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A new estimate is derived for the error committed in approximating a continuous 
function by Hermite-Fejer interpolation polynomials on the Chebyshev nodes of 
the first kind. The estimate obtained reflects the fact that the polynomials inter- 
polate the function which is being approximated. 

1. A BRIEF HISTORY OF ESTIMATES 

One of the proofs of Weierstrass’ approximation theorem using inter- 
polation polynomials was presented by Fejer [3] in 1916. We shall begin by 
recalling this result. 

Let xk = cos((2k - 1)42n), k = 1,2,..., n, denote the zeros of the 
Chebyshev polynomial of the first kind, 7’,(x) = cos(n arcos x), -1 <x < 1. 
If f E C([-1, l]), then there is a unique polynomial HznPl(f,x) of degree 
<2n - 1 such that 

H*n - 1 df, Xk) = f(x,), k = 1, 2 ,..., n, 

and 

K,-,(.Lx,)=O, k = 1, 2 ,..., n. 

This polynomial is known as the Hermite-Fejer interpolation polynomial 
based on the zeros of T,(x). 

Fejer’s result is the following: 

THEOREM 1 (L. Fejer). If f E C([-1, 11) then lim,,, IIHznPl(f)-fll 
= 0, where 11 . 11 denotes the uniform norm on the space C([-1, 11). 
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The first estimate of the rate of convergence of the polynomials was 
derived by Popoviciu [8] in 1950. The estimate is given in terms of the 
modulus of continuity off which is defined by 

o(f;6):=sup(lf(x)-f(y)l:--1 <x7 Y< ~,IX-Yl<~l. 

Popoviciu’s result is the following: 

THEOREM 2 (T. Popoviciu). For n = 1, 2, 3 ,..., ]] Hz+,(f) - f ]( < 
2w(f; n - “2). 

Bojanic [ 1 ] reports that a similar result was proved by Shisha ef al. [ 111. 
This estimate was improved by Moldovan [7] and, from quite a different 

approach, by Shisha and Mond [lo]. Their results are summed up in the 
following: 

THEOREM 3 (E. Moldovan, 0. Shisha, B. Mond). For n = 4, 5,6 ,,.., 

II Hzn-It.0 -fll G c14.f; (lnn)/n). 
Here C,, and later C,, C, ,,.., are absolute positive constants. 

In one sense, this is the best possible estimate. For, if g(x) = 1x1, then one 
can show that 

Cdln n)/n < lIHZn-l(g) - gll < C,(ln n)ln = C14g; On nYn> 

for infinitely many values of n. Thus, the function (ln n)/n which appears in 
Theorem 3 cannot be replaced by a function of smaller order. In this case, 
Theorem 3 gives the best possible estimate, but for the function g(x) = ]x Ia 
(0 < a < 1) the estimate (ln n/n)” given by Theorem 3 is not good, the 
correct estimate being of the order l/na. 

The next major improvement in the estimate was established by 
Bojanic [I], who gleaned an idea used by Steckin in a paper on Fourier 
series. Before stating Bojanic’s result we must define a particular class of 
functions. 

Let 0: [0, co) -+ [0, 00) be an increasing, subadditive, continuous function 
such that Q(0) = 0. Then define C(0) to be the following class of functions 

C(G) := {f E C([-1, I]) : odf; S) < O(6) for all 6 > 0). 

Bojanic’s result is as follows: 

THEOREM 4 (R. Bojanic). There exist positive constants C,, C, such 
that, for n = 2, 3, 4 ,..., 

2 $* Wllk) Q suP{llH*,-,df) -fll : f E W)} 9+ $, Jvlk). 
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This result is an improvement on Theorem 3. By using the properties of a 
modulus of continuity (see Lorentz [6, p. 43 et seq.]), we have 

and it is easy to see that this inequality gives correct estimates for all 
Lipschitz a functions (0 < a < 1). It is also easy to see that 

and thus Bojanic’s estimate improves all earlier results. His lower estimate 
shows that this theorem cannot be significantly improved if one considers all 
functions in the class C(Q). 

A possible improvement would be to show that 

where Ekdf) is the best approximation to f by polynomials of degree < k. 
Jackson’s [4, p. 161 famous theorem that Ekdf) < 4o(f; l/k) suggests this 
latter possible improvement. However, these problems are not the subject of 
this paper. 

The next improvement in estimates came from Virtesi [ 121 and 
Saxena [ 91. 

These authors studied the difference 

IH*n-lux)-f(x)l~ -1 <x< 1, 

and obtained Bojanic’s upper estimate as a corollary of their pointwise 
estimates. Their results may be written as follows: 

THEOREM 5 (P. Vlrtesi, R. B. Saxena). There is a positive constant C, 
suchthat,forn>2and-l<x<+l, 

Thus the approximation is considerably better at the end points than it may 
be at the centre of the interval. General lower bounds of this type for the 
difference ] H,, _ ru, x) -f(x)] have never been published. 

It is unfortunate that not one of the preceding estimates reflects the fact 
that if x is a node of interpolation then ( H2n- l(f, x) - f(x)1 = 0. Such an 
estimate was given by DeVore [2, p. 441: 
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THEOREM 6 (R. A. DeVore). For n = 1,2,3 ,..., and -1 < x < + 1, 

lH2,-,df,4 -.&)I < 2&f; n-'* I UW 

Notice that Theorem 6 implies that if T,(X) = 0 then H,, _ ,(J x) = f(x); 
that is, H2n--l(f x) interpolates f(x) at the zeros of T,(x). However, this 
estimate is not precise when x is not one of the nodes. 

To remedy the situation we shall prove the following result. 

THEOREM 7. There are positive constants C,, C,, such that, for n > 2 
and -1 <x,< +l, 

lH,,,W-So/S+ T,(x)* gl [w (I; (1-;2’v1) +w (f;;)] 

+ c,,w (f;F) 

2. PRELIMINARIES 

Before proving Theorem 7 we shall state a few preliminary formulae and 
results. 

An explicit formula for Hermite-Fejtr polynomials off will be required: 

H,,- ,w; x) = $, f(xk) hk(x), 

where 

xk = cos((2k - 1)7r/2n), 

hk(X) = Cl- xd T&)* 
n”(x - xk)* ’ 

and 

T,(x) = cos(n arcos x), 

It is well known that, for all xE [-I, 11, 

h(X) 2 0 

(2.1) 

P-2) 

(2.3) 

and 

$ h(X) = 1. 
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For each x E [- 1, 1 ] let xj be the node which is nearest to x. If there are 
two such nodes then let xi be either one of them. 

We shall require a lemma of Kis [5, p. 301: 

LEMMA 1. For -1 <x=cos8<+1, 

IfhJ - f(x)1 < 2w ( ,y)+Zw(f;-$) f if k=j 

<50 (f;~)+13~ (f;$) if i=lk--jl>l. 

The following elementary inequalities will be useful: 

LEMMA 2. If O<a,/I<x then 

(a) 0 < sin a < 2 sin f(a + /?) and 

(b) sinj(a+P)>sinf]a-/?I. 

Finally, we shall require 

LEMMA 3. Let x = cos 8, xk = cos ok k = 1,2 ,..., n, and xj be the node 
closest to x. Then 

ProoJ Suppose that ej < 19 < (~9~ + r9,+ ,)/2. Other cases may be treated 
similarly. Then, 

lcos nf?I 
e-ej = 

) cos no - cos ne,) 
8 - 0, 

~ I COs(n(ej + Bj+ ,)/2) - cos n8,l 

Vi + ej+ d/2 - ej 

2n ZZ-* 
77 

Therefore ] 0 - e,] < 71 I cos n01/2n. 
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3. PROOF OF THEOREM 7 

From (2.1), (2.2), (2.3) it follows that 

IH2,- ,(.A xl -.wl = 1 2 (f(Xk) -f(x)) hk(X) / 
k=l 

= El wk(x) + wi(x) + ,T+ , wk(x) 

= I, + I2 + I,, say. 

We shall proceed to estimate each of these three terms, Clearly if j = 1 or n 
then one of them will not be present. 

First we estimate I,. For k = j - i, i > 1, we have 

hktX) = (’ - xxk) T,(x)2 

nyx - Xk)2 

= (1 -x2> Tn(x)2 + xGW2 

n’(x - xk)2 n’(x - Xk) 

Now 
= Sk(x) + tk(x), say. 

sk(x) = An2 sin’ )(e + 8,) ’ sin2 f(6 - 6,) ’ 
sin2 0 . T,(x)2 x = cos e, 

TnW2 
’ 4n2 sin’ f(0 - e,) 

by Lemma 2a 

= O( 1) T,(x)~ im2, 
and 

tk(X) = 
xT,(x>~ 

2n2 sin j(8 + 8,) sin +(e- ok) 

= 0( 1) T,(x)‘ie2, by Lemma 2b. 

Therefore hk(x) = 0( 1) T,(x)2i-2. Then, using Lemma 1 we obtain 

j-l 

1, = c M-4 - f(xl h,(x) 
i=l 

= 0( 1) T,(x)~ 2 ip2[wcf; i(sin 8)/n) + wdf; i’/n’)] 
i=l 
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and so, by using Saxena’s methods [9], 

I,=O(l)-- y)’ + [o(f; (1 - X2)1’2/k) + w(f; l/k2)]. 
ktl 

(3.2) 

I, may be estimated in like manner: 

rz(X)2 n Z,=O(l)p n kz, [c&f; (1 -X2)y2/k) + 4.f; llk2)1. (3.3) 

It remains to estimate I,. 

I2 = If(xj) - .Ox)l hj(x> 

G I fCxj) - ftx)l 

< w(fi le- Ojl) 

~20 (f;F) byLemma3. (3.4) 

Formulae (3.1~(3.4) imply the result stated in Theorem 7. 
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