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Hantaan virus (HTNV), the prototype member of the Hantavirus genus in the family Bunyaviridae, causes
hemorrhagic fever with renal syndrome (HFRS) in humans. Hemorrhage is due to endothelial barrier
damage and a sharp decrease in platelet counts. The mechanisms underlying HTNV-associated acute
thrombocytopenia have not been elucidated so far. Platelets are produced by mature megakaryocytes that
develop during megakaryopoiesis. In this study, we show that HTNV targets megakaryocytic cells whereas
rather non-pathogenic hantaviruses did not infect this cell type. After induction of differentiation
megakaryocytic cells switched from low-level to high-level HTNV production without reduction in cell

I]:Z{]v::\jiises survival or alteration in differentiation. However, increased HTNV replication resulted in strong upregulation
Megakaryocytes of HLA class I molecules although HTNV escaped type I interferon (IFN)-associated innate responses. Taken
Innate immunity together, HTNV efficiently replicates in differentiating megakaryocytic cells resulting in upregulation of HLA
Immunopathogenesis class I molecules, the target structures for cytotoxic T cells (CTLs).

HLA class I © 2010 Elsevier Inc. All rights reserved.
Platelets

Viral hemorrhagic fever

Introduction

Hantaviruses are enveloped negative-sense RNA viruses belonging
to the family Bunyaviridae. They have co-evolved with rodent and
insectivore species, their natural reservoir hosts (Schmaljohn and
Nichol, 2007). In recent years, pathogenic hantaviruses emerged as an
increasing threat to human health (Schmaljohn and Hjelle, 1997).
Transmission can occur when humans inhale aerosols of excreta derived
from chronically infected rodents. Different hantaviruses show different
degrees of virulence in humans. For example, Prospect Hill virus (PHV)
and Tula virus (TULV) are regarded as rather non-pathogenic to humans
whereas Puumala virus (PUUV) causes nephropathia epidemica (NE), a
relatively mild form of disease with a case fatality rate of less than 1%.
Some hantavirus species in the Americas are associated with hantavirus
cardiopulmonary syndrome (HCPS) with a case fatality rate of up to 45%.
In Asia, Hantaan virus (HTNV), the prototype member of the genus
Hantavirus, can elicit hemorrhagic fever with renal syndrome (HFRS)
with a case fatality rate up to 15% (Kruger et al., 2001).
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All hantavirus-associated syndromes have in common increased
microvascular permeability as well as platelet dysfunction and a dramatic
decrease in platelet counts at the beginning of vascular leakage and the
hypotensive phase (Cosgriff, 1991; Cosgriff et al.,, 1991; Lee, 1987). At this
critical stage, patients may die of irreversible shock. The underlying
pathophysiological mechanisms are not yet understood. Hantaviruses are
non-lytic viruses that do not cause cytopathic effects. It is well known that
both pathogenic and non-pathogenic hantaviruses infect endothelial cells,
which form a barrier at the interface of blood and tissue (Hippenstiel and
Suttorp, 2003). Hantavirus infection does not induce cell death (Pensiero
et al, 1992; Temonen et al., 1993; Yanagihara and Silverman, 1990; Zaki
et al, 1995). Moreover, hantavirus infection per se is not sufficient to
increase the permeability of endothelial cell monolayers in vitro
(Khaiboullina et al., 2000; Sundstrom et al., 2001; Gavrilovskaya et al.,
2008). This points toward immunopathogenesis playing an important role
in virus-induced vascular injury (Schonrich et al., 2008). Even healthy
individuals develop small vascular lesions that require adequate platelet
function for repair (Kaushansky, 2005). Consequently, the lack of
functional platelets which precedes the development of shock symptoms
(Chang et al., 2007) is an important factor in hantaviral pathogenesis.

Mature megakaryocytes release platelets into the circulation
(Schulze and Shivdasani, 2005) and are themselves derived from
pluripotent hematopoietic stem cells which serve as lifelong source of
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all circulating blood cells (Ogawa, 1993). The development of mature
megakaryocytes (megakaryopoiesis) is characterized by commitment
of multipotent stem cells to the megakaryocyte lineage, proliferation
of progenitor cells, and terminal megakaryocyte differentiation.
During a process called endoreplication (Edgar and Orr-Weaver,
2001), megakaryocytes become polyploid, multilobulated cells con-
taining a large cytoplasmic mass. In terminal megakaryocyte
differentiation, interactions between integrin receptors on the cell
surface and extracellular matrix molecules such as fibronectin play a
role (Berthier et al., 1998; Jiang et al., 2002). So far, it has not been
investigated whether hantaviruses target megakaryocytes.

In this study, we investigated whether human megakaryocytic
cells are susceptible to hantavirus infection and analyze its phenotypic
and functional implications.

Results

Expression of hantavirus receptors on human megakaryocytic cell lines
and human primary megakaryocytes

Primary megakaryocytes constitute only 0.03-0.06% of all nucle-
ated cells in the bone marrow and are difficult to isolate (Saito, 1997).
Therefore, we used human megakaryocytic cell lines to investigate the
interaction between hantaviruses and megakaryocytes. Initially, the
expression of hantavirus receptors on the surface of established
megakaryocytic cell lines was assessed by using flow cytometry and
compared to human primary megakaryocytes. Fig. 1 shows that

similar to human primary megakaryocytes the human megakaryo-
cytic cell lines HEL, K562, Meg-01, and TF-1 cells strongly expressed
CD29 (integrin 31), the receptor for non-pathogenic hantaviruses
(Gavrilovskaya et al., 1998, 1999). In contrast, CD61 (integrin 33), an
important receptor component for pathogenic hantaviruses such as
HTNV (Gavrilovskaya et al., 1999), was efficiently expressed by HEL
cells and human primary megakaryocytes. This important molecule
was found to a much lesser extent on TF-1 or Meg-01 cells and was
not detectable on K562 cells. A high density of decay-accelerating
factor (DAF or CD55), another molecule involved in hantavirus
infection (Krautkramer and Zeier, 2008), was observed on all cell
lines and was strongly expressed on human primary megakaryocytes.
However, the receptor for the globular head domain of complement
component Clq (gClqR), also recently identified as a receptor
component for HTNV (Choi et al., 2008), was found on none of
these megakaryocytic cell lines whereas relatively weak expression
was detected on human primary megakaryocytes.

In conclusion, from all human megakaryocytic cell lines tested,
HEL cells showed the strongest expression of entry receptors for
hantaviruses and resembled in this regard human primary
megakaryocytes.

Susceptibility of human megakaryocytic cell lines and human primary
megakaryocytes to hantavirus infection

We further analyzed the susceptibility of HEL cells to hantavirus
infection. These cells represent a well-established model system for
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Fig. 1. Expression of cellular receptors for hantaviruses on human megakaryocytic cells and human primary megakaryocytes. Cells were stained with primary antibodies specific for CD29
(integrin 31), CD61 (integrin (33), CD55/DAF, or gC1qR. As secondary antibody PE-conjugated anti-mouse IgG was used. Grey filled histograms represent isotype controls, and black
histograms show specific staining as indicated. The mean fluorescence intensity (MFI) is given in the upper right corner. On the x-axis, the fluorescence intensity (log scale, 4 decades) is

given, whereas the y-axis depicts cell counts.
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studying megakaryopoiesis (Long et al., 1990). After treatment with
phorbol 12-myristate 13-acetate (PMA), HEL cells further differenti-
ate along the megakaryocytic lineage. Fluorescence-labeled fibrino-
gen did not stain HEL cells (data not shown), indicating that integrin
receptor allbP3 is in an inactive conformation. This allows pathogenic
hantaviruses such as HTNV to bind to the N-terminal plexin-
semaphorin-integrin (PSI) domain of 33 (Raymond et al., 2005).
Indeed, viral N protein could be detected in HEL cells inoculated with
HTNV by using immunofluorescence microscopy (Fig. 2A). Intrigu-
ingly, after induction of HEL cell differentiation with PMA, expression
of viral N protein in HTNV-infected HEL cell cultures was drastically
increased. In contrast, both unstimulated and PMA-stimulated cell
cultures inoculated with PHV or TULV remained negative for viral
antigen. Confocal laser scanning microscopy confirmed the presence
of viral N protein in the cytoplasm of HTNV-infected HEL cells
(Fig. 2B). Moreover, human primary megakaryocytes were suscepti-
ble to HTNV infection (Fig. 2C). Finally, the HTNV N protein was
detected in unstimulated and PMA-stimulated HEL cells after HTNV
infection by Western blot analysis (Fig. 2D).

Taken together, these results demonstrate that HTNV but not TULV
or PHV, which are rather non-pathogenic, targets megakaryocytic
cells.

A mock HTNV

- PMA

Switch to high-level HTNV replication in differentiating megakaryocytic cells

We investigated in more detail the impact of PMA-induced
megakaryocyte differentiation on cell proliferation and viral replication.
Stimulation with PMA was associated with an arrest in cell proliferation
of both mock-infected (Fig. 3A) and HTNV-infected (Fig. 3B) HEL cells.
As shown in Fig. 3C HTNV replicated with moderate efficiency in
untreated HEL cells reaching titers of approximately 10 FFU/ml. We
also observed low-level HTNV production in untreated TF-1 cells (data
not shown). Intriguingly, a switch from low-level to high-level virion
production occurred after PMA-induced megakaryocyte differentiation
despite of cell proliferation arrest. The HTNV titers increased more than
100-fold and reached peak titers between 10° and 10° FFU/ml, only
slightly less than the peak titers usually found in HTNV-infected Vero E6
cell cultures. Moreover, enhanced output of infectious particles in
PMA-treated HEL cells was observed whether PMA was added 1 day
before or 1 h post-HTNV infection (Fig. 3D, left panel). The increased
HTNV titers observed for PMA-treated HEL cells could have been due to
residual PMA in viral supernatant. This could have boosted viral
replication in Vero E6 cells which are routinely used for virus titration.
To exclude this possibility, Vero E6 cells were infected with HTNV and
stimulated with PMA. In contrast to HEL cells, PMA did not enhance
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Fig. 2. Detection of viral N protein in hantavirus-infected HEL cells and human primary megakaryocytes. (A) Immunofluorescence microscopy analysis of mock- or hantavirus-infected
(MOI=1.5) HEL cells that were left unstimulated (—PMA) or stimulated (10 nM PMA at 1 h p.i.). At 3 days p.i., cells were stained for viral N protein (green) and nuclei (blue) before
analysis. (bar = 50 pm) (B) Confocal laser scanning microscopy showing typical N protein patterns in HTNV-infected (MOI = 1.5) HEL cells that were stimulated (10nMPMAat 1 h p.i.) and
stained at 3 days p.i. for viral N protein (green), F-actin (red), and DNA (blue) before analysis. (bar =5 pm). (C) Immunofluorescence microscopy analysis of human primary
megakaryocytes that were mock-infected or infected with HTNV (MOI=1.5) and stimulated (10 nM PMA at 1 h p.i.). Cells were stained 3 days p.i. for viral N protein (green) and CD61
(red). (D) Western blot analysis of mock- or HTNV-infected HEL cells (MOI = 1.5) that were left untreated (—PMA) or stimulated (10 nM PMA at 1 h p.i.) and analyzed for viral N protein
expression at day 1, 2, 3, and 4 p.i. as indicated. As loading control, the amount of [3-actin was determined.
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Fig. 3. Cell proliferation arrest and switch to high-level HTNV replication in differentiating megakaryocytic cells. (A) Mock- and (B) HTNV-infected (MOI=1.5) HEL cells were left
unstimulated (—PMA) or stimulated (10 nM PMA at 1 h p.i.). The numbers of live cells were determined by trypan exclusion assay at the time points indicated and is given on the y-axis
relative to the cell number at time point 0 (fold growth). (C) Virus titers in supernatants from mock-infected and HTNV-infected (MOI=1.5) HEL cells, either unstimulated (—PMA) or
stimulated (10 nM PMA at 1 h p.i.), were analyzed at the time points indicated and are shown as focus-forming units (FFU) per ml on a log scale. (D, left graph) HTNV-infected (MOI=1.5)
HEL cells were left unstimulated or stimulated (10 nM PMA) ateither 1 h postor 1 day before infection. At 3 days p.i., virus titers in supernatants were measured. (D, right graph) Virus titers
in supernatants from unstimulated or stimulated (10 nM PMA at 1 h p.i.) HTNV-infected Vero E6 cells were determined at 3 days after infection. Results shown are means + 1 SD derived

from 3 independent experiments (*p<0.05, Student's t-test).

virus titers in the supernatant of HTNV-infected Vero E6 cells (Fig. 3D,
right panel).

Collectively, these data show that PMA-induced differentiation of
megakaryocytic cells is associated with drastically upregulated release
of HTNV virions in the face of arrested cell proliferation.

Unaltered megakaryocyte differentiation despite high-level HTNV replication

Next we analyzed in detail whether the switch to high-level HTNV
replication interfered with megakaryocytic differentiation of HEL cells.
Fig. 4 shows PMA-induced upregulation of CD41 (integrin IIb) and CD61
(integrin 33) on both mock-infected and HTNV-infected HEL cells. These
molecules form allbB3, a heterodimeric receptor that is increasingly
expressed on megakaryocytes as they mature (Szalai et al,, 2006). In
contrast, neither mock-infected nor HTNV-infected HEL cells expressed
(D42, a marker of late megakaryopoiesis, after PMA stimulation.

Megakaryocyte differentiation of HEL cell has been shown to result
in enhanced adhesion to components of the extracellular matrix
including fibrinogen, fibronectin, and vitronectin (Molla et al., 1995;
Molla and Block, 2000; Ylanne et al., 1990). Fig. 5A demonstrates that
both mock- and HTNV-infected HEL cells adhered more strongly to
surfaces coated with fibronectin, vitronectin, or fibrinogen after PMA
treatment as compared to unstimulated HEL cells. PMA-treated
megakaryocytic cells such as HEL cells do not proliferate but further
increase their polyploidy by endoreplication (Long et al., 1990), the

continued synthesis of DNA in the absence of mitosis and cytokinesis.
We observed that the DNA content of mock-infected and HTNV-infected
HEL cells was similar (Fig. 5B and Table 1). Thus, after PMA-induced
differentiation polyploidization occurred in HEL cells whether mock-
infected or HTNV-infected.

Collectively, these data indicate that PMA-induced differentiation of
megakaryocytic cells is not impaired by high-level HTNV replication.

Evasion of type I interferon (IFN)-associated innate responses by HTNV
in differentiating megakaryocytic cells

We now investigated innate responses in PMA-treated megakaryo-
cytic cells. For this purpose, quantitative RT-PCR was used to determine
the number of transcripts encoding retinoic acid-inducible gene (RIG)-I-
like receptors (Fig. 6). They represent IFN-stimulated genes (ISGs) that are
upregulated by type I IFN through a positive feedback loop (Yoneyama
et al.,, 2004). After mock-infection untreated as well as PMA-treated HEL
cells expressed only very low numbers of transcripts encoding RIG-I or
melanoma differentiation-associated gene 5 (MDAS5). However, untreated
HEL cells upregulated the number of RIG-I and MDAS5 transcripts 8 h after
infection with Vesicular stomatitis virus (VSV), a strong trigger of innate
responses. Intriguingly, this VSV-induced upregulation was drastically
enhanced in PMA-treated HEL cells. Moreover, in response to type I [FN
PMA-treated HEL cells produced more transcripts encoding RIG-I-like
receptors as compared to untreated HEL cells. In contrast, poly I:C had no
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Fig. 4. Expression of differentiation markers on HTNV-infected megakaryocytic cells. Mock- and HTNV-infected (MOI = 1.5) HEL cells were left unstimulated (—PMA) or stimulated
(10 nM PMA at 1 h p.i.). At 3 days p.i., cells were stained for CD41, CD61, or CD42. As secondary antibody PE-conjugated anti-mouse IgG was used. Grey filled histograms represent
isotype controls, and black histograms show specific staining as indicated (MFI is given in the upper right corner). On the x-axis, the fluorescence intensity (log scale, 4 decades) is
given, whereas the y-axis cell depicts cell counts. One representative experiment out of three is shown.

effect on RIG-I expression. Poly I:C is an agonist of Toll-like receptor 3
(TLR3) that has been shown to detect HTNV (Handke et al., 2009) but was
not expressed in HEL cells (data not shown). Most strikingly, HTNV did not
induce expression of RIG-I-like receptor transcripts either in untreated or
in PMA-treated cells 8 h after infection. Similar results were obtained
analyzing other ISGs (interferon regulatory factor 7 and matrix
metalloproteinase 9; data not shown).

Next the effect of PMA on RIG-I expression in HEL cells was analyzed
on the protein level in the course of four days after HTNV infection
(Fig. 7). RIG-I protein was neither upregulated in unstimulated nor in
PMA-stimulated megakaryocytic cells. Surprisingly, PMA reduced the
amount of RIG-I protein in mock-infected as well as in HTNV-infected
HEL cells. Thus, a PMA-associated mechanism interferes with RIG-I
expression on the protein level. Such a mechanism could explain at least
in part increased HTNV replication in PMA-treated HEL cells as RIG-I
serves as a sensor of HTNV replication (Lee et al., submitted).

Collectively, these data demonstrate that HTNV efficiently evades
induction of innate responses in untreated as well as in PMA-treated
HEL cells despite switch to high-level replication in the latter.

Enhanced expression of HLA class I molecules on differentiating
megakaryocytic cells after HTINV infection

Many viruses block expression of HLA class I molecules to escape the
attack by cytotoxic T lymphocytes (CTLs) (Hansen and Bouvier, 2009).
In contrast, HTNV has been demonstrated to induce HLA class I
expression on myeloid dendritic cells (Raftery et al., 2002) and
endothelial cells (Geimonen et al., 2002; Kraus et al., 2004). Therefore,
we tested whether HTNV influenced the expression of these important
antigen presenting molecules on differentiating megakaryocytic cells.
For this purpose, PMA-stimulated HEL cells were mock infected, HTNV
infected or treated with type I IFN. Subsequently, the surface density of
HLA class I molecules was measured by flow cytometry. HTNV

upregulated HLA class I molecules on unstimulated HEL cells at 3 days
p.i. (see Fig. 8A, left graphs). Intriguingly, the increase of HLA class [
molecules on PMA-treated HEL cells after HTNV infection (see Fig. 8A,
right graphs, and Fig. 8B) was much stronger and started already at
1 day p.i.

These findings demonstrate that high-level HTNV replication in
differentiating megakaryocytic cells strongly upregulates HLA class I
molecules on the cell surface.

Discussion

In this study, we demonstrate for the first time that HTNV targets
megakaryocytic cells. In striking contrast, TULV and PHV, both rather
non-pathogenic hantaviruses, did not multiply in this cell type. After
induction of differentiation, HTNV-infected megakaryocytic cells
switched to high-level virion production and strongly increased surface
expression of HLA class I molecules.

High densities of integrin 31 as well as integrin 33, and CD55/DAF,
which facilitate HTNV entry (Gavrilovskaya et al., 1998, 1999;
Krautkramer and Zeier, 2008), were found on HEL cells and human
primary megakaryocytes. This observation is in line with previous
studies demonstrating that HEL cells express several integrin
heterodimers including a5p1 (fibronectin receptor), allbB3 (fibrin-
ogen receptor), and avp3 (vitronectin receptor) (Ylanne et al., 1990).
The integrin heterodimer allbB3 did not bind fluorescence-labeled
fibrinogen indicating that it was in an inactive conformation (data not
shown). This allows HTNV to bind to plexin-semaphorin-integrin
domains which are exposed only on the inactive, bent 33 molecule
(Raymond et al., 2005). In contrast, gC1qR which has been reported to
enhance entry of HTNV infection into human lung epithelial A549
cells (Choi et al., 2008) was not detected on HEL cells and only weakly
expressed by human primary megakaryocytes, suggesting that this
receptor is not required for virus entry into megakaryocytic cells.
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Fig. 5. Adhesion and endoreplication of HTNV-infected differentiating megakaryocytic cells. Mock- and HTNV-infected (MOI = 1.5) HEL cells were left unstimulated (—PMA) or
stimulated (10 nM PMA at 1 h p.i.). (A) At 3 days p.i., cells were allowed to adhere to wells that were uncoated or coated with extracellular matrix (ECM) ligands (fibrogen,
fibronectin, or vitronectin). After extensive washing, the abundance of cells adhering to ECM ligands was quantified by MTT assay. Results shown are means =+ 1 SD of triplicate runs
and are derived from three independent experiments (*p<0.05, one-way analysis of variance). (B) At 7 days p.i., endoreplication of cells was visualized by cytofluorimetric analysis
of propidium iodide staining. Upper row: histogram blots of DNA content in HEL cells; the x-axis indicates fluorescence intensity (log scale, 4 decades), whereas the y-axis shows cell
counts. Lower row: dot blot analyses of DNA content in HEL cells; the x-axis indicates fluorescence intensity (log scale, 4 decades), whereas the y-axis shows cell size (forward
scatter, FSC). Gates mark different stages of DNA ploidy (2n: DNA content of HEL cells in the G,/G; phase; 4n: diploid cells in G, phase or early polyploid cells; 8n: a fourfold increase
in DNA content; 16n: an eightfold increase in DNA content). One representative experiment out of four independent experiments is shown.

Non-pathogenic TULV and PUUV could not infect HEL cells
despite strong surface expression of integrin (31, a receptor for non-
pathogenic hantaviruses (Gavrilovskaya et al., 1998, 1999). Previous
reports have demonstrated that adhesion of HEL cells to extracel-
lular matrix components is mainly mediated by integrin 31 (Garcia
etal, 1998; Molla et al., 1995). This suggests that integrin 31 on HEL
cells is in the active conformation and thus cannot mediate entry of

TULV and PHV. Alternatively, a hitherto unknown coreceptor
required for infection with non-pathogenic hantaviruses is missing
on HEL cells. It is also possible that non-pathogenic hantaviruses
enter HEL cells but fail to establish a productive infection. Col-
lectively, the selective susceptibility of HEL cells to a pathogenic
hantavirus points towards an important role of this cell type in virus-
induced pathogenesis.
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Table 1
Ploidy analysis of megakaryocytic cells in uninfected or HTNV-infected cell cultures.?
Ploidy” No PMA PMA
Uninfected HTNV infected Uninfected HTNV infected
2n 45.5% 43.5% 30.5% 29.8%
4n 19% 18% 16% 17%
8n — — 6% 5.8%
16n — — 1.5% 1.8%

2 Ploidy was measured as shown in Fig. 5B. Data are means derived from four
independent experiments.

> 2n: DNA content of HEL cells in the G,/G; phase; 4n: diploid cells in G, phase or
early polyploid cells; 8n: a fourfold increase in DNA content; 16n: an eightfold increase
in DNA content.

PMA had no effect on virus growth in Vero E6 cells. In striking contrast,
in cultures of PMA-treated HEL cells, virus titers increased more than
100-fold compared to untreated HEL cells. On a per cell basis, upregulation
of HTNV replication was even more pronounced as HEL cells stopped
proliferating after PMA-induced differentiation. In addition, human
primary megakaryocytes treated with PMA were efficiently infected
with HTNV as demonstrated by strong staining of viral N protein in
immunofluorescence microscopy analysis. Similar to HTNV-infected
dendritic cells (DCs) (Raftery et al, 2002), endothelial cells (Pensiero
et al,, 1992; Temonen et al., 1993), Vero E6 cells (Hardestam et al., 2005),
and A549 cells (Hardestam et al, 2005) no signs of apoptosis were
observed in HTNV-infected HEL cells (data not shown). Overall, these
findings suggest that differentiating megakaryocytic cells provide a special
environment in which pathogenic hantaviruses can multiply with high
efficiency.
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Fig. 6. Expression of RIG-I-like receptors in HTNV-infected HEL cells. HEL cells were left
unstimulated (—PMA) or stimulated with 10 nM PMA for 24 h. Thereafter, cells were
treated with type [ IFN (5000 U/ml), poly I:C (2.5 pg/ml), mock-infected, or infected with
either VSV (MOI=1.5) or HTNV (MOI=1.5). After 8 h, the relative abundance of
transcripts encoding RIG-I (upper graph) or MDA5 (lower graph) was determined by
quantitative RT-PCR.

Key marker molecules of megakaryocyte differentiation (Schulze and
Shivdasani, 2005) including CD61 (integrin 33), which also serves as a
receptor for pathogenic hantaviruses, and CD41 (integrin IIb) were
upregulated on both mock- and HTNV-infected HEL cells after PMA
stimulation. However, the increase in density of CD61 did not further
enhance HNTV entry into HEL cells. Virus titers in the supernatant of HEL
cells stimulated with PMA 1 day before infection were as high as those
produced by cells treated with PMA 1h after infection. Adhesion of
PMA-treated HEL cells through surface integrins to components of the
extracellular matrix, an important step in megakaryocyte differentiation,
was not blocked by HTNV. Moreover, high-level HTNV replication did not
affect PMA-induced polyploidization in HEL cells. The latter is a
characteristic feature of differentiating megakaryocytes and caused by
repeated rounds of DNA replication without concomitant cell division
(Ravid et al., 2002). In conclusion, megakaryocyte differentiation
appeared to proceed normally in HTNV-infected HEL cells.

We found that VSV induced expression of transcripts encoding
RIG-I-like receptors in untreated HEL cells at 8 h post-infection. This
VSV-induced upregulation was drastically increased in PMA-treated
HEL cells. Furthermore, PMA sensitized HEL cells to type I IFN, leading to
increased number of transcripts derived from RIG-I-like receptor genes
and other ISGs (interferon regulatory factor 7 and matrix metallopro-
teinase 9; data not shown). Supporting our finding, PMA has been
reported to upregulate type I IEN receptor density on the cell surface of
human megakaryocytic cells by a post-transcriptional mechanism
(Martyre and Wietzerbin, 1994). Moreover, PMA activates the vav
proto-oncogene (Gulbins et al, 1994), which is predominantly
expressed in cells of the hematopoietic system (Katzav, 1995), and
participates in signaling through the type I IEN receptor (Micouin et al.,
2000). Cell type specificity of this sensitizing effect is documented by the
fact that PMA inhibits type I IFN signaling in human peripheral blood
monocytes and fibroblasts (Petricoin et al., 1992, 1996).

In sharp contrast to VSV, HTNV failed to induce ISG transcripts at early
time points in untreated and PMA-treated human megakaryocytic cells
despite PMA-induced sensitization to type I IFN signaling and high-level
virus replication. Previous reports have described evasion of innate
responses by pathogenic hantaviruses. HTNV and New York virus (NYV), a
pathogenic New World hantavirus, delay type I IFN responses in
endothelial cells (Geimonen et al., 2002; Kraus et al., 2004). Subsequently,
it has been demonstrated that the G1 cytoplasmic tail of NYV inhibits
RIG-I-mediated induction of type I IFN (Alff et al., 2006; Alff et al., 2008). In
addition, Andes virus (ANDV), another pathogenic New World hantavirus,
interferes with both IFN regulatory factor 3 activation and IFN signaling in
endothelial cells (Spiropoulou et al., 2007). Our results extend these
findings and show that HTNV efficiently evades induction of ISG
transcripts in differentiating megakaryocytic cells.

We observed a slight downregulation of RIG-I on the protein level in
PMA-treated HEL cells after mock as well as after HTNV infection.
Diminished abundance of RIG-I protein could contribute to enhanced
HTNV replication in differentiating megakaryocytic cells because this
molecule acts as a cytoplasmic sensor of HTNV replication (Lee et al.,
submitted). However, the molecular mechanisms underlying the switch
to high-level HTNV replication in differentiating megakaryocytic cells
remain to be defined.

Most viruses have also evolved sophisticated mechanisms to escape
from antiviral T cells by interfering with antigen presentation through the
HLA class I pathway (Hansen and Bouvier, 2009). In striking contrast,
HTNV has been demonstrated to increase surface expression of HLA class [
molecules on dendritic cells (Raftery et al., 2002) and endothelial cells
(Geimonen et al.,, 2002; Kraus et al., 2004). In this study, HTNV infection
increased the density of HLA class I proteins on the surface of
differentiating megakaryocytic cells. Upregulation of HLA class I molecules
was detected on untreated HEL cells at day 3 after HTNV infection. This
effect was much stronger and started earlier on PMA-treated HEL cells in
parallel with the PMA-induced switch to high-level virus replication. It is
unlikely that type I IFN plays a role in HTNV-induced upregulation of HLA
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Fig. 7. Western blot analysis of RIG-I expression in mock- and HTNV-infected megakaryocytic cells. HEL cells were left untreated (—PMA) or stimulated with 10 nM PMA (4 PMA) at
1 h post-HTNV infection (MOI = 1.5) and mock infection, respectively. Infected cells were harvested at the time points indicated and analyzed by Western blot for RIG-I expression.
Huh?7 cells stimulated with IFN-a (2000 U/ml) were used as a positive control (pc). As a loading control expression of 3-actin was determined. Results shown are representative of

three independent experiments.

class I molecules on HEL cells as the virus did not induce ISGs. Possibly,
HTNV activates the transcription factor NF-xB which increases transcrip-
tion of HLA class I molecules as described for West Nile virus infection
(Kesson and King, 2001). On the other hand, it has been demonstrated
that HTNV N protein sequesters NF-<B in the cytoplasm thereby
interfering with NF-kB activity (Taylor et al., 2009). Alternatively, HTNV
could modulate HLA class I expression by increasing import of peptides
into the ER and assembly of HLA class I proteins similar to West Nile virus
(Momburg et al, 2001). The precise mechanisms of HTNV-induced
upregulation of HLA class I molecules remain to be defined in future
studies.

Initially, HLA class I upregulation could help HTNV to evade the
innate response and spread because inhibitory receptors on NK cells are
stimulated by HLA class I molecules (Lanier, 2008). Later, virus-induced
HLA class I expression could contribute to the elimination of HTNV-
infected megakaryocytes during the adaptive phase of the antiviral
immune response. Supporting this notion, the efficiency of lysis by CTLs
correlates with the strength of HLA class I expression (King et al., 1986;
Shimonkevitz et al., 1985).

In conclusion, our results suggest that differentiating megakaryo-
cytic cells represent an important target for pathogenic hantaviruses
in humans. Megakaryocyte differentiation remained unaltered de-
spite high-level HTNV replication. Therefore, a direct viral effect on
megakaryopoiesis seems unlikely. Intriguingly, HTNV infection of
differentiating megakaryocytic cells resulted in strongly enhanced
surface expression of HLA class [ molecules. This suggests that in vivo
HTNV-infected megakaryocytes could be efficiently eliminated by
antiviral CTLs during differentiation resulting in acute thrombocyto-
penia. In line with this view, the frequency of virus-specific CTLs has
been shown to correlate with the severity of disease in HCPS patients
(Kilpatrick et al., 2004). Moreover, immunosuppressive corticosteroid
therapy, which suppresses CTL responses, increases platelet counts in
NE patients (Dunst et al., 1998; Seitsonen et al., 2006). Finally, a high
frequency of virus-specific T cells producing IFN-vy, which controls
viral spread through non-cytolytic virus clearance (Guidotti and
Chisari, 2001), correlates with less severe HFRS (Wang et al., 2009).
Preventing elimination of HTNV-infected megakaryocytes by CTLs
might represent an important strategy for treatment of severe
hantavirus-induced hemorrhage. The possibility that pathogenic
hantaviruses interfere with megakaryopoiesis through immune
mechanisms needs to be explored in future animal models of
hantavirus-induced human disease.

Materials and methods
Cells and viruses

The megakaryocytic and myeloid cell lines used in this study (HEL,
K562, and Meg-01) were maintained in RPMI 1640 supplemented with
10% heat-inactivated fetal calf serum (FCS), 2 mM L-glutamine, penicillin,
and streptomycin (PAA, Pasching, Austria). Vero E6 cells were grown in
MEM (PAA) supplemented with the same additives. TF-1 cell were

maintained in RPMI medium, supplemented with 2 mM L-glutamine, 10%
heat-inactivated FCS, and 5 ng/ml recombinant human granulocyte-
macrophage colony-stimulating factor (GM-CSF) from Immunotools
(Friesoythe, Germany). For infection, HEL cells were incubated with
HTNV, which was allowed to adsorb for 60 min at 37 °C. After washing
three times with medium, HEL cells were stimulated with 10 nM PMA
(Sigma Aldrich, Deisendorf, Germany), 1 h after or 1 day before infection.

HTNV (strain 76-118), TULV (strain Moravia), and PHV (type-3571)
were propagated in Vero E6 cells in a biosafety level 3 facility as previously
described (Kraus et al., 2004). Briefly, supernatant was collected from cell
cultures at 7-10days p.i., cleared of cell debris by centrifugation at
2000xg, aliquoted, and frozen at — 80 °C. Virus stocks were free of
mycoplasma as tested by PCR-based VenorGeM mycoplasma detection kit
(Minerva Biolabs, Berlin, Germany).

For generation of primary megakaryocytes, 5x 10° CD34+ cells
(purity >90%) were incubated in a 6-well plate in the presence of
recombinant human thrombopoietin (10 ng/ml) and IL-13 (10 ng/
ml) (both from R&D systems, Wiesbaden, Germany) using STEM span
medium (Stemcell technologies, Kéln, Germany) supplemented with
1 mM sodium pyruvate and 1x non-essential amino acids for 7-
12 days at 37 °Cin a humidified incubator with 5% CO,. On day 5, large
cells were readily present in the culture and recognized as
megakaryocytes.

Virus titration

Hantavirus titers were determined as described recently (Heider
et al., 2001). Briefly, Vero E6 cells were infected by serial dilutions of
supernatants for 1 h to allow absorbance of virus particles. Thereafter,
cells were overlaid with medium containing 0.5% agarose. After 7 days
of incubation at 37 °C, the overlay was removed and cells were washed
with PBS and fixed with methanol for 10 min. After incubation with a
hantavirus N protein-specific polyclonal rabbit serum the SuperSignal
West Dura Extended Duration Substrate kit (Pierce/Perbio, Bonn,
Germany) was used according to the manufacturer's instructions to
visualize antigen-positive foci. Finally, the antigen-positive foci were
counted to calculate virus titers, which are expressed as focus-forming
units per ml.

Western blot

HEL cells were lysed in lysis buffer containing 250 mM Tris, 2%
SDS, 10% glycerol, 5% mercaptoethanol, and 0.01% bromophenol blue
followed by heat-denaturation of the sample for 5 min at 95 °C.
Proteins were separated by 10% sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis and transferred onto a PVDF
membrane (Millipore, Schwalbach, Germany) followed by blocking
with 5% milk powder for 1 h. The membrane was incubated with
primary antibody at 4 °C overnight. RIG-I and B-actin-specific
antibodies were purchased from Alexis Biochemicals (Griinberg,
Germany). For detection of primary antibodies, an anti-rabbit or
anti-mouse peroxidase-conjugated antibody (Amersham, Freiburg,
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Fig. 8. HTNV-induced upregulation of HLA class [ molecules. HEL cells were either left unstimulated (—PMA) or stimulated (10 nM PMA at 1 h p.i.) after mock infection, treatment
with [FN-a (5000 U/ml for 24 h), or HTNV infection (MOI=1.5). (A) Time course of HTNV-induced HLA class I upregulation. Grey filled histograms represent isotype controls, and
black curves show specific staining for HLA class I proteins. The mean fluorescence intensity (MFI) is given in the upper right corner. On the x-axis, the fluorescence intensity (log
scale, 4 decades) is given, whereas the y-axis cell depicts cell counts. One representative experiment out of two is shown. (B) Relative change in MFI of HLA class I expression after
HTNV infection. HEL cells stimulated with PMA (10 nM PMA at 1 h p.i.) were either mock-infected or infected with HTNV for 3 days before FACS analysis (MFI of mock-infected cells
was set 100%; n=4).

Germany) was used. Western blots were developed by using Immunofluorescence

SuperSignal West Dura Extended Duration Substrate kit from

Pierce/Perbio (Bonn, Germany) according to the manufacturer's Cover slides were washed twice with water and rinsed with 70%
protocol. ethanol. After drying, cover slides were coated with poly-L-lysine
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(Biochrom, Berlin, Germany), incubated at 37 °C for 30 min and
subsequently washed twice with water. Cells were harvested and washed
three times, resuspended in medium and allowed to adhere to poly-L-
lysine-coated cover slides for 15 min at 37 °C. Cells were either fixed with
acetone/methanol for 10 min or with 4% formaldehyde for 60 min.
Formaldehyde-fixed cells were permeabilized with 0.1% Triton for 5 min
and washed in PBS three times. Before staining cells were incubated in
blocking solution (PBS with 1% FCS) for 30 min at 4 °C followed by three
washing steps in PBS. Thereafter, cover slides were incubated in a dark
moist chamber for 1 h at 37 °C with primary antibodies that had been
diluted in PBS containing 10% heat-inactivated FCS. After washing, bound
primary antibodies were visualized by fluorescein isothiocyanate (FITC)-
conjugated or Texas Red-conjugated secondary antibodies (1:400).

LightCycler quantitative RT-PCR

Cells were lysed with MagNA Pure lysis buffer (Roche, Mannheim,
Germany) and mRNA was isolated with a MagNA Pure-LC device using
standard protocols. RNA was reverse-transcribed with AMV-RT and
oligo (dT) primer using the First Strand cDNA Synthesis Kit from Roche
(Mannheim, Germany). For amplification of target sequences,
LightCycler Primer Sets (Search-LC, Heidelberg, Germany) were used
with LightCycler FastStart DNA Sybr Green I Kit (Roche, Mannheim,
Germany). RNA input was normalized by the average expression of the
housekeeping genes encoding 3-actin and cyclophilin B. By plotting a
known input concentration of a plasmid to the PCR cycle number at
which the detected fluorescence intensity reached a fixed value, a
virtual standard curve was generated. This standard curve was used to
calculate transcript copy numbers. The presented relative copy numbers
are mean averages of data of two independent analyses for each sample
and parameter.

Flow cytometry

For surface staining, cells were harvested and washed twice in ice-cold
FACS washing solution (PBS with 1% heat-inactivated FCS and 0.02%
sodium azide). Thereafter, cells were resuspended in 50 ul FACS blocking
solution (PBS with 10% heat-inactivated FCS and 0.2% sodium azide)
containing primary antibody and incubated for 1 h. The following primary
antibodies were used: anti-31 (clone MEM-101A from Immunotools,
Friesoythe, Germany), anti-33 (clone C17 from Immunotools), anti-CD55/
DAF (clone 143-30 from Southern Biotechnology associates, Birmingham,
USA), anti-CD41 (clone MEM-06 from Immunotools), and anti-CD42
(clone HIP1 from Immunotools). After incubation, cells were again washed
with FACS wash solution and for visualization PE- or FITC-coupled goat
anti-mouse antibodies (Dianova, Hamburg, Germany) diluted in FACS
block solution were added. After 45 min, the cells were washed with FACS
wash solution and resuspended in FACS fixation solution (0.5 ml PBS with
0.37% formaldehyde). For quantifying fluorescence of labeled cells, a
FACsCalibur (Becton Dickinson, Heidelberg, Germany) was used. Results
were evaluated with the flow cytometry analysis software program
CellQuest Pro (BD Bioscience, Heidelberg, Germany).

Adhesion assay

For testing adhesion of HEL cells, uncoated 96-well plates (Sarstedt,
Niirnberg, Germany) were coated with 10 pg/ml fibrinogen (Invitrogen,
Karlsruhe, Germany), 10 ug/ml fibronectin (Invitrogen), or 0.5 pg/ml
vitronectin (Sigma Aldrich, Deisendorf, Germany) at 4 °C overnight.
After washing off ligands three times with PBS, wells were coated with
coating buffer (PBS with 0.05% BSA) for 60 min at 37 °C. HEL cells that
had been infected with HTNV and harvested 3 days p.i. were adjusted to
5x10* cells/well and allowed to adhere to ligands for 90 min.
Non-adherent cells were washed off three times with PBS. For
quantifying the number of adherent cells, the EZ4U Cell Proliferation
Assay from Biomedica (Vienna, Austria) was used. This assay is based on

the fact that living cells metabolize tetrazolium salt into its deep red
colored formazan derivative. After adherent HEL cells were covered
with 200 pl cell culture medium, 20 pl of dye substrate was added and
optical density was recorded 3 h later at 450 nm.

Cell proliferation

For differentiating between dead and live cells, a 0.5% trypan blue
solution was used. Ten microliters of the cell dilution was filled into a
hematocytometer chamber. Dead and live cells in one big square (16 small
squares) were counted and cell number was determined according to the
following formula: cells x dilution factor x 10% = cells/ ml.

Endoreplication

HEL cells were harvested and adjusted to 1x10° cells/ml. After
fixation in ice-cold 70% ethanol, cells were washed with PBS. RNA was
digested with DNase- and protease-free RNase A (Qiagen, Hilden,
Germany) for 30 min at 50 pg/ml. Propidium iodide (Roth, Karlsruhe,
Germany) was added 20 min prior to FACS analysis at 50 pg/ml to
determine the DNA content.
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