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Abstract

The migration of gas bubbles immersed in a liquid under the action of temperature gradient and surface tension
(Marangoni flow) in zero gravity environment is numerically investigated for different Ma, Re, and Pr (Marangoni,
Reynolds, and Prandtl numbers). The full Navier Stokes equations as well as the energy equation for temperature
gradient are solved by a volume of fluid (VOF) method/Finite Volume method, and the surface tension force is
modeled by a continuum surface force (CSF) model. The behavior of bubble migrating toward the hotter side by the
action of surface tension using the flow relations between two bubbles (leading and trailing bubble), and the
trajectories and the velocities of the different bubbles diameters, in microgravity environment have been
investigated numerically. It has been verified that the calculated results are in good agreement with available
experimental and numerical results. It is also concluded that the VOF is able to simulate two-phase flow under zero
gravity conditions.

Keywords: Marangoni Flow; Zerogravity; Bubbles; VOF

1. Introduction

Marangoni bubbly flow, which is the migration of bubbles due to surface tension gradients, is the main subject
of this paper. The investigation of how the process parameters affect the bubble migration has become an attractive
area for researchers recently. This investigation has very important applications for recent and future live in
microgravity areas, such as chemical, industrial and petroleum engineering applications. On the other hand, structure
academic study needs to investigate this phenomenon in details and conclude different parameters for different study
application such as kernels function which can be used in population balance equations. Marangoni flow could be a
gravity replacement for fluid flow simulation in microgravity application. In 1959, Young et al. [1] first investigated
the thermocapillary migration of bubbles and drops with their linear model, which is suitable for small Reynolds
number (Re) and small Marangoni number (Ma). Few low-gravity experiments have been carried out up to date, and
the most extensive data were presented by Thompson and DeWitt [2], who used the drop tower at NASA Lewis
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Research Center with 5.2 s of free fall and proved that the principal of Marangoni bubble flow phenomenon does
occur and it is the driving flow mechanism in a zero-gravity environment. The effect of surface deformation on the
terminal velocity of a single bubble was investigated numerically by Chen and Lee [3] who concluded that surface
deformation considerably reduces the terminal velocity. Computational results for a gas bubble, similar to those of
Balasubramaniam and Lavery [4] have also been obtained by Treuneret et. al. [5] who showed results of drop tower
experiments concerning thermocapillary bubble migration at high Reynolds and Marangoni numbers and noted
complicated transients and time-dependent behaviour in regimes where the flow has finite viscous and thermal
inertia. They also show a good comparison with [2]. Recently, Kang et. al. [6] reached the maximum Ma of bubble
thermocapillary migrations of 9288, which is larger than any previous space experiments. Their results of the
bubbles migration velocity confirmed the trend predicted by Balasubramaniam and Subramanian [7].
Investigations of the Marangoni motion of bubbles can only conducted in a low-gravity environment such as
sounding rockets, drop towers, and aboard space shuttles. Some previous experiments have noted complex transients
and time-dependent behaviour in regimes where the flow has finite viscous and thermal inertia and noted the needed
for theoretical and numerical results with which to compare their experimental results and to improve the physical
understanding, and to support the interpretation of experimental results [5]. In the present study a numerical method
of finite-volume/VOF model has been verified and validated using both theoretical and experimental data to
compute the Marangoni forces of single and multi bubbles migration. It is also show the main factors around rising
single and multi bubbles which help understanding the actual mechanisms of bubble behaviour in reduced gravity
and their coalescence mechanism.

The parameters characterizing Marangoni bubble migration, as revealed by the steady-state momentum and
energy equations, are the Reynolds and the Marangoni numbers which are coupled by the Prandtl number
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where R is the radius of the bubble; U is the measured local migration velocity, is the
thermal diffusivity; k and Cp are the thermal conductivity and the specific heat of the continuous phase; is the
density of the continuous phase. No turbulence model was used in this simulation, using a turbulence model gives
unphysical results for both VOF and Euler-Euler models [3]. All simulation were run at time t = 0 with initial
stationary liquid and gas with applicable surface tension between ethanol and nitrogen = 27.5 (dyn/cm), and
surface tension gradient d /dt ( t) = -0.09 (dyn/cm [8]. is the coefficient of surface tension:
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where 0 is the surface tension at a reference temperature T0, and T is a constant depending on the fluid type used in
the simulation.

2. Governing Equations, Numerical Scheme, and Boundary Conditions

2.1. Modeling Equations (VOF)
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The VOF model is a surface-tracking technique applied to a fixed Eulerian mesh. It is designed for two or more
immiscible fluids where the position of the interface between the fluids is of interest. In the VOF model, the fluids
share a single set of momentum equations, and the volume fraction of each of the fluids in each computational cell is
tracked throughout the domain. The equations being solved in the VOF model are as follows:
The volume fraction equation for the q-th phase:
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In the VOF model, the geometric reconstruction scheme that is based on the piece linear interface calculation (PLIC)
method is applied to reconstruct the bubble-free surface. It assumes that the interface between two fluids has a linear
slope within each cell, and uses this linear shape for calculation of the advection of fluid through the cell faces. The
first step in this reconstruction scheme is calculating the position of the linear interface relative to the centre of each
partially filled cell, based on information about the volume fraction and its derivatives in the cell. The second step is
calculating the adverting amount of fluid through each face using the computed linear interface representation and
information about the normal and tangential velocity distribution on the face. The third step is to calculate the
volume fraction in each cell using the balance of fluxes calculated during the previous step, Akhtar [9].

A single momentum equation is solved throughout the domain, and the resulting velocity field is shared among the
phases:
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The density and dynamic viscosity
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The energy equation is also shared among the phases:
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The VOF model treats energy, E, and temperature, T, as mass-averaged variables:
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where Eq for each phase is based on the specific heat of that phase and the shared temperature. The effective thermal
conductivity keff is also shared by the phases. The source term, Sh, contains contributions from radiation, as well as
any other volumetric heat sources.

2.2. Boundary Conditions

For the model numerical domain shown in Fig. 1, the following assumptions are made in the analysis:
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Fig. 1. Numerical Domain

1. Motion is 2D axisymmetric in cylindrical coordinates
2. Heat flux is zero at the bubble interface
3. Incompressibility of the liquid
4. Constant physical properties except for surface tension (UDF has been used)
5. Gravitational acceleration is zero

The vertical line denoted
separated by a distance H equal to 12 cm. The upper horizontal wall is no slip with constant temperature Th= 330K,
the lower horizontal wall is also no slip with constant temperature Tc = 300K. The domain was defined as a cavity
with abounded walls. For all simulations the initial state will be set with no velocity at the inlet, nor at the outlet, and
the pressure will be taken equal to the atmospheric pressure. The unsteady two dimensional 2D axisymmetric model
of the problem was formulated using the commercial software package FLUENT version 6.3. for modelling the
climb of a bubble in a column of liquid in zero gravity (Marangoni flow).

3. Numerical Procedure

3.1. Using Fluent, Grid independence, and experimental case validation

Concerning the number of cells, We have found that a good compromise between the time for one iteration and a
sufficient number of cells in the bubble was to use a grid made of an estimated 90000 cells, that is to say for axis
600 x 150. Another important point is that, when using the axisymmetric solver, we create a mesh only for the half
of the domain, thus reducing drastically the number of cells used, and consequently the time of calculation.
FLUENT will accept the axis in the direction of the positive X-axis only.

Grid independence was achieved by increasing the number of structurally arranged quadrilateral cells from
45,000 (450 x 100) to 90,000 (600x150) and plotting the convergence of certain parameters of interest such as
bubble migration time, bubbles coalescence time and distance, contours of temperature and stream lines. To validate
the numerical procedure, results were compared with experimental data provided by Tomphson et al. [2] and
Treuneret et. al. [5], and were found to be acceptable as shown in Fig. 2. The validation was done with an existing
experimental data [2], through simulation of 0.5 cm N2 bubble placed 1-cm from the bottom wall (cold). Hence the
size of the axissymmetric computational wall bounded domain Fig. 1. was chosen as 12 cm x 6 cm with no
or overflow ations, Ethanol properties were taken to be same as
those given in reference [2]. Surface tension and its coefficient used in the simulations for the Ethanol are ( = 27.5
dynes/cm and T = -0.09 dynes/cm. [8]. Material properties should be defined for each phase. The Boussinesq
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approximation is used for the liquid phase (Thermal Expansion Coefficient, = 0.00106 1/K). Default operating
pressure and location (101325 Pa, origin) are appropriate, but gravity must be turned off. The operating temperature
must be provided for the Boussinesq model. Boundary conditions need to be specified as constant temperature at the
inlet of Tc= 300 K and a constant temperature at the outlet Th = 330 K, same as the condition provided by Tomphson
et al.[2]. PISO scheme is used for Pressure-Velocity Coupling and PRESTO scheme used for pressure discretization.
All other options (including under-relaxation factors) will be kept as default. The volume-of-fluid (VOF) approach
implemented in FLUENT has been used for axissymmetry simulations. The effect of Prandtl (Pr) number was
considered. Figures 3 and 4 show the present simulation for two different liquids, Ethanol (Pr =16.3) and Methanol
(Pr =6.88), and Nitrogen bubbles have been used. The figures present the volume fraction, temperatures contours,
and stream lines after 4.6 seconds. The bubble displacement of 5 cm after 4.6 seconds (Fig. 3) is very close to the
experimental results of Tomphson et al.[2], their experimental zero-gravity measurements for a nitrogen bubble in

Fig. 2. The relation between Reynolds number and Marangoni number at different Prandtl numbers.

Fig.3. (a) Volume fraction (b) Temperature, and (c) Stream lines for Pr =16.28 (Ethanol) at t=4.6 at a distance of 5 cm
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Fig.4. (a) Volume fraction (b) Temperature, and (c) Stream lines for Pr =6.88 (Methanol) at t=4.6 at a distance of 7 cm

ethanol subjected to a linear temperature gradient were obtained using the NASA Lewis zero-gravity drop tower.
The effect of Prandtl number is seen in both figures, decreasing Pr increases the bubble displacement. The bubble
rise velocity, and shape has also been compared with the experimental data available in the literature and a good
agreement was obtained between experiments and CFD-Fluent simulation. The present trends of the bubble
migration stream line and temperature contours (Figs. 3 and 4, b-c) are in good agreement with the work of Nas and
Tryggvason 10].

4. Results and Discussion

The interaction of two bubbles (a small bubble with radius of 0.25 cm and a big bubble with radius of 0.5 cm) is
investigated in three different cases, namely:

1- Small bubble on top of big bubble.
2- Big bubble on top of small bubble.
3- Two equal radius bubbles.

Figure 5. shows the initial placement of the bubbles in the three cases for the computations presented in this section.

Case [1]
Two gas bubbles, big (Rbig= 0.5 cm) and small (Rsmall= 0.25 cm), are initially located at (1.5, 0.0) and (3.25, 0.0),

respectively, in the domain of a size (6x12 cm). The simulation results showed that the big bubble moves faster than
the small bubble, the velocity of the big bubble about twice that of the small bubble as shown in Fig. 6. The big
bubble approaches the small bubble within 2.257 s, and the two bubbles then eventually merged.

Case [2]
Two gas bubbles, big (Rbig= 0.5 cm) and small (Rsmall= 0.25 cm), are initially located at (3.25 cm, 0.0) and (1.5

cm, 0.0), respectively, in the domain of a size (6x12 cm). The simulation results showed that the big bubble moves
faster than the small bubble, the velocity of the big bubble about triple that of the small bubble as shown in Fig. 7.
The small bubble did not approach the big bubble, and the two bubbles did not merge.

Case [3]
Two gas bubbles of equal radius, (R= 0.5 cm), are initially located at (1.5cm, 0.0) and (3.25, 0.0), respectively,

in the domain of a size (6x12 cm). The simulation results showed that the two bubbles move together with almost
same velocity, then the upper bubbles moves a little faster when approaching the top hot wall (Fig. 7). The two
bubbles did not merge.

(b) (c)(a)
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Fig. 5. The initial conditions for the three cases.

Fig. 6. Coalescence process at the time intervals for case 1.

Fig. 7. The three cases after 4 seconds from the start of simulation.
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Figure 7. show the three cases after four seconds from the start of simulation, it is clear that in all cases the
bubbles in an immiscible fluid will move toward the warmer side when subjected to a temperature gradient in
microgravity environment (the Marangoni phenomenon or the thermocapillary migration phenomenon).
Surface tension generally decreases with increasing temperature and the non-uniform surface tension at the fluid
interface leads to shear stresses that act on the outer fluid by viscous forces, thus inducing a motion of the fluid
bubble in the direction of the thermal gradient as shown from Fig. 7. Temperature gradients cause surface tension
gradients at the liquid-gas interface (meniscus), and the variation of surface or interfacial tension along the meniscus
gives rise to convection. The flow from a region of low surface tension to a region of higher surface tension is
referred to as Marangoni flow, this phenomena is more clear in Figures 3 and 4. The motion of the bubble creates a
motion of the liquid around it. This motion of the ethanol reflects at the bottom of our domain and then comes back
in the back of the bubble.

5. Conclusions
In this paper, we have numerically investigated the thermocapillary migration (Marangoni effect) of spherical

bubbles in continuous phase fluid under the variation of temperature gradient. VOF model is used in the present
study to solve this transition case. It is concluded that VOF is a robust numerical method for the simulation of gas-
liquid two-phase flows with high density ratios under zero gravity conditions. The coalescence process of two gas
bubbles under different cases are revealed and compared in this paper.
In the future, this work will be extended to three dimensional cases (3D) and a rotational effect will be considered.
Also, more detailed discussions for different breakage and coalescence times for a group of bubbles will be
investigated and used to make kernels function which can be used in population balance equations.
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