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Abstract

We use difference sets to construct interesting sets of lines in complex space. Using (v, k, 1)-difference
sets, we obtain k2

− k + 1 equiangular lines in Ck when k − 1 is a prime power. Using semiregular relative
difference sets with parameters (k, n, k, λ) we construct sets of n + 1 mutually unbiased bases in Ck . We
show how to construct these difference sets from commutative semifields and that all known maximal sets
of mutually unbiased bases can be obtained in this way, resolving a conjecture about the monomiality of
maximal sets. We also relate mutually unbiased bases to spin models.
c© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Work in quantum computing has led to renewed interest in certain special sets of lines in
complex space. A set of m lines in Cd spanned by unit vectors z1, . . . , zm is equiangular if there
is a constant a such that for all i 6= j ,∣∣〈zi , z j

〉∣∣ = a.

A pair of bases x1, . . . , xd and y1, . . . , yd in Cd is mutually unbiased if they are both orthonormal
and there is a constant a such that∣∣〈xi , y j

〉∣∣ = a
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for all i and j . We can view a set of n pairwise mutually unbiased bases in Cd as a set of lines
in n groups of size d such that distinct lines in the same group are orthogonal, and if x and y are
unit vectors spanning lines in different groups, then

|〈x, y〉| = a.

It is known that a set of equiangular lines in Cd has size at most d2, and that a set of
mutually unbiased bases contains at most d + 1 bases. In the latter case it is known that
equality holds if d is a prime power. Sets of equiangular lines of size d2 are known when
d ∈ {2, 3, 4, 5, 6, 7, 8, 19} [1–5] and there is numerical evidence to support the conjecture that
such sets exist for all d [1].

In this paper we offer some combinatorial constructions of these types of lines. Starting with
a certain type of difference set in an abelian group, we construct lines from the characters of the
group restricted to the difference set. In the case of equiangular lines, a (v, k, 1)-difference set
gives rises to a set of k2

− k + 1 lines in Ck due to König [6]. In the case of mutually unbiased
bases, starting with a suitable finite commutative semifield we find relative difference sets for a
group of automorphisms, which give rise to a class of mutually unbiased bases first discovered
by Calderbank, Cameron, Kantor and Seidel [7]. The procedure results in maximal sets of bases
in Cd for any prime power d .

We also develop some theory related to these objects. We present a version of Hoggar’s set of
64 equiangular lines in C8 [5]. The known constructions for d2 equiangular lines in Cd involve
taking the action of a group of d2 matrices on a single line in Cd . This is also the case for Hoggar,
but the group of matrices is not the usual one. We show that the most obvious generalization of
this construction does not work in higher dimensions.

Next, we consider equivalence of mutually unbiased bases. Most (but not all) of the known
maximal sets are equivalent. Our construction produces several inequivalent sets, which are
equivalent to those of Calderbank, Cameron, Kantor and Seidel; in fact all known maximal
sets are encapsulated in their work. This addresses a conjecture of Boykin, Sitharam, Tiep, and
Wocjan [8]: all known constructions are monomial.

Finally, our construction of sets of lines can be expressed naturally using type-II matrices. We
show that any spin model yields a set of three mutually unbiased bases.

2. Difference sets

Let G be a group of size v. We work in the complex group algebra C[G], which enables us to
identify a subset S of G with the formal sum∑

g∈S

g.

If ψ is a complex-valued function on G and S ⊆ G, then

ψ(S) :=
∑
g∈S

ψ(g).

Also

S−1
:=

∑
g∈S

g−1.

Denote the identity of G in C[G] by 1G . A subset D of G is a (v, k, λ)-difference
set if
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DD−1
= k1G + λ(G \ {1G}).

Theorem 2.1. The existence of a (v, k, 1)-difference set in an abelian group implies the existence
of a set of v equiangular lines in Ck .

Proof. Suppose that D is such a (v, k, 1)-difference set in an abelian group G, so v = k2
−k+1.

We construct equiangular lines from the irreducible characters of G restricted to D. Consider the
inner product of two characters:

〈χa � D, χb � D〉 =
∑
d∈D

χa(d)χb(d)

=

∑
d∈D

χab−1(d)

= χab−1(D).

In particular, χab−1 = χ1, the trivial character, when a = b. But the absolute value of χ(D)
satisfies

|χ(D)|2 = χ(D)χ(D)

= χ(D)χ(D−1)

= k + χ(G \ {1}),

where χ(G \ {1}) is either v − 1 or −1, depending on whether or not χ = χ1. So,

|〈χa � D, χb � D〉|2 =

{
k2, if χa = χb;

k − 1, otherwise.

Hence after normalizing, the characters are equiangular. �

A (v, k, 1)-difference set exists if and only if there is a projective plane on v points, with an
abelian group of collineations acting regularly on its point set. Such difference sets have received
considerable attention and are known to exist when k = q + 1, where q is a prime power. (For
more details see [9, Theorem VI.1.9].) These sets of equiangular lines were first discovered by
König [6] and then rediscovered by Xia, Zhou, and Giannakis [10].

The given k2
− k + 1 lines derived from the characters are flat: all entries have the same

absolute value. This set is in fact maximal with this property.

Lemma 2.2. There are at most k2
− k + 1 flat equiangular lines in Ck .

Proof. Let x1, . . . , xm be a set of flat equiangular lines in Ck , such that |〈xi , x j 〉|
2
= α for i 6= j

and each coordinate of xi has absolute value 1/
√

k. Consider the Gram matrix of

Ω := {x1x∗1 , . . . , xm x∗m} ∪ {e1e∗1, . . . , eke∗k };

that is, the matrix whose rows and column are indexed by Ω , such that for uu∗ and vv∗ in Ω ,

Guu∗,vv∗ = 〈uu∗, vv∗〉 = tr(uu∗vv∗) = |〈u, v〉|2.

If Jk,l denotes the k × l all-ones matrix, then the Gram matrix has the form

G =

α Jm,m + (1− α)I
1
k

Jm,k

1
k

Jk,m I

 ,
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where the first block of m rows and columns is indexed by xi and the last block of size k is
indexed by e j . Using elementary row operations, G is row-equivalent to

G ′ =


(
α −

1

k2

)
Jm,m + (1− α)I 0

1
k

Jk,m I

 .
From the eigenvalues of I and Jm,m we can determine the rank of G. The relative bound for m
lines in Ck (see [11]) states that

m ≤
k − kα

1− kα
. (1)

In fact, G has rank m + k − 1 if and only if (1) is satisfied with equality; otherwise, it has full
rank m + k. In either case, the rank is at least m + k − 1. Moreover, the rank of the Gram matrix
is the dimension of the span of Ω . The matrices of Ω are Hermitian, so their span (over R) is at
most k2. Thus

m + k − 1 ≤ rk(G) = dim(span(Ω)) ≤ k2,

and the result follows. �

3. Hoggar’s construction

In [5] Hoggar constructed a set of 64 equiangular lines in C8. We describe these lines using a
group of 64 unitary matrices acting on a single vector. Then, we show that d2 equiangular lines
in Cd can only be constructed with this particular class of matrices when d ∈ {2, 8}.

Let X , Y , and Z be Pauli matrices, namely

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y = X Z .

Then 〈X, Z〉/〈−I 〉 is a group of order 4, sometimes known as the Pauli group. We are interested
in the absolute value of angles between lines under the action of this group, so we can ignore
the modulus of −I and represent the Pauli group by the matrices {I, X, Y, Z}. We construct
equiangular lines by applying a tensor product of these matrices to a fixed vector. Let

G = {I, X, Y, Z}⊗3.

Then modulo −I , we have a group with 64 elements, each of which is an 8 × 8 matrix over C.
Let

r =
√

2, s =
1+ i
√

2
, t =

1− i
√

2
,

and let

v = (0, 0, s, t, s,−s, 0, r).

Then

{Av | A ∈ G}

is a set of equiangular lines, equivalent to that of Hoggar.
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Now consider v ∈ Cd under the action of the Pauli group for any d = 2k . Let

Gk = {I, X, Y, Z}⊗k

(again mod −I ), and let v = (v1, v2, . . . , vd).

Lemma 3.1. The lines

{Av | A ∈ Gk}

can only be equiangular for k = 1 or k = 3.

Proof. We establish a system of equations with the coordinates of v as variables, and show that
solutions can only exist for the given k. Let αi denote v∗i vi . Since v∗v = 1, we have

α1 + · · · + αd = 1.

Similarly, from |v∗(I ⊗ · · · ⊗ I ⊗ Z)v| = 1
√

d+1
, we have

α1 − α2 + · · · + αd−1 − αd = ±
1

√
d + 1

.

(Since each αi is real, the right-hand side must also be real.) More generally, let α =
(α1, . . . , αd). Then by considering v∗Av for A ∈ {I, Z}⊗k , we get the system of equations

Hα =
1

√
d + 1


√

d + 1
±1
...

±1

 ,
where H is a d × d Hadamard matrix:

H =

(
1 1
1 −1

)⊗k

.

Since H−1
=

1
d H , this system is easily solved for α:

αi =

√
d + 1+ li
d
√

d + 1
, (2)

for some odd integer li . Next, consider terms of the form fi = v
∗

i vi+1. Again the angles between
lines lead to a system of equations. Let Xk = I ⊗ · · · ⊗ I ⊗ X . Since |v∗Xkv| =

1
√

d+1
, we have

f1 + f ∗1 + · · · + fd−1 + f ∗d−1 = ±
1

√
d + 1

.

(Again, since fi + f ∗i is real, the right-hand side is also real.) From the fact that |v∗Xk(I ⊗· · ·⊗
I ⊗ Z)v| = 1

√
d+1

, we have

f1 − f ∗1 + · · · + fd/2 − f ∗d/2 = ±
ω

√
d + 1

,

where ω =
√
−1. (Since fi − f ∗i is purely imaginary, the right-hand side is purely

imaginary.) More generally, letting f = ( f1, f ∗1 , . . . , fd−1, f ∗d−1), and considering v∗Xk Av for
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A ∈ {I, Z}⊗k , it follows that

H f =
1

√
d + 1


±1
±ω
...

±1
±ω

 .
The solutions in f are of the form

fi ∈
±{0, 2, 4, . . .} ± {0, 2, 4, . . .}ω

d
√

d + 1
.

Thus,

fi f ∗i =
m

d2(d + 1)
,

for some integer m; that is, fi f ∗i is rational. However, there is nothing special about fi , the “cross
term” of vi and vi+1. For any i 6= j , let g = v∗i v j , and let M ∈ {I, X}⊗k be the permutation
matrix from the Pauli group that takes coordinate i to j (and j to i) on v. Then by considering
v∗M Av, A ∈ {I, Z}⊗k , we similarly get that gg∗ is rational.

Lastly, note that if g = v∗i v j , then gg∗ = αiα j , and this product is rational. However, from
formula (2) for αi ,

αiα j =
d + 1+ li l j + (li + l j )

√
d + 1

d2(d + 1)
,

which is rational if and only if
√

d + 1 is rational or li = −l j . If li = −l j for all i 6= j , then
there are only two possible indices of i and j , so d = 2. On the other hand,

√
2k + 1 is rational

only if k = 3. We conclude that the lines can only be equiangular for d ∈ {2, 8}. �

4. Mutually unbiased bases

Let G be a group and N a normal subgroup of G. A subset D of G is a relative difference set
if there is an integer λ such that

DD−1
= |D|1G + λ(G \ N ).

It is customary to assume that n = |N |, |G| = mn, and |D| = k. With these conventions we say
that D is a (m, n, k, λ) relative difference set; it is semiregular if m = k.

Theorem 4.1. The existence of a semiregular (k, n, k, λ)-relative difference set in an abelian
group implies the existence of a set of n + 1 mutually unbiased bases of Ck .

Proof. As with difference sets, we construct mutually orthogonal bases from the characters of G
restricted to the set D.

The characters G∗ of G form a group, as do the characters of G/N . Moreover, every character
of G/N induces a character of G which is constant on the cosets of N , and these characters form
a subgroup of size k. Denote this subgroup by H∗.
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Define basis of Bi of Ck to be the i th coset of H∗ (restricted to D). As with difference sets,
the inner product of two characters is:

〈χa � D, χb � D〉 =
∑
d∈D

χa(d)χb(d)

= χab−1(D).

It is easy to show (see [9, Lemma 10.9] for example) that χ(D) has absolute value k2, 0, or k,
depending on if χ is in {χ1}, H∗ \ {χ1} or G∗ \ H∗ respectively. Normalizing each character,

|〈χa � D, χb � D〉| =


√

k, χa = χb;

0, χa 6= χb but χaχ
−1
b ∈ H∗;

1, otherwise.

Hence the n normalized bases Bi are orthogonal and mutually unbiased. Since every entry of
every basis element has norm 1/

√
k, the standard basis is also unbiased with each Bi . �

With some additional assumptions on the bases involved, this construction can be reversed.
Suppose that u is a vector in a basis B which is mutually unbiased with the standard basis. Then
each entry of u has norm 1/

√
k. By multiplying u by

√
k, each entry has norm 1. We will call

this operation Schur-normalization. If we Schur-normalize all the vectors from an entire set of
mutually unbiased bases, then vectors u1 and u2 from bases B1 and B2 satisfy

| 〈u1, u2〉 | =


k, u1 = u2;

0, u1 6= u2 but B1 = B2;√
k, otherwise.

Note that a necessary condition for a collection of vectors to form a group under Schur
multiplication is that each vector in the collection must be Schur-normalized.

Corollary 4.2. Let B1, . . . , Bn be mutually unbiased bases of Ck , each mutually unbiased with
the standard basis. If the vectors of B1 ∪ · · · ∪ Bn form a group (of size nk) with respect to Schur
multiplication, then there exists a semiregular relative difference set with parameters (k, n, k, λ).

Semiregular relative difference sets are closely related to antipodal covering graphs: every
(k, n, k, λ)-relative difference set is equivalent to an antipodal distance-regular n-fold cover of
Kk,k with an automorphism group acting regularly on each colour class. See Godsil [12] for more
details on covers of complete bipartite graphs.

5. Semifields

Semiregular relative difference sets are not easy to find. We intend to construct them from
commutative semifields, and so it behooves us to describe these first.

Roughly speaking, a semifield is a field where multiplication need not be associative. More
formally, a finite semifield is a finite set E with two operations, addition + and multiplication ◦,
such that

(a) E is an abelian group under addition, with identity 0.
(b) If x ◦ y = 0, then x = 0 or y = 0.
(c) x ◦ (y + z) = x ◦ y + x ◦ z and (y + z) ◦ x = y ◦ x + z ◦ x .
(d) There is a multiplicative identity 1.
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Every finite field is a semifield. The right nucleus of E is the set

{x : a ◦ (b ◦ x) = (a ◦ b) ◦ x for all a, b ∈ E}.

This contains the additive subgroup of E generated by 1, which is a field of prime order. It
can be shown that E is a vector space over this field, and consequently a finite semifield has
prime power order. It can also be shown that, if p is prime, a semifield of order p or p2 is a
field.

Using a semifield E , we construct an incidence structure as follows. The point set of the
incidence structure is just E × E ; we denote the points by ordered pairs (x, y). The line set is a
second copy of E× E , where we denote a line by [a, b]. The element a of the line [a, b] is called
its slope. The point (x, y) lies on the line [a, b] if and only if

y = a ◦ x + b.

If for each c in E we adjoin the line consisting of the points

(c, y), y ∈ E,

then the resulting incidence structure is the affine plane AG(2, E).
We construct some groups of automorphisms. If a, b ∈ E define the map Ta,b by

Ta,b(x, y) := (x + a, y + b).

It is easy to check that if (x, y) lies on [u, v], then Ta,b(x, y) lies on [u, v+ b− u ◦ a]. Therefore
Ta,b is an automorphism and the set

T := {Ta,b : a, b ∈ E}

is an abelian group that acts transitively on points, and with each parallel class of lines forming
an orbit of lines. (A parallel class is the set of lines with a given slope.)

We similarly define a map Su,v on lines by

Su,v([r, s]) := [r + u, s + v].

It is not hard to show that

Su,v(x, y) = (x, y + u ◦ x + v).

Therefore Su,v is an automorphism and

S := {Su,v : u, v ∈ E}

is an abelian group that acts transitively on the lines and has the point sets of the lines of infinite
slope as its point orbits.

Now define Hu,b by

Hu,b := Tu,b Su,0.

Then

Hu,b Hv,d = Hu+v,b+d+u◦v.

Given this it is not hard to show that

H := {Hu,b : u, b ∈ E}
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is a group and that if E is commutative, then H is commutative. We also find that H acts
transitively on points and lines. The following result is originally due to Hughes [13] in 1956.

Theorem 5.1. Let E be a finite commutative semifield of order q. Then the group H is abelian
with order q2, and the subset

H0 = {Hu,0 : u ∈ E}

is a relative difference set in H with parameters (q, q, q, 1).

Corollary 5.2. Let E be a finite commutative semifield of order q. Then the characters of H
restricted to H0, together with the standard basis, are a set of q + 1 mutually unbiased bases in
Cq .

For a survey of finite semifields, see Cordero and Wene [14]. We now construct mutually
unbiased bases explicitly using the characters of H .

Lemma 5.3. When q = pn is odd, let ω be a primitive pth root of unity, and let 〈a, x〉 denote
the scalar product from E × E to G F(p). Then

φab(Hx,y) = ω
〈2a,x〉+〈b,2y−x◦x〉

is a character of H.

Proof.

φab(Hx,y)φab(Hw,z) = ω
〈2a,x〉+〈b,2y−x◦x〉ω〈2a,w〉+〈b,2z−w◦w〉

= ω〈2a,x+w〉+
〈
b,2(y+z+x◦w)−(x+w)◦2

〉
= φab(Hx+w,y+z+x◦w). �

When q = 2n is even, we need more structure. Let {e1, . . . , en} be a basis for E over G F(2),
let {̂e1, . . . , ên} be a basis for R, a free module over Z4. For each x =

∑
xi ei in E , xi ∈ Z2,

embed x in R as

x 7→ x̂ =
n∑

i=1

xi êi .

Since xi ∈ {0, 1}, any element of R can be written uniquely in the form x̂ + 2ŷ, with x, y ∈ E .
This map is not an additive homomorphism, but it does preserve addition mod 2: for any x and y
in E ,

2(̂x + ŷ) = 2x̂ + y.

Define multiplication on R as follows: let

êi ê j = êi ◦ e j

for basis elements êi and ê j , and extend linearly to all of R. Then multiplication distributes over
addition, and the embedding preserves multiplication mod 2:

2x̂ ŷ = 2x̂ ◦ y.

Finally, note that since x̂ + ŷ = x̂ + y + 2̂z for some z ∈ E , we have

(̂x + ŷ)2 = (x̂ + y + 2 ẑ)2 = (x̂ + y)2.
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With these properties, the proof of the following is the same as Lemma 5.3.

Lemma 5.4. Let i denote a primitive 4th root of unity, and let 〈u, v〉 denote the scalar product
from R × R to Z4. Then for a, b in E,

φab(Hx,y) = ω
〈2̂a,̂x〉+

〈̂
b,2ŷ−x̂2〉

is a character of H.

In the special case when E is in fact a field, the characters of H are simpler. When q = pn is
odd, using the trace function tr : E → G F(p), the characters may be written as

φab(Hx,y) = ω
tr(2ax+b(2y−x2)). (3)

When q = 2n is even, take R to be the Galois ring G R(4n) and embed E into the Teichmüller
set T of R. That is, identify each x ∈ E with the element of T congruent to x mod 2. Letting tr
denote the Galois ring trace from R to Z4,

φab(Hx,y) = i tr(2ax+b(2y−x2)) (4)

is a character for all a, b ∈ E .
These characters of H , when restricted to a relative difference set in the group (that is, taking

y = 0), form a set of q mutually unbiased bases in Cq . As we explain in the next section, the
bases from Eqs. (3) and (4) are equivalent to those of Klappenecker and Rötteler in [15].

6. Equivalence

Equivalence of mutually unbiased bases was first introduced by Calderbank, Cameron,
Kantor, and Seidel [7]. Identify a vector in Cn with a point in projective space PG(n − 1,C), so
that two vectors in Cn are considered the same if they span the same one-dimensional subspace.
Two sets of mutually unbiased bases {B0, . . . , Bd} and {B ′0, . . . , B ′d} are equivalent if there is a
unitary operator U mapping the first set of bases to the second set (in no particular order):

{U (B0), . . . ,U (Bd)} = {B
′

0, . . . , B ′d}.

Note that U preserves angles between lines: for any two subspaces 〈x〉 and 〈y〉,

|〈U x,U y〉| = |〈x, y〉|.

In [7], Calderbank et al. found several inequivalent mutually-unbiased bases (which they
referred to as orthogonal frames) using symplectic spreads and Z4-Kerdock codes. In particular,
given a symplectic spread Σ , they showed how to construct a maximal set of mutually
unbiased bases F(Σ ) (Theorem 5.6 in the even case; Theorem 11.4 in the odd case). They
then showed that two sets of bases F(Σ1) and F(Σ2) are equivalent if and only if there is
a symplectic transformation sending Σ1 to Σ2 (Proposition 5.11 and Corollary 11.6). Using
Kantor’s result [16] on inequivalent symplectic spreads, Calderbank et al. concluded that a large
number of inequivalent sets of mutually unbiased bases exist for Cn where n is an odd power of 2.

Since there is a natural correspondence between semifields and symplectic spreads (see
for example Kantor [17, Proposition 3.8]), our mutually unbiased bases in Corollary 5.2 are
equivalent to those of Calderbank et al. In fact, all known maximal sets fit into this framework.
In this section, we show that the constructions of Alltop [18], Wootters and Fields [19],
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Klappenecker and Rötteler [15], and Bandyopadhyay, Boykin, Roychowdhury, and Vatan [20]
are all equivalent and are a special case of the constructions of Calderbank et al. In the process, we
show that all known constructions of maximal sets of mutually unbiased bases are “monomial”,
answering a conjecture of Boykin, Sitharam, Tiep, and Wocjan [8].

Throughout this section, we express mutually unbiased bases in terms of matrices, where the
columns of each q × q matrix form the bases for Cq . So, two sets of matrices are equivalent if
there is a unitary map taking one set to the other, up to permutations of columns and multiplying
any column by an element of C of modulus 1.

Firstly, consider the odd case. The earliest construction was due to Alltop [18], although he
expressed his result in different terms. Let F denote the finite field of order q and characteristic
p (p odd). As before, tr is the G F(p)-valued trace on F and ω is a primitive pth root of unity.
Define the matrices Aα by

Aα :=
1
√

q

(
ωtr(x+α)3+y(x+α)

)
x,y
, x, y ∈ F.

If p > 3, then {Aα : α ∈ F} ∪ {I } is a set of q + 1 mutually unbiased bases for Cq .
The next construction was originally due to Ivanovic [21] (in the case of prime dimension)

and Wootters and Fields [19] (who generalized Ivanovic’s work to all prime powers). Define Wα

by

Wα :=
1
√

q

(
ωtr(αx2

+xy)
)

x,y
, x, y ∈ F.

Klappenecker and Rötteler [15, Theorem 2] gave a simplified proof that the matrices Wα together
with the identity matrix form a set of mutually unbiased bases.

Lemma 6.1. For p > 3,

{Aα : α ∈ F} ∪ {I }

is equivalent to

{Wα : α ∈ F} ∪ {I }.

Proof. For convenience, let

χ(x) := ωtrx .

Multiply each Aα on the left by the unitary matrix A∗0. Since A∗0 = A−1
0 , this map takes A0 to I

and I to A∗0 (which, after dividing column x by ωtrx3
, is W0). In the remaining cases:(

A∗0 Aα
)

x,y =
∑
z∈F

(
A∗0
)

x,z (Aα)z,y

=
1
q

∑
z∈F

χ
(
−z3
− xz

)
χ
(
(z + α)3 + y(z + α)

)
=

1
q

∑
z∈F

χ
(

3αz2
+ (3α2

+ y − x)z + (α3
+ yα)

)
.

This expression is known as a Weil sum and can be evaluated with the following formula from
Lidl and Niederreiter [22, Theorem 5.33]:
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∑
z∈F

χ
(

a2z2
+ a1z + a0

)
= χ

(
a0 −

a2
1

4a2

)
η(a2)G(η, χ).

Here η(a2) is the quadratic residue of a2 and G(η, χ) is a Gaussian sum which is independent of
a0, a1 and a2. Thus,(

A∗0 Aα
)

x,y =
1
q
χ

(
12α4

+ 12yα2
− (3α2

+ y − x)2

12α

)
η (3α)G.

Now divide each column by its entry in the row x = 0, namely (A∗0 Aα)0,y . (This does not affect
the absolute value of the angle between the columns.) Most of the terms cancel. The result is(

A∗0 Aα
)

x,y(
A∗0 Aα

)
0,y

= χ

(
−x2
+ 2x(3α2

+ y)

12α

)

= χ

(
−

1
12α

x2
+

3α2
+ y

6α
x

)
=

(
W
−

1
12α

)
x, 3α2+y

6α

.

We conclude that pre-multiplying by A∗0 maps Aα to W−1/12α , up to the column permutation
y 7→ (3α2

+ y)/6α. Thus the mutually unbiased bases are equivalent. �

Bandyopadhyay, Boykin, Roychowdhury, and Vatan [20] gave another construction of the
same bases. Let {eu} denote the standard basis for Cq , indexed by the elements of F. For a in F,
define the following q × q matrices:

X (a) : eu 7→ eu+a,

Z(a) : eu 7→ ωtr(au)eu .

Clearly, the standard basis is a complete set of eigenvectors for Z(a). It is also easy to verify
that the vectors

fu =
∑
v∈F

ωtr(uv)ev, u ∈ F

form a complete set of eigenvectors for X (a).
Define a map from F2 to the q × q matrices as follows:

Da,b := X (a)Z(b).

Up to a phase, these matrices are sometimes called the generalized Pauli matrices. Each Da,b is
unitary and monomial, and {Da,b}, modulo scalar multiples of I , is isomorphic to F2 as a group.
Bandyopadhyay et al. partition these matrices into commuting sets and show that the common
eigenvectors must form mutually unbiased bases. Those eigenvectors are the bases of Wootters
and Fields.

Lemma 6.2. Let a, c, d, and b = 2ac be in F. Then

φc,d =
∑
x∈F

ωtr(cx2
+2dx)ex (5)

is an eigenvector for Da,b.
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Next, consider the case where q is even. Again, the first construction was due to Wootters and
Fields, but Klappenecker and Rötteler [15, Theorem 3] gave a simpler description. With q = 2n ,
as before let T denote the Teichmüller set of the Galois ring R = G R(4n) and let tr : R → Z4
denote the trace. Define

Wα :=

(
i tr(α+2y)x

)
x,y
, x, y ∈ T,

where i =
√
−1. Note that tr(x2) = tr(x) in T , so after some permutation of α these matrices

have the form

Wα =

(
i trαx2

+2yx
)

x,y
, x, y ∈ T,

which are equivalent to those after Lemma 5.4.
Again, Bandyopadhyay et al. constructed the same bases using Pauli matrices. The connection

between the bases defined using R = G R(4n) and the Pauli matrices, defined over F = G F(2n),
is the natural mod 2 mapping. In addition to being a ring homomorphism from R to F, it is
bijection from T to F.

Recall that T is multiplicatively closed, and any element of R can be written x + 2y for
x, y ∈ T . Note that (x + 2y)2 = x2 is in T . Also (x + y)2 = x2

+ y2
+ 2xy, so for any x and y

in T , x + y + 2
√

xy is the unique element of T congruent to x + y mod 2.
Using the bijection between T and F, the Pauli matrices are, with a, u ∈ T ,

X (a) : eu 7→ eu+a+2
√

ua,

Z(a) : eu 7→ (−1)tr(au)eu = i tr(2au)eu .

As in the case of q odd, the eigenvectors of Da,b are the bases described by Klappenecker and
Rötteler.

Lemma 6.3. Let a, c, d, and b = ac be in T . Then

φc,d =
∑
x∈T

i tr(cx2
+2dx)ex

is an eigenvector for Da,b.

Proof.

X (a)Z(b)φc,d =
∑
x∈T

i tr(cx2
+2dx)X (a)Z(b)ex

=

∑
x∈T

i tr(cx2
+2dx+2bx)ex+a+2

√
xa

=

∑
x∈T

i tr(c(x+a)2+2d(x+a)+2bx−2cax−ca2
−2da)ex+a+2

√
xa

= i−tr(ca2
+2da)

∑
x∈T

i tr(c(x+a)2+2d(x+a))ex+a+2
√

xa

= i−tr(ca2
+2da)φc,d .

In the second last line, (x + a)2 = (x + a + 2
√

xa)2 and 2(x + a) = 2(x + a + 2
√

xa). �
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7. Monomiality and nice error bases

In their construction, Bandyopadhyay et al. [20, Theorems 3.2 & 3.4] showed that any
set of mutually unbiased bases B = {B1, B2, . . . , Bm} in Cn is equivalent to a maximal
commuting basis of matrices: a collection of n × n unitary matrices C = C1 ∪ C2 ∪ · · · ∪ Cm
such that

(a) |Ci | = n,
(b) I ∈ Ci ,
(c) the matrices of Ci commute, and
(d) the matrices of C are pairwise orthogonal with respect to the trace inner product.

More specifically, basis Bi is the set of common eigenvectors for Ci , and we say that B is
obtained by partitioning C . For the bases of the previous section, Lemmas 6.2 and 6.3 indicate
that C = {Da,b}, the generalized Pauli matrices.

Boykin, Sitharam, Tiep, and Wocjan [8] defined a set of mutually unbiased bases to be
monomial if it is equivalent to a set of bases in which all of the matrices of C are monomial.
Since each Da,b is a monomial matrix, the mutually unbiased bases of Wootters and Fields (or
the equivalent reformulations of [15] or [20]) are monomial. In fact, this result holds for all of the
mutually unbiased bases in Corollary 5.2: the bases are equivalent to those of Calderbank et al.,
which are monomial by construction.

A set C of n × n unitary matrices is called a nice error basis if:

(a) the matrices are pairwise orthogonal (with respect to the trace inner product), and
(b) modulo scalar multiples of the identity, C is isomorphic to a group of order n2.

Again, the generalized Pauli matrices are the canonical example. So, the mutually unbiased bases
of Wootters and Fields are obtained by partitioning nice error bases. The bases of Calderbank
et al. are also obtained by partitioning the generalized Pauli matrices. This verifies the conjecture
of Boykin, Sitharam, Tiep, and Wocjan [8, Conjecture 3.4]: all maximal constructions of
mutually unbiased bases that we know of are both monomial and obtained by partitioning nice
error bases.

8. Spin models

Spin models were introduced by Jones in [23]. Here we show that they can be used to construct
mutually unbiased bases.

The Schur product M ◦ N of two m × n matrices M and N is the m × n matrix such that

(M ◦ N )i, j := Mi, j Ni, j .

The all-ones matrix J is an identity matrix for the Schur product. A matrix M has an inverse
with respect to the Schur product if and only if all its entries are non-zero; we denote the Schur
inverse of a Schur invertible matrix M by M (−). Finally a v × v matrix M is a type-II matrix if
it is invertible and Schur invertible and

M M (−)T
= v I.

Recall that a matrix is flat if all its entries have the same absolute value. The following lemma is
easy to prove.
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Lemma 8.1. Let M be a square matrix. Then any two of the following statements imply the third:

(a) M is a type-II matrix.
(b) Some nonzero scalar mutliple of M is unitary.
(c) M is flat.

As a corollary we note that if the unitary matrix M is unbiased relative to the identity matrix,
then it is a flat type-II matrix. These matrices are sometimes called complex Hadamard matrices.

If M is Schur invertible, then Mi/j denotes the ‘Schur ratio’

Mi/j := (Mei )(Me j )
(−).

A type-II matrix W is a spin model if each of the ratios Wi/j is an eigenvector for W . For example,
if

a :=
1
2

[
−v + 2±

√
v2 − 4v

]
then (a − 1)I + J is a type-II matrix, and it is easy to show that it is a spin model (known as the
Potts model). Spin models are interesting because each spin model gives an invariant of knots
and links. For example, the Potts model gives rise to the Jones polynomial. Some spin models
also provide sets of mutually unbiased bases, as we now show.

Our next result is a consequence of Lemma 4.3 and Lemma 9.2 from [24].

Lemma 8.2. Let A be a type-II matrix of order n× n and let D j be the diagonal matrix with rth
diagonal entry equal to the rth entry of the j th column of

√
n A(−). If A is a spin model, then for

j = 1, . . . , n,

D j AD−1
j = A−1 D j A.

If A is unitary and flat, then the diagonal entries of D j all have norm 1. From this it follows that
each diagonal entry of A−1 D j A is equal to tr(D j ). On the other hand, (D j AD−1

j )i,i = Ai,i .
Therefore the diagonal entries of A are constant, and so each is equal to 1/

√
n. Consequently

tr(D j ) = 1/
√

n for each j , which shows that that column sums of A(−) are constant.

Corollary 8.3. Suppose that A is a unitary type-II matrix. If A is a spin model, the column sets
of the matrices I , A and D j A form a set of three mutually unbiased bases.

Proof. By the previous lemma, A−1 D j A = D j AD−1
j . The diagonal entries of D j have norm 1,

and so D j is unitary. Hence D j AD−1
j is a flat unitary matrix and therefore A−1 D j A is flat and

unitary. �

All of the known maximal sets of mutually unbiased bases are equivalent to a set of the form

{I, A, D1 A, . . . , Dn−1 A},

where each Di is diagonal and A is the character table of the additive group of G F(n) (which is
type-II).

We consider one example of spin models. Suppose that θ is a root of unity and let W by the
n × n matrix with rows and columns indexed by 0, 1, . . . , n − 1 and with i j-entry θ (i− j)2 . Then

(W ∗W )r,s =

n−1∑
i=0

θ−(r−i)2+(s−i)2
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=

n−1∑
i=0

θ (s−r)(s+r−2i)

= θ s2
−r2

n−1∑
i=0

θ2(r−s)i .

It follows that W is type II if and only if θ2 is a primitive nth root of unity. Clearly W is flat.
Now

(Wr/s)i = θ
(r−i)2−(s−i)2

= θ (r−s)(r+s−2i)
= θr2

−s2
θ2(r−s)i

and since W is a circulant, it follows that W is a spin model when θ2 is a primitive nth root of
unity.

All known examples of unitary spin models arise from character tables of finite abelian groups.
There are examples of non-unitary spin models — one due to Jaeger [25] coming from the
Higman–Sims graphs and a second family due to Nomura [26] coming from Hadamard matrices.
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The authors thank Martin Rötteler for many valuable discussions on the content of this paper.

References

[1] J.M. Renes, R. Blume-Kohout, A.J. Scott, C.M. Caves, Symmetric informationally complete quantum
measurements, J. Math. Phys. 45 (2171).
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