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Abstract 

Nitriding of highly alloyed titanium material Ti5Al4V2Mo was performed at 500, 600,700,800, 900 ºC in the mixture of 50±10% 
Ar + 50±10% N2 at 300-450 Pa (3-4.5 mbar) for 3-4 hours. The hardness at the surface increased with temperature, and at 900 ºC 
it was 1.7 times higher than that of the untreated material. The hardness decreased with the depth, and the thickness of the 
hardened layer was 30-50 μm at 900 ºC. The phase composition is very complex, comprising various Ti phases, various titanium 
nitride phases, and titanium dioxide. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the National Research Nuclear University MEPhI (Moscow Engineering 
Physics Institute)  
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1. Introduction 

Titanium and its alloys are widely used in industry and medicine. These alloys are characterized by low specific 
weight, high corrosion resistance, and biocompatibility. However, low hardness and low wear resistance of these 
materials are two of the reasons for limiting their wider use. Nitriding of titanium alloys with the purpose of 
improvement of their wear resistance is an important task. Many works were devoted to nitriding of titanium and 
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2. Experimental details 
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Before nitriding, the samples were cleaned
voltage: 250-500 V, duration 15-30 minutes). N
in average. Gas compositions and pressures, d
given in Table 2. 

Ta

 The composition of 
the gas mixture 

Pressure p, mbar 

1 60%Ar +40%N2 3-3.5 

2 60%Ar +40%N2 3.5 

3 40%Ar +60%N2 4 

4 50%Ar +50%N2 3.8-4.2 

5 40%Ar +60%N2 4-4.5 

3. Results 

The samples after nitriding changed their c
800°C and changed color to gold at 900°C . Th
was chemically etched in the solution of 33% H
was examined in an electron microscope Hitach
was measured using a  FUTURE-TECH COR
normally to the treated surface before cutting
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The hardness as a function of temperature m
cutting is demonstrated in Fig. 3a. The hardn
temperature of nitriding 500 °C and steadily inc
sample was treated at 900 °C. It was approxim
than the hardness of the original sample.  
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Fig. 3. The hardness of nitrided samples: a) dependence on 
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Fig. 4.  X-ray diffraction spectra of the sa
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The main phases are -Ti (hcp) and titanium nitride of variable nitrogen concentration TiN1-x, (fcc). The lines of 
two phases are asymmetric that is possibly connected with depth nonuniformity of nitrogen concentration. The 
virgin alloy Ti5Al4V2Mo initially contains two phases ( + ),  therefore -Ti (bcc) is also observed. Additionally, 

-Ti which may be formed in non-equilibrium conditions of plasma implantation was also formed in the sample. 
Parameters of this phase are slightly different from the table values, and this may be due to the presence of V in the 
solid solution in the alloy. Additionally, traces of titanium dioxide TiO2, and tetragonal phases -TiN and Ti2N were 
also observed. The complex composition can be due to non-uniformity of nitrogen concentration that decreases from 
the surface to the depth due to diffusion. 

4. Conclusions 

Highly alloyed titanium Ti5Al4V2Mo was treated in the abnormal glow discharge in a mixture of Ar and N2 at 
temperatures 500-900 °C. Bright gold color, which is typical for titanium nitride, appeared at 900 °C. At this 
temperature, a layer (~ 5 μm) of dense nitrides and a layer (~ 30 ÷ 50 μm) of nitride precipitates appeared, and the 
hardness at the surface increased 1.7 times with respect to the untreated material. Increase of the hardness, 
nevertheless, was observed at all temperatures used, including the lowest temperature of 500 °C. The hardness 
decreases with depth. It was found that at large depths the hardness was 1.2 times less than the initial value. X-ray 
analysis demonstrated the complex phase composition consisting mainly of -Ti and TiN1-x with traces of -Ti, -
Ti, TiO2, -TiN, and Ti2N. The complex phase composition is due to the multiphase initial composition, non-
uniformity of nitrogen concentration through the depth, and non-equilibrium conditions of plasma impact. 
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