Connectivity, Genus, and the Number of Components in Vertex-Deleted Subgraphs

Edward F. Schmeichel*
California State University, San José, California 95192

AND

Gary S. Bloom ${ }^{+}$

City College of New York, New York, New York 10031
Communicated by the Managing Editors
Received February 22, 1977

Let $c(G)$ denote the number of components in a graph G. It is shown that if G has genus γ and is k-connected with $k \geqslant 3$, then $c(G-X) \leqslant(2 /(k-2))(|X|-$ $2+2 \gamma$), for all $X \subseteq V(G)$ with $|X| \geqslant k$. Some implications of this result for planar graphs ($\gamma=0$) and toroidal graphs ($\gamma=1$) are considered.

We consider only finite, undirected graphs. Multiple edges are permissible, but loops are not. Our terminology and notation are standard except as indicated.

If G is a graph and $X \subseteq V(G)$, we use $G-X$ to denote the graph obtained when the vertices of X are deleted from G. We use $c(G)$ to denote the number of components of G.

Our first result gives a sufficient condition for a graph to be k-connected when $k \geqslant 4$.

Theorem 1. Let $|V(G)|>k \geqslant 4$, and suppose that

$$
\begin{equation*}
c(G-X) \leqslant \frac{2}{k-2}(|X|-2), \text { for all } X \subseteq V(G) \text { with }|X| \geqslant k-1 \tag{1}
\end{equation*}
$$

Then G is k-connected.

[^0]Proof. Let $X \subseteq V(G)$. If $|X|=k-1$, then (1) guarantees that $c(G-X)=1$. If $|X|<k-1$ and $c(G-X)>1$, then, since $|V(G)|>k$, there exists a superset X^{\prime} of X with $\left|X^{\prime}\right|=k-1$ and $c\left(G-X^{\prime}\right)>1$, which we just saw was impossible. So if $|X| \leqslant k-1$, we have $c(G-X)=$ 1 , and thus G is k-connected.

The converse of this theorem will not be true in general. There exist k-connected graphs G which do not satisfy (1) for every $X \subseteq V(G)$ with $|X| \geqslant k$ (e.g., consider $K_{n, n}$ with $n \geqslant 4$). However, we now give a partial converse to Theorem 1 in terms of the genus of the graph G.

Theorem 2. Let G be a graph with genus γ. If G is k-connected with $k \geqslant 3$, then

$$
\begin{equation*}
c(G-X) \leqslant \frac{2}{k-2}(|X|-2+2 \gamma), \text { for all } X \subseteq V(G) \text { with }|X| \geqslant k \tag{2}
\end{equation*}
$$

Proof. Let G be a k-connected graph with genus γ, and let $X \subseteq V(G)$ with $|X| \geqslant k$. Embed G in a sphere with γ handles. Add to G, in any manner, edges incident to at least one vertex of X until a situation is reached where the addition of any other edge of this type would lead to either crossing edges or a 2-gon (i.e., a face bounded by exactly two edges). In particular, multiple edges are permitted as long as they do not form a 2-gon. Call the resulting graph G^{\prime}. Since $G^{\prime}-X$ has exactly the same components as $G-X$, it suffices to prove (2) for G^{\prime} instead of G.

Let $G^{\prime}(X)$ denote the subgraph of G^{\prime} induced by X. We first prove:

$$
\begin{equation*}
\text { Each face of } G^{\prime}(X) \text { contains at most one component of } G^{\prime}-X \tag{*}
\end{equation*}
$$

If $G^{\prime}(X)$ does not satisfy $\left({ }^{*}\right)$, then $G^{\prime}(X)$ has a face containing at least two components of $G^{\prime}-X$. Choose any two of these components, say H and H^{\prime}. Clearly there exist vertices $v \in H$ and $v^{\prime} \in H^{\prime}$ such that the edge (v, v^{\prime}) could be added to the embedding of G^{\prime} without creating crossing edges.

Let f denote the face of G^{\prime} inside of which the edge (v, v^{\prime}) can be thus added. Since G^{\prime} is 3 -connected, f will be bounded by a simple cycle containing v and v^{\prime}. Let P_{1}, P_{2} denote the two paths along this cycle joining v and v^{\prime}. Each P_{i} contains a vertex in X, since P_{i} joins two components of $G^{\prime}-X$. Let x_{i} be a vertex of $P_{i} \cap X$, for $i=1,2$. It is easy to see that the edge (x_{1}, x_{2}) could be added to the embedding of G^{\prime} inside the face f without creating crossing edges or a 2 -gon. This violates the definition of G^{\prime}, and completes the proof of $\left(^{*}\right)$.

We have established that each face of $G^{\prime}(X)$ contains at most one component of $G^{\prime}-X$. On the other hand, since G^{\prime} is k-connected, any face of $G^{\prime}(X)$ containing a component of $G^{\prime}-X$ must be bounded by k or more
edges. (We are assuming here that $c\left(G^{\prime}-X\right)>1$, since otherwise (2) is trivially satisfied.) Therefore we can complete the proof of (2) by showing that the number of faces in $G^{\prime}(X)$ bounded by k or more edges is at most $(2 /(k-2))(|X|-2+2 \gamma)$.

Let E and F denote the number of edges and faces in the graph $G^{\prime}(X)$. By Euler's formula,

$$
\begin{equation*}
|X|-E+F=c\left(G^{\prime}(X)\right)+1-2 \gamma \tag{3}
\end{equation*}
$$

Suppose the faces of $G^{\prime}(X)$ are bounded by $f_{1} \geqslant f_{2} \geqslant \cdots \geqslant f_{F}$ edges. Since each edge in $G^{\prime}(X)$ is a bounding edge of a face exactly twice in $G^{\prime}(X)$, we have by (3)

$$
\sum_{i=1}^{F} f_{i}=2 E=2\left(|X|+F-c\left(G^{\prime}(X)\right)-1+2 \gamma\right)
$$

or

$$
\begin{equation*}
\sum_{i=1}^{F}\left(f_{i}-2\right)=2\left(|X|-c\left(G^{\prime}(X)\right)-1+2 \gamma\right) \leqslant 2(|X|-2+2 \gamma) \tag{4}
\end{equation*}
$$

Let $f_{1}, f_{2}, \ldots, f_{r} \geqslant k$. If $r>(2 / k-2)(|X|-2+2 \gamma)$, we have

$$
\begin{aligned}
\sum_{i=1}^{F}\left(f_{i}-2\right) & \geqslant \sum_{i=1}^{r}\left(f_{i}-2\right)>(k-2) \cdot \frac{2}{k-2}(|X|-2+2 \gamma) \\
& =2(|X|-2+2 \gamma)
\end{aligned}
$$

which contradicts (4). Hence, $r \leqslant(2 /(k-2))(|X|-2+2 \gamma)$, and thus (2) is satisfied for G^{\prime}. The proof of Theorem 2 is complete.

We can see that the bound in Theorem 2 is best possible in general by considering $K_{m, n}$, and using the result of Ringel [5] that:

$$
\gamma\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil, \quad \text { if } \quad m, n \geqslant 2
$$

In the special case when G is a planar graph (i.e., when $\gamma=0$), we have the following result.

Corollary. If G is a k-connected planar graph with $k \geqslant 3$, then $c(G-X)$ $\leqslant(2 /(k-2))(|X|-2)$ for all $X \subseteq V(G)$ with $|X| \geqslant k$.

Combining this corollary with Theorem 1, we have the following characterization of the connectivity of planar graphs in terms of a component inequality.

Theorem 3. Let $k \geqslant 4$. A planar graph with $|V(G)|>k$ is k-connected if and only if (1) holds in G.

Consider finally the special case when G is a toroidal graph (i.e., when $\gamma=1)$. Chvátal [2] has defined a graph to be t-tough if $c(G-X) \leqslant(1 / t)|X|$ whenever $c(G-X)>1$, and conjectures that every 2-tough graph is hamiltonian. It follows from Theorem 2 that a k-connected, toroidal graph with $k \geqslant 3$ is $((k-2) / 2)$-tough. In particular, a 6 -connected toroidal graph is 2-tough. In line with Chvátal's conjecture, it has been shown (see [1, 3]) that every 6 -connected, toroidal graph is indeed hamiltonian. On the other hand, we have no example of even a 4 -connected, toroidal graph which is nonhamiltonian, and Grünbaum [4] conjectures that no such graph exists. The question of whether such a graph exists is especially interesting in light of a theorem of Tutte [6] that every 4-connected, planar graph is hamiltonian.

References

1. A. Altshuler, Hamiltonian circuits in some maps on the torus, Discrete Math. 1 (1972), 299-314.
2. V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Math. 5 (1973), 215-218.
3. R. A Duke, On the genus and connectivity of hamiltonian graphs, Discrete Math. 2 (1972), 199-206.
4. B. Grünbaum, Polytopes, graphs, and complexes, Bull. Amer. Math. Soc. 76 (1970), 1131-1201.
5. G. Ringel, Das Geschlect des vollständiger paaren Graphen, Abh. Math. Sem. Univ. Hamburg 28 (1965), 139-150.
6. W. Turte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956), 99-116.

[^0]: * Supported in part by the Air Force Office of Scientific Research under Grant AFOSR-76-3017.
 ${ }^{\dagger}$ Supported in part by the National Science Foundation under Grant ENG76-18569.

