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Abstract 

Hermiller, SM., Rewriting systems for Coxeter groups, Journal of Pure and Applied Algebra 92 

(1994) 137-14s. 

A finite complete rewriting system for a group is a finite presentation which gives a solution to the 

word problem and a regular language of normal forms for the group. In this paper it is shown that 

the fundamental group of an orientable closed surface of genus 9 has a finite complete rewriting 

system, using the usual generators a,, . , a,, bl, , b, along with generators representing their 

inverses. Constructions of finite complete rewriting systems are also given for any Coxeter group 

G satisfying one of the following hypotheses. (1) G has three or fewer generators. (2) G does not 

contain a special subgroup of the form (sir sj, So 1 sf = sj = s: = (s,s,)’ = (s~s~)~ = (sjsk)” = 1) with 

m and n both finite and not both equal to two. 

1. Introduction 

One of the fundamental questions in the study of group theory is the solvability of 

the word problem. In general the word problem for finitely presented groups is not 

solvable; that is, given two words in the generators of the group, there may be no 

algorithm to decide whether the words in fact represent the same element of the group. 

For groups presented by a rewriting system that is finite and complete (defined in 

Section 2), however, the word problem is solved in a way that is particularly easy to 

implement on a computer. A complete rewriting system for a group also gives a set of 

normal forms for elements of the group; that is, for each group element there is 

a unique word representing it which cannot be rewritten. 
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In 1985 a computer scientist, Jantzen [9], asked whether a finitely presented monoid 

or group with a solvable word problem necessarily must have a finite complete 

rewriting system. A couple of years later a mathematician, Squier [14], showed that 

the answer to Jantzen’s question is negative. In the process, Squier showed that 

a group with a finite complete rewriting system necessarily has the homological 

finiteness condition FP3, and others [1,4,6] have extended this to show that having 

a finite complete rewriting system implies that a group has homological type FP,. 

In his paper, Jantzen also showed that the existence of a finite complete rewriting 

system for a group may depend on the presentation that one starts with. That is, 

it may be that a group has no finite complete rewriting system based on one set 

of generators, while it does have such a rewriting system based on another set 

of generators. Recently Squier [15] has developed a topological criterion, known 

as finite derivation type, which is a necessary condition for a finitely presented 

group to satisfy in order to have a finite complete presentation based on some set 

of generators. A natural question to ask, then, is whether this criterion is sufficient 

to imply the existence of a finite complete presentation, and, if not, then what else 

is needed. 

A starting point for understanding questions about finite derivation type may be 

the study of Coxeter groups. Tits [16] has proven that these groups satisfy a topologi- 

cal property that is similar, although not identical, to finite derivation type. 

Recently, Brink and Howlett [2] have shown that Coxeter groups have automatic 

structures. Both automatic structures and finite complete rewriting systems involve 

a regular language of normal forms for the groups. However, at the moment it is not 

clear what connection, if any, exists between automatic structures and rewriting 

systems. In 1986 a computer scientist, Le Chenadec, published a survey [12] of 

complete rewriting systems for groups, which included Coxeter groups; when rewrit- 

ing systems for Coxeter groups were given, however, they were finite in general. 

In this paper constructions of finite complete presentations are given for many 

families of Coxeter groups, as well as for surface groups. The second section gives 

basic definitions and properties of rewriting systems. The third section contains 

a discussion of rewriting systems for surface groups, including a proof of the following 

proposition. 

Proposition. There is a jinite complete rewriting system for the fundamental group of 
a closed orientable surface of genus g, using the alphabet 

s = ia,, . . . , ag, A,, . . . , A,, b,, . . . , b,, By,. . . , II,; 

of the usual generators and their inverses. 

Finally, the last section is on rewriting systems for Coxeter groups, with a proof of 

the following theorem. 
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Theorem. Let G be a Coxeter group. Suppose G satisJies one of the following two 

properties. 
(1) G has three or fewer generators. 
(2) G does not contain a special subgroup of the form 

(Si, Sj, Sk 1 Sf = Sf = Sk2 = (SiSj)2 = (SiSk)m = (SjSJ = 1) 

with m and n both finite and not both equal to two. 
Then G has a jinite complete rewriting system. 

2. Rewriting systems 

Let S be a set (called an alphabet) and let S* be the free monoid on S. S* consists of 

all words in the letters of S; the empty word will be represented by 1. A rewriting 
system on S* is a subset R c S* x S*. An element (u, U) E R, also written u + u, is called 

a rule of R. The idea is that a rewriting system is an algorithm for substituting the 

right-hand side of a rule whenever the left-hand side appears in a word. Given 

a rewriting system R, write x + y for x,y E S* if x = uul w, y = uv2 w and (u,, Q) E R. 
Writex5yifx=yorx+x,-+x2+~~~ + y for some finite chain of arrows. An 

element x of S* is irreducible with respect to R if there is no possible rewriting (or 

reduction) x + y; otherwise x is called reducible. (S, R) is a rewriting system for 

a monoid M if 

(Sl v1 = v2 if (ZIP, u2) E R) 

is a presentation for M. A rewriting system for a group G is a rewriting system for G as 

a monoid; in particular, the alphabet must generate G as a monoid. 

The rewriting system R is Noetherian if there is no infinite chain of rewritings 

x+x1+x2+.. . for any word x E S*. R is conjluent if whenever x 3 y, and x 5 y,, 

there is a z so that y, 2 z and y, 2 z. R is complete if R is Noetherian and confluent; 

a complete rewriting system for a group is also known as a complete presentation. 

Finally, a rewriting system is Jinite if both S and R are finite sets. 

A group with a complete presentation has the property that there is exactly one 

irreducible word representing each of the group elements. So a finite complete 

rewriting system gives a solution to the word problem for the group. For examples 

and more information on rewriting systems for groups, see [8] or [12]. 

A critical pair of a rewriting system R is a pair of overlapping rules of one of the 

following forms, in which each ri is a word in S*. 

(i) (r1r2, s) E R and (r2r3, t) E R with r2 # 1. 

(ii) (r1r2r3,4, (r2, t) E R. 
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A critical pair is resolved in R if there is a word z such that sr, AZ and rl tz z in the 

first case or s&z and rl tr3rz in the second. A Noetherian rewriting system is 

complete if and only if every critical pair is resolved [S, 131. 

Knuth and Bendix [S, 111 have developed a procedure for creating complete 

rewriting systems; a simplified version is as follows. To begin the Knuth-Bendix 

procedure, one must start with a finite set S of generators and a finite set E of 

equations sufficient to present the group or monoid involved. Put a partial well- 

founded ordering on S*, which is compatible with concatenation. That is, put an 

ordering on S* so that for any x E S *, there is no infinite descending chain of words 

x > x1 > x2 > ‘. .) and if x > y then axb > ayb for any a, b E S*. The set of rules R is 

initially defined by setting x + y for each equation x = y in E with x > y. If there is an 

equation x = y in E for which neither x > y nor y > x under the partial ordering, 

a different ordering must be used. Next check the rewriting rules in R for unresolved 

critical pairs. If there is an unresolved critical pair of either type, rewrite srg and rl t (or 

s and r1 trg, respectively) to words x and y that are irreducible under the rules of R. 

Then add a rule x + y if x > y or y -+ x if y > x to R. Continue this process until there 

are no more unresolved critical pairs in R. Since each time that a rule is added to 

R more critical pairs may occur, this procedure may continue forever, creating 

infinitely many rules. If the procedure does stop, it will create a finite complete 

rewriting system. 

In general the procedure for checking confluence by critical pairs can be very time 

consuming. There are several computer programs which can be used to check 

confluence for specific examples. In the course of the research for this paper, a pro- 

gram called RRL (Rewrite Rule Laboratory) [lo] has been used on many examples. 

If the Knuth-Bendix procedure does not produce a finite complete rewriting system 

for a group, there are two changes one can make which may produce a finite system 

under this procedure. One is to alter the ordering used in the procedure. The other is 

to change the alphabet; Jantzen’s results [9] on the dependence of rewriting systems 

on generators show that the Knuth-Bendix procedure may stop with a finite rewrit- 

ing system on one alphabet even though it does not with another alphabet. Both of 

these techniques have been used in constructing the rewriting systems in this paper. 

3. Surface groups 

Le Chenadec and Squier have constructed a finite complete presentation for the 

fundamental group of a closed orientable surface of genus g using generators from the 

presentation 

(Al, A*, . . .,A&1AlA2.. .A,,A;‘A;‘. . .AZgl = l), 

along with extra letters to generate the group as a monoid. Since Jantzen [9] has 

shown that the existence of a finite complete rewriting system is dependent upon the 
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presentation, these groups still may not have a finite complete rewriting system using 

generators from the usual presentation 

(al,%,. . .,ag,h,h,. . ., b,~alb,a;‘b;‘. . .a,b,a,‘b,’ = 1). 

In an effort to find such a system, we added letters to represent the inverses of the 

usual generators, creating the alphabet 

S = {ai, Ai, bi, Bi for 1 < i 5 9). 

In order to perform the Knuth-Bendix procedure on the rewriting system 

R = {~iAi + 1, Aiai + 1, biBi + 1, Bibi + 1, 1 5 i I 9, 

alblAIBl. . .a,b,A,B, -+ l}, 

a total ordering was defined on S” by recursive path ordering. 

Definition [S]. Let > be a partial well-founded ordering on a set S. The recursive 

path ordering >rpo on S* is defined recursively from the ordering on S as follows. 

Givens,,. . .,s,, tl,. . ., t,ES,sl.. .s, >rpotl.. . t, if and only if one of the follow- 

ing holds. 

(1) s2. . .s, &tl. . . t,. 

(2) s1 > tl and sl. . .s, >rpot2. . . t,. 

(3) s1 = tl and s2. . .s, Brpotl. . t,,. 

The recursion is started from the ordering > on S and from s >rpo 1 for all s E S, 

where 1 is the empty word in S*. Note that if > is a total ordering on S, then >rpo is 

a total ordering on S*. 

Theorem (Dershowitz [S]). Recursive path ordering is a well-founded partial ordering 
which is compatible with concatenation. 0 

The Knuth-Bendix procedure on the rewriting system (S, R) above using recursive 

path ordering with a, > Al > bl > B1 > . . . > ug > A, > b, > B, results in a finite 

complete presentation. 

Proposition. There is a finite rewriting system for the fundamental group of a closed 

orientable surface of genus g, using the alphabet 

s = {a,, . . . , ag, AI,. . . , A,, bl, . . , b,, B1,. . . , B,) 

of the usual generators and their inverses. 
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Proof. In order to make the notation easier, let P = a2b2AzBz. . . a,b,A,B, and let 

Q = b,a,B,A,. . .b2a2B,A2. The result of the Knuth-Bendix procedure described 

above is the rewriting system 

R’ = {UiAi + 1, AiUi + 1, biBi + 1, Bibi + 1, 1 < i < 9, 

For all rules u -+ w in R', u >rpo w, so R' is Noetherian. So all that is left is to check 

confluence, by checking that all critical pairs are resolved; details of this proof may be 

found in [7]. Since all of the critical pairs are resolved, (S, R') is a finite complete 

rewriting system for the surface group of genus g. 0 

4. Coxeter groups 

A Coxeter group G is a group with a presentation of the form 

G = (~1,. . . ) S, 1 si” = (SiSj)m’J = 1) 

with 2 < mij I co for i # j, where mij = co denotes that there is no relation involving 

Si and Sj. The set of letters 

S={s1,...,s,} 

generates G as a monoid, so it is natural to try to find rewriting systems for these 

groups using these generators. 

Complete rewriting systems for Coxeter groups were first constructed by Le 

Chenadec [12], using the alphabet S. Le Chenadec performed the Knuth-Bendix 

procedure on these groups with a length-plus-lexicographic ordering or words in S*. 

This ordering is defined using a total ordering on S. For any word w E S* let I(w) be 

the length of w, that is, the number of letters in w. Then in the length-plus-lexi- 

cographic ordering, two words v,w E S* satisfy v > w if either 

(i) I(V) > l(w) or 

(ii) I(u) = l(w) and if u = ul. . . II,, w = wl. . . w,, with Di,Wi E S, then the first letters 

Ui, wi that are not equal satisfy ai > wi. 

Le Chenadec found complete presentations in the case when none of the m;j were 

equal to 2; that is, when none of the generators commute. However, his complete 

rewriting systems in general contain infinitely many rules, in families parametrized by 
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the natural numbers. This was true no matter what lexicographic order was put on 

S in general. For example, the group 

G = (a, b, c, d 1 a2 = b2 = c2 = d2 = (ab)4 = (ac)” = (ad)3 

= (b~)~ = (bd)4 = (cd)4 = 1) 

with any lexicographic ordering on (a, b, c, d} has a complete rewriting system with 

infinitely many rules using Le Chenadec’s procedure. 

For Coxeter groups we changed both the alphabet and the ordering on words to 

produce finite complete presentations. Letters were added to the alphabet which 

represent longest length words of finite special subgroups. A special subgroup of 

a Coxeter group G is a subgroup generated by a subset of the generators {sl, . . . , s,} 

of G. A special subgroup of a Coxeter group is again a Coxeter group. Define the 

length of an element in a Coxeter group to be the length of a shortest possible (or 

reduced) word in S* which represents the element. If a Coxeter group is finite, then 

there is a longest element of the group. For a discussion of these and other properties 

of Coxeter groups, see [3]. With this new alphabet, and a weight-plus-lexicographic 

ordering (defined below), we were able to construct finite complete rewriting systems 

for many Coxeter groups. 

Theorem. Let G be a Coxeter group. Suppose G satisfies one of the following two 

properties. 

(1) G has three or fewer generators. 

(2) G does not contain a special subgroup of the form 

(Si, Sj, Sk ) Sf = Sf = 5': = (SiSj)2 = (sisk)m = (sjsk)” = I) 

with m and n both$nite and not both equal to two. 

Then G has a finite complete rewriting system. 

Proof. The only groups in (1) not also covered in (2) are the triangle groups listed in 

(2). These are broken up into four cases. 

Notation: [ablk is the alternating product of k letters abab. . . ; [abll = a, 
Cablo = 1. Let G = (a, b, c 1 a2 = b2 = c2 = (ab)2 = (ac)m = (bc)” = 1). 

Case I: m = 2. 

Alphabet: a, b, c 

Rules: a2 -+ 1, b2 + 1, c2 + 1, 

ab + ba, ac -+ ca, [bc], + [cb]. 
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Case II: m 2 4, n 2 3, m even, 

Alphabet: a, b, c 

Rules: a2 + 1, b2 + 1, c2 + 1, ab + ba, 

ub + ba, Cacl,+ Ccal,, @cl,, -, Ccbl,, 

a Ccbl, -, ba Ccbl, - 1, Cacl,-2baCcbl,-I -+ Ccalm-Ibdcbl,-2 

Case III: m 2 3, n 2 5, m, n both odd. 

Alphabet: a, b, c 

Rules: a2 -+ 1, b2 + 1, c2 --f 1, ab + ba, 

Cacl, + [Cal,, I&l, -, CcbL, Cacl,-Iba -+ Ccal,b, 

aCcb1, -+ baCcbLI, Caclm-IbCcal, -, CcalmbCcalm-l, 

Cacl,-lbCcal,-zbaCcbl,_l -, Ccal,bCcal,-2baCcbl,-~ 

Case IV: m = n = 3. 

Alphabet: a, b, c 

Rules: a2 -1, b2 + 1, c2 + 1, ab -+ bu, 

uca -+ cut, bcb + cbc, ucba + cacb, acbc + bucb 

All other cases may be obtained from these by swapping a and b, and hence m and n. 
In all four cases, put a total ordering on the words in the alphabet S = {a, b, c} 

using a length-plus-lexicographic ordering with the ordering a > b > con S. With 

these orderings, all of the rules u + w in cases I-IV satisfy v > w; since for any word 

v the number of words w with v > w is finite, this ordering is well-founded, and the 

rewriting systems are Noetherian. In order to show that these systems are confluent, 

then, it suffices to check that every critical pair is resolved; the details of this may be 

found in [7]. This concludes the proof of part (1) of the theorem. 

The proof of part (2) will be done all together rather than in separate cases. 

Alphabet: In this case, we will use words in the usual generators of G for our new 

alphabet S’. An expression surrounded by parentheses () or braces { } will represent 

a letter in the new alphabet. For each generator si of G, associate a letter (i) in the new 

alphabet. For each longest length element [siSj]m,, = [sjsJmij (using the notation of 

part (1)) of the special subgroup generated by si and sj when 2 < mij < co, asssociate 

a letter {jj >; that is, {ij) and { ji} will represent the same letter of S’. Finally, for each 

product sisjsk. . . of two or more generators all of which commute with one another, 

associate a letter (ijk . . .). In other words, if mij = 2, then the expressions (ij) and (ji) 

will represent the same letter of S’, and similarly for letters (ijk. . .) representing longer 

words in the usual generators. 
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Notation: As in the notation in part (1) above, [ab& is the alternating product 

of k letters (a)(b)(a)(b) . . . , and k[ab] is the alternating product of 

k letters. . . (4 @I (4 w. 
The following conventions have been used in writing down the set R’ of rules in 

this part. First, a rule occurs only when the letters exist; that is, if a symbol (ij.. .) 

occurs in a rule, si and Sj must commute, and if a symbol (ij> appears, the order 

mij of the product sisj in G must satisfy 2 < mij < cc. On the left-hand side of a 

rule, (ij.. .) or (i.. .) will denote any letter of the new alphabet S’ which is 

associated to a word of a finite special subgroup containing Si, and possibly 

containing other generators Sj, . . . which commute with si. On the right-hand 

side of a rule, (i . . .) will denote either an empty expression () or again a letter of 

S’ associated to a finite commutative subgroup of G; an empty expression () 

represents the trivial word. Finally, in each rule, the numbers i, j, and k are assumed 

to be distinct, with one exception: in rule (G), j and k may be the same. 

Rules: 

(A) (i . . .)’ -+ 1 

(B) {ij}” + 1 

(C) (i. . .)(jk. . .) + (i. . . j)(k. . .) 

(D) ,ij_I[ij](ik. . .) + {ij}(k . . .) 

(E) (i. . .)ijk) -C.. ..dCkjlm,k-l 

(G) (ij. . .)(ik . . .) + (j. . .)(k . . .) 

(H) {ij}(ik . . .) + ,ij-l[ij](k. . .) 

(I) (ij. . .){ik) -+ (j. . .)[ki],i,-l 

(J) {ij > {ikl -,ij-JVIEkL,,-~ 

Example. Let G be the Coxeter group with presentation 

G = (sl, s2, s3, sq 1 sf = s; = s; = s: = (s1s2)* = (s~s~)~ = (~9~)~). 

Then the rewriting system for G will have alphabet 

S’ = ((l), (2), (3), (4), (12), (131, (34)). 
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The rules are given by 

R’ = {(A) (1)’ + 1, (2)’ + 1, (3)’ + 1, (4)’ -+ 1, (12)* + 1, 

(B) {13)* + 1, {34}* + 1, 

(C) (l)(2) -+ (12), (2)(l) + (12)> 

(D) (l)(3)(1)(3) + (131, (3)(1)(3)(l) + {13), 

(3)(1)(3)(12) + Cl3)(2), 

(3)(4)(3) + 13419 (4)(3)(4) + (3419 

(E) (2){13) +(12)(3)(l)(3), 

(P) (1)(3)(1){341 + {13)(4)(3), (3)(4){13} + {341(1)(3)(I), 

(G) (1)(12) + (2)> (2)(12) + (l), (12)(l) + (2), (12)(2) --* (l), 

(W {13)(1)+(3)(l)(3), {13}(3) +(1)(3)(l), {13}(12) -+(3)(l)(3)(2), 

(34H3) -+ (3)(4), {34)(4) + (4)(3), 

(I) (1){13} +(3)(l)(3), (3){13} +(l)(3)(1), (12){13) +(2)(3)(l)(3), 

(3) (34) + (4)(3), (4) (34) + (3)(4), 

(J) (13) (34) -+(l)(3)(1)(4)(3), (34){13} +(3)(4)(1)(3)(l)) 

Let M be the monoid presented by the rewriting system (S’, R'). Rules(C) and 

(D) show that the generators (ij. . .) and {ij} can be expressed as products of 

letters of the form (i). Considering each letter (i) as the usual generator Si 

of G = (sl,. . . , s,I sf = (SiSj)“‘jj = l), rules (A), (B), (C), and (D) give all of the 

relations in the usual (monoid) presentation of G. In the same way, all of the rela- 

tions in M are implied by those in G. So this rewriting system gives a monoid 

presentation of G. 

Put a weight-plus-lexicographic total ordering on the words of the alphabet S’ 

as follows. Define a system of weights by wt( (i)) = 1, wt( {ij } ) = mij) and 

wt((ijk . . .)) = the number of generators in the expression. So for s E S’, wt(s) = the 

length of s in the usual generators. Then for a word w E S’*, let wt(w) be the sum of the 

weights of the letters in w. Put a partial ordering on the generators by defining t > u 

for two letters t and u of S’ if wt(t) < wt(u); so this lexicographic ordering and the 

weight ordering on S’ are precisely opposite. Then define the weight-plus-lexi- 

cographic ordering on S’* by v > w for two words v and w if wt(v) > wt(w) or if 

wt(v) = wt(w) and v is lexicographically greater than w. Although this ordering does 

allow v > w when v has a shorter word length on S’ than w, the weight, or word length 

considered in S, of v may not be less than that of w. As with the other rewriting systems 

dealt with so far, all rules v + w in this rewriting system satisfy v > w. Since for every 
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word v there are only finitely many words w with u > w, the ordering is well-founded, 

and the system is Noetherian. 

As before, it suffices to check resolution of critical pairs in order to show this is 

confluent. It is important to note that the left-hand side of a rule may be completely 

contained within the left-hand side of another rule for this rewriting system; such 

overlapping critical pairs must be checked for confluence with the rest. The resolu- 

tions of these critical pairs may be found in [7]. 0 

Notes. (i) The alphabets used in cases I-IV of the proof of part (1) are not the same as 

those in the proof of part (2) of this theorem. In all cases except case III we have found 

a rewriting system using the same alphabet as in part (2), but some of the rules have 

arrows in the opposite direction. 

(ii) In part (2) of this theorem, unresolved critical pairs may occur when the 

hypothesis on special subgroups which G may contain is omitted. If G contains 

a subgroup 

(Si, Sj, Sk 1 Sf = Sj = Sk2 = (SiSj)2 = (SiSk)2 = (SjSk)n = l), 

with 2 < n < co, there are two unresolved critical pairs. The first results from applica- 

tions of rule (E): 

where the portion of each word that is underlined is the portion being rewritten. This 

is a critical pair of type (i) with rl = r3 = 1 and r2 = (i) { jk}. The second involves 

applications of rules (D) and (C), respectively: 

.-2Cjkl(dW -, {jk)G), .-2Cjkl (jW4 + .-2CjklCMk). 

This is also a critical pair of type (i), with rl = n_2 [ jk], r2 = (j)(ik), and r3 = 1. If 
G contains a subgroup 

(si,sj, Sk 1 Sf = Sf = Sk' = (SiSj)2 = (SiSk)m = (SjSk)n = I), 

with 2 < m, n < co, there is an unresolved critical pair given by applications of rules 

(F) and (E), respectively: 

This is a critical pair of type (i) with rl = ,_2[ik], r2 = (i){ jk}, and r3 = 1. These 

critical pairs are not resolved without at least the addition of more rules, and, perhaps, 

more letters. 
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