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Let ¢(G) denote the number of components in a graph G. It is shown that if G
has genus y and isk-connected with k > 3, then (G — X) < Q/k —2)( X | —
2 + 2y), for all X C V(G) with | X | > k. Some implications of this result for
planar graphs (y = 0) and toroidal graphs (y = 1) are considered.

We consider only finite, undirected graphs. Multiple edges are permissible,
but loops are not. Our terminology and notation are standard except as
indicated.

If G is a graph and X C V(G), we use G — X to denote the graph obtained
when the vertices of X are deleted from G. We use ¢(G) to denote the number
of components of G.

Our first result gives a sufficient condition for a graph to be k-connected
when k > 4.

THeoreM 1. Let | V(G)| > k = 4, and suppose that

c(G—X)<?i—2(}X| —2), forall XCV(G) with | X| >k — 1,
' @

Then G is k-connected.
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Proof. Let X C V(G). If |X| =k — 1, then (1) guarantees that
(G—X)=11If| X| <k —1and (G — X) > 1, then, since | V(G)| > k,
there exists a superset X’ of X with | X'| =k — 1 and ¢(G — X') > 1,
which we just saw was impossible. So if | X' | < k — 1, we have ¢(G — X) =
1, and thus G is k-connected.

The converse of this theorem will not be true in general. There exist k-con-
nected graphs G which do not satisfy (1) for every X C V(G) with | X' | > k
(e.g., consider K, , with n > 4). However, we now give a partial converse to
Theorem 1 in terms of the genus of the graph G.

THEOREM 2. Let G be a graph with genus y. If G is k-connected with k = 3,
then

2

c(G—X)<k__2

(X|—2+42y), foral XCV(G)with| X | = k.
(2

Proof. Let G be a k-connected graph with genus y, and let X C V(G)
with | X | > k. Embed G in a sphere with y handles. Add to G, in any manner,
edges incident to at least one vertex of X until a situation is reached where
the addition of any other edge of this type would lead to either crossing
edges or a 2-gon (i.e., a face bounded by exactly two edges). In particular,
multiple edges are permitted as long as they do not form a 2-gon. Call the
resulting graph G’. Since G’ — X has exactly the same components as G — X,
it suffices to prove (2) for G’ instead of G.

Let G'(X) denote the subgraph of G" induced by X. We first prove:

Each face of G'(X) contains at most one component of G' — X. @)

If G’(X) does not satisfy (¥), then G'(X) has a face containing at least two
components of G — X. Choose any two of these components, say H and
H'. Clearly there exist vertices v € H and v’ € H' such that the edge (v, v)
could be added to the embedding of G’ without creating crossing edges.

Let fdenote the face of G’ inside of which the edge (v, v’) can be thus added.
Since G’ is 3-connected, f will be bounded by a simple cycle containing
v and v'. Let P,, P, denote the two paths along this cycle joining v and v'.
Each P, contains a vertex in X, since P; joins two components of G’ — X. Let
x; be a vertex of P, N X, for i =1, 2. It is easy to see that the edge (x; , x,)
could be added to the embedding of G’ inside the face f without creating
crossing edges or a 2-gon. This violates the definition of G’, and completes
the proof of (*).

We have established that each face of G'(X) contains at most one com-
ponent of G’ — X. On the other hand, since G’ is k-connected, any face of
G’(X) containing a component of G’ -—— X must be bounded by k or more
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edges. (We are assuming here that ¢(G' — X) > 1, since otherwise (2) is
trivially satisfied.) Therefore we can complete the proof of (2) by showing
that the number of faces in G'(X) bounded by k or more edges is at most

Qe =) X | — 2+ 2y).

Let E and F denote the number of edges and faces in the graph G'(X). By
Euler’s formula,

[ X! —E+F=cGX)+1—2y. 3

Suppose the faces of G'(X) are bounded by f; > f; = - > fr edges. Since
each edge in G'(X) is a bounding edge of a face exactly twice in G'(X), we
have by (3)

Ji=2E=2X|+F—cG(X)—1+2y),

N

i=1

il

or
z(fi—Z):2(1X|—C(G’(X))—1+2V)<2(!X|~—2+27)- 4)

Let £, foren fo = k. I r > 2fk — 2)(| X | — 2 -+ 2), we have

F r
SU=D2Y (=D > (k=2 g (X =242

=2(X|—2+42y),

which contradicts (4). Hence, r << (2/(k — 2))(| X | — 2 + 2v), and thus (2)
is satisfied for G’. The proof of Theorem 2 is complete.

We can see that the bound in Theorem 2 is best possible in general by
considering K,, , , and using the result of Ringel [5] that:

Y(Kow) = [ (m — 231(" —2 ] it mon>2.

In the special case when G is a planar graph (i.e., when y = 0), we have
the following result.

CoROLLARY. If G is a k-connected planar graph withk = 3, then ¢(G — X)
LRIk —=2)(X|—2)forall X CV(G)with | X| > k.

Combining this corollary with Theorem 1, we have the following charac-
terization of the connectivity of planar graphs in terms of a component
inequality.
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THEOREM 3. Let k > 4. A planar graph with | V(G)| > k is k-connected
if and only if (1) holds in G.

Consider finally the special case when G is a toroidal graph (i.e., when
y = 1). Chvdtal [2] has defined a graph to be t-fough if (G — X) < (1/8)] X |
whenever ¢(G — X) > 1, and conjectures that every 2-tough graph is hamil-
tonian. It follows from Theorem 2 that a k-connected, toroidal graph with
k = 3 is ((k — 2)/2)-tough. In particular, a 6-connected toroidal graph is
2-tough. In line with Chvdtal’s conjecture, it has been shown (see [1, 3]) that
every 6-connected, toroidal graph is indeed hamiltonian. On the other hand,
we have no example of even a 4-connected, toroidal graph which is non-
hamiltonian, and Griinbaum [4] conjectures that no such graph exists. The
question of whether such a graph exists is especially interesting in light of a
theorem of Tutte [6] that every 4-connected, planar graph is hamiltonian.
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