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a b s t r a c t

We use the Andrews–Askey integral and the Leibniz rule for the q-difference operator
to give the q-integral representation of the Al-Salam–Carlitz polynomials, which includes
the q-integral representation of the Rogers–Szegö polynomials and the q-integral
representation of the q-Hermite polynomials as special cases.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction and statement of result

The following are the well-known Rogers–Szegö polynomials:

hn(x|q) =
n∑
k=0

[
n
k

]
xk. (1.1)

Other hypergeometric polynomials related to the Rogers–Szegö polynomials are the q-Hermite polynomials Hn(x|q),
which are often defined via the generating function [1]

∞∑
n=0

Hn(x|q)
tn

(q; q)n
=

∞∏
n=0

1
(1− 2xtqn + t2q2n)

.

The Rogers–Szegö polynomials and the q-Hermite polynomials have the following relationship:

Hn(cos θ |q) = einθhn(e2iθ |q). (1.2)

The Rogers–Szegö polynomials play an important role in the theory of orthogonal polynomials, particularly in the study
of the Askey–Wilson integral [2–4]. The Rogers–Szegö polynomials are the a = 0 case of the Al-Salam–Carlitz polynomials
ϕ
(a)
n (x|q), which are defined as [5]

ϕ(a)n (x|q) =
n∑
k=0

[
n
k

]
xk(a; q)k. (1.3)
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In [6], some integral representations of hypergeometric polynomials are given. In this work, we give the q-integral
representation of the Al-Salam–Carlitz polynomials, which includes the q-integral representation of the Rogers–Szegö
polynomials and the q-integral representation of the q-Hermite polynomials. The main result of the work is the following
q-integral representation of the Al-Salam–Carlitz polynomials:

Theorem 1.1. We have

ϕ(a)n (x|q) =
(ax, a; q)∞

(1− q)(q, q/x, x; q)∞

∫ 1

x

(qt/x, qt; q)∞tn

(at; q)∞
dqt. (1.4)

provided that no zero factors occur in the denominator.

2. Notation and known results

Before the proof of the theorem, we recall some definitions, notation and known results in [11,12] which will be used in
the proof. Throughout this work, it is supposed that 0 < |q| < 1. The q-shifted factorials are defined as

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1− aqk), (a; q)∞ =
∞∏
k=0

(1− aqk). (2.1)

We also adopt the following compact notation for multiple q-shifted factorials:

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n, (2.2)

where n is an integer or∞. The q-binomial coefficient is defined by[
n
k

]
=

(q; q)n
(q; q)k(q; q)n−k

. (2.3)

The q-difference operator Dq is defined by [7]

Dq{f (a)} =
1
a
[f (a)− f (aq)]. (2.4)

The following property of Dq is straightforward:

Dnq

{
(at; q)∞
(as; q)∞

}
= sn(t/s; q)n

(atqn; q)∞
(as; q)∞

. (2.5)

We also have the following Leibniz rule for Dq [8]:

Dnq{f (a)g(a)} =
n∑
k=0

qk(k−n)
[
n
k

]
Dkq{f (a)}D

n−k
q {g(q

ka)}. (2.6)

F.H. Jackson defined the q-integral via [9]∫ d

0
f (t)dqt = d(1− q)

∞∑
n=0

f (dqn)qn, (2.7)

and ∫ d

c
f (t)dqt =

∫ d

0
f (t)dqt −

∫ c

0
f (t)dqt. (2.8)

The following is the Andrews–Askey integral [10] which can be derived from Ramanujan’s 1ψ1 summation:∫ d

c

(qt/c, qt/d; q)∞
(at, bt; q)∞

dqt =
d(1− q)(q, dq/c, c/d, abcd; q)∞

(ac, ad, bc, bd; q)∞
, (2.9)

provided that no zero factors occur in the denominator of the integrals.

3. The proof of Theorem 1.1

Using the Andrews–Askey integral and the Leibniz rule for the q-difference operator, the q-integral representation of the
Al-Salam–Carlitz polynomials can be easily derived. Throughout this section, whenever Dq is applied, the argument should
be viewed as a function of a.
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Proof. Applying Dnq to both sides of (2.9), using

Dnq

{∫ d

c
f (a; t)dqt

}
=

∫ d

c
Dnq
{
f (a; t)

}
dqt (3.1)

and

Dnq

{
(qt/c, qt/d; q)∞
(at, bt; q)∞

}
=
(qt/c, qt/d; q)∞tn

(at, bt; q)∞
, (3.2)

we get∫ d

c

(qt/c, qt/d; q)∞tn

(at, bt; q)∞
dqt = Dnq

{
d(1− q)(q, dq/c, c/d, abcd; q)∞

(ac, ad, bc, bd; q)∞

}
=
d(1− q)(q, dq/c, c/d; q)∞

(bc, bd; q)∞
Dnq

{
(abcd; q)∞
(ac; q)∞

·
1

(ad; q)∞

}
=
d(1− q)(q, dq/c, c/d; q)∞

(bc, bd; q)∞

×

n∑
k=0

qk(k−n)
[
n
k

]
Dkq

{
(abcd; q)∞
(ac; q)∞

}
Dn−kq

{
1

(adqk; q)∞

}
. (3.3)

Employing (2.5), we finally obtain∫ d

c

(qt/c, qt/d; q)∞tn

(at, bt; q)∞
dqt =

d(1− q)(q, dq/c, c/d, abcd; q)∞
(ac, ad, bc, bd; q)∞

n∑
k=0

[
n
k

]
(ad, bd; q)k
(abcd; q)k

ckdn−k. (3.4)

If we let b = 0, c = x and d = 1 in (3.4), we get (1.4). �
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