied. These include

themultiparty communicationmodel and thequantumcommunicationmodel. Lower bound results in

suchmodelshavebeen showntohave interesting connections toothermodels of computation inwhich

communication plays only an implicit role. Examples of suchmodels include Boolean circuits [14] and

the cell probe model for data structures [22]. We refer the reader to the book by Kushilevitz and

Nisan [15] and the references therein for an encyclopedic treatment of this area.

A recent monograph by Lokam [16] surveys the use of linear algebraic techniques in complexity

theory. In particular, it explains how lower bounds on various robustness measures of matrix rank

lead to interesting consequences for circuit and communication models. Recently, Sherstov [23] has

introduced a new technique, the pattern matrix method, for proving communication lower bounds.

By combining this method with Forster’s technique, Razborov and Sherstov [21] were able to prove

a lower bound on the sign-rank of a Boolean function in AC0 (that is, computable by a circuit with

polynomial size and constant depth). The reader can see the Ph.D. thesis of Sherstov [23] for many

interesting recent results.
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