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The ability to capture permeability of fractured porous media plays a significant role in several engi-
neering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to
solve fluid flow and coupled flow-deformation problems encountered in these engineering applications,
both empirical and theoretical models had been proposed in the past few decades. Some of them are
simple but still work in certain circumstances; others are complex but also need some modifications to
be applicable. Thus, the understanding of state-of-the-art permeability evolution model would help
researchers and engineers solve engineering problems through an appropriate approach. This paper
summarizes permeability evolution models proposed by earlier and recent researchers with emphasis on
their characteristics and limitations.
� 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by

Elsevier B.V. All rights reserved.
1. Introduction

Permeability is generally defined as the ability of fractured
porous media to allow the passage of fluid (Friedman, 1977). It has
been significantly influenced by geotechnical and geological engi-
neering activities. Thus, the ability to capture the evolution of
permeability under various (mechanical, chemical and thermal)
conditions is crucial to several applications in reservoir, geotech-
nical, mining and petroleum engineering (Berkowitz, 2002).

Several theoretical and experimental investigations have been
conducted to characterize permeability evolution laws in terms of
porosity, stress, temperature, chemical process, mass removal and
failure models (Zhu andWong,1997; Morris et al., 2003). Generally,
there are four main families of permeability evolution models, i.e.
based on (i) porosity, (ii) stress and damage, (iii) equivalent channel
concept, and (iv) network model. However, due to the complex
interactions between flow and deformation in geotechnical and
geological engineering activities, the models mentioned above
have their own limitations and can only be applicable for certain
conditions. Therefore, studies on permeability evolution models of
fractured porous media are highly required to deal with fluid flow
problems. Undoubtedly, the understanding of state-of-the-art
permeability evolution model would help researchers and
ock and Soil Mechanics, Chi-

ics, Chinese Academy of Sci-
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engineers develop, modify and apply permeability model through
an appropriate approach.

The main objective of this paper is to review the recent
advancement of permeability evolution model for fractured porous
media. Permeability evolution models proposed by earlier and
recent researchers are discussed, with their main features and
limitations being noted.
2. Permeability evolution models based on porosity

Changes in permeability and porosity coincide in laboratory
experiments, and quite a few theories have been proposed to
investigate the relationship between these two parameters (Zhang
et al., 1994b; Zhu andWong, 1997; Schutjens et al., 2004; Zhu et al.,
2007; Hu et al., 2010). Based on experimental observations, Sulem
and Ouffroukh (2006) indicated that the permeability of porous
media is strongly influenced by the initial porosity, stress level,
deformation process (e.g. strain hardening-compaction and strain
softening-dilatancy), pore geometry and structure. Generally, two
main approaches can be identified among the existing models for
permeability-porosity relationship: the exponential function
model and the power function model. Among them, the most
widely accepted approach is the generalized power law, which is
formulated in the permeability-porosity space, log-log space and
semi-log space (David et al., 1994; Bernabé et al., 2003; Morris et al.,
2003; Zhu et al., 2007). The other approach, i.e. the exponential law,
was proposed by David et al. (1994), and it was initially applied to
simulating the compaction-induced permeability reduction. This
approach was also adopted by Zhu andWalsh (2006) and Zhu et al.
(2007) to demonstrate the relationship between permeability and
mean stress prior to the onset of shear-enhanced compaction or
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dilatancy. The main features, as well as the limitations of such two
approaches, are discussed in the following subsections.
2.1. Permeability-porosity models based on power law

The Kozeny-Carman (KC) model (Kozeny, 1927; Carman, 1937) is
one of the most widely accepted and simple models that links
permeability and porosity in a general loading space. It can be
expressed as (Walsh and Brace, 1984)

K ¼ f3

Bs2S2
(1)

where K is the permeability of porous media; f is the porosity of
porous media; s is the tortuosity defined as the ratio of real flow
path to the straight path from flow-in-point to flow-out-point; S is
the specific surface area (surface area per unit volume) of porous
media; B is the pore shape coefficient, which is 2 for circular tubes
and 3 for thin cracks. This model provides reasonable simulation
results under certain conditions; however, it cannot conveniently
be used because of the specific surface area parameter S and the
pore shape coefficient B which are not easily calibrated. Several
semi-empirical equations have subsequently been proposed to
improve the estimation of rock permeability subjected to various
loading conditions (Panda and Lake, 1994; Bernabé et al., 2003;
Costa, 2006; Zhu et al., 2008); and some modified KC models are
listed here.

Bayles et al. (1989) proposed a porosity-permeability relation-
ship based on the fractal pore cross-sectional area, which can be
formulated as

K ¼ c
fzþ2

ð1� fÞ2
(2)

where c is a constant to determine permeability, and z is an
exponent parameter for porosity. A similar permeability formula-
tion based on fractal pore space observations developed by Costa
(2006) is written as

K ¼ c
fz

1� f
(3)

Another empirical KC-like permeability-porosity model for glass
and fiber mats conducted by Rodriguez et al. (2004) is expressed as

K ¼ c
fzþ1

ð1� fÞz (4)

Additional simple and empirical functions can be identified
within this family. For instance, using a single transient test,
Ghabezloo et al. (2009) adopted a power law to analyze the low-
permeability creeping material:

K
Ko

¼
�
f

fo

�a

(5)

where a is the porosity sensitive exponent that depends on the
properties of the material and on the evolution process; and Ko and
fo are the initial permeability and porosity, respectively. Based on
experimental observations, David et al. (1994) suggested that the
porosity sensitive exponent a ranges from 1 to 25 for common
geological materials. For instance, the exponent a is equal to 11 in
the analysis by Ghabezloo et al. (2009). Zhang et al. (1994a) con-
ducted in-situ tests to measure the permeability during hot
pressing of calcite, and the measurements showed that, in the
relatively high porosity regime, the permeability changes with
porosity following a power law with an exponent of 3, which is in
agreement with the work of Zhu et al. (1995) and Lockner and
Evans (1995). Experimental data for Berea and Boise sandstone
showed that the exponent a increases with increasing effective
mean stress; a ¼ 19.5 for Boise sandstone in the cataclastic regime,
whereas for the Darley Dale stone, a low porosity rock with a
porosity of 14%, a decreases from 19.5 to 11.3 (Zhu andWong, 1997;
Bernabé et al., 2003). Therefore, a depends on both the confining
stress level and the initial porosity (Bernabé et al., 2003).

Another well-established approach is based on the concept of
percolation, the hypothesis of which is expressed as: the pore
connectivity will vanish if the porosity is below a certain level,
known as the percolation threshold, fcr. Therefore, some in-
vestigators have suggested that it would be more appropriate to
address the permeability-porosity relationship by considering
percolation theory (Dienes, 1983; Zhang et al., 1994b; Guéguen
et al., 1997; Alkan, 2009). Applying this concept, Sahimi (1994)
proposed a power law of permeability-porosity:

K ¼ cðf� fcrÞz (6)

This model is simple and has been the subject of several in-
vestigations. For instance, Sornette (1987) and Feng et al. (1987)
suggested z ¼ 4.4 and fcr with values of 0.0026e0.036 using the
“Swiss-Cheese” model; Zhang et al. (1994b) used fcr ¼ 0.04 and
z ¼ 2.18 to fit the experimental data of various materials. Saar and
Manga (1999) indicated that, for the fully penetrable sphere (FPS)
model, fcr ¼ 0.3 and z ¼ 2, which were also proposed by Feng
et al. (1987) and Sahimi (1994, 1996). However, the main limi-
tation of this model is that it requires several experimental tests
to calibrate the model parameters, which are based on measuring
fractal properties of the solid matrix system. Also, these param-
eters were obtained through curve-fitting based on experimental
observations of specific materials, thus limitation may be arisen
to other engineering materials, in which pore spaces, tortuosity,
interfacial spaces and other internal geometries are generally
quiet different. However, due to their simplistic form and limited
number of parameters, they are still preferable in engineering
application.

2.2. Permeability-porosity models based on exponential law

Another form of the permeability-porosity relationship is
expressed by exponential functions. In studying the basin drill core,
Nelson (1994) and Bethke (1985) proposed an empirical equation,
which suggests that the porosity varies linearly with the log of
permeability:

log10K ¼ cifþ co (7)

where the coefficients ci and co are derived from the regression
fitting of laboratory data for the core. Other investigators deter-
mined values of ci and co for sand (Bethke, 1985), shale (Neuzil,
1994; Garavito et al., 2006), and carbonate rock reservoirs (Lucia
and Fogg, 1990). Morris et al. (2003) fitted the experimental data
of rocks (Zhu and Wong, 1997) with a porosity greater than 16.7%;
the permeability-porosity relationship takes the following form:

K ¼ Ko expðCfÞ (8)

where C is the permeability-porosity exponent. It is observed that
upon further reduction in porosity (less than 16.7%), a sudden
reduction in the permeability occurs due to irreversible damage
(Zhu and Wong, 1997). Morris et al. (2003) approximated this
process by
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K ¼ Ko exp
�
Cf

�
p0; dp

�� dpmin
�
dp; dpmax

��
(9)

where p0 is the effective mean stress; and dp and dpmax are the
permeability damage reduction factor and the maximum perme-
ability damage, respectively. This equation is based on the obser-
vation that a section of the permeability-porosity curve becomes a
straight line, which signifies the reduction in permeability due to
damage (Morris et al., 2003).

Yang and Aplin (2010) proposed a linear relationship between
the log of permeability and the porosity for mudstone over a
restricted regime:

ln K ¼ aK þ bKeþ cKe
0:5 (10)

where e is the void ratio; aK, bK and cK are the coefficients (m2) that
are functions of the clay content. As indicated by Yang and Aplin
(2010), a slightly more complex formulation could better describe
the permeability-porosity relationship over the full range of
porosity in mudstone. Similar treatment of the logarithmic
permeability and porosity has also been found in other studies
(Nagaraj et al., 1994; Dewhurst et al., 1999; Yang and Aplin, 2007).

In general, KC family of models describes the evolution of
permeability through a fitting process, which lacks a mechanical or
geometrical analysis of the problem. Therefore, they cannot be used
universally without modification. Nevertheless, empirical ap-
proaches are still preferred for engineering applications due to
simplicity of the approach and limited number of parameters
involved. In addition, the KC family of models is flexible and can be
easily modified or specified by incorporating additional mechanical
or geometrical parameters related to the main features of the ma-
terial studied.

3. Permeability functions based on the stress and damage
concept

Rice (1992) proposed an exponential permeability-stress rela-
tion when analyzing the generation and dissipation of excess pore
pressure in seismogenic systems. The exponential law takes the
following form:

K ¼ Ko exp
�
� p
po

�
(11)

where p is the normal stress, and po is the reference normal stress
taken as 5 MPa.

David et al. (1994) also introduced a similar relationship except
that a pressure sensitivity coefficient r is adopted and po is taken as
equal to the reciprocal of r under hydrostatic loading. However, the
physical meaning and measurement of po are still unclear.

Lyakhovsky and Hamiel (2007) proposed a power law that ac-
counts for the damage variable:

K ¼ Ko exp
�
f

fo

�z� D
Do

�z0

(12)

where D and Do are the current damage variable and the reference
damage value, respectively; and z0 is the exponent parameter for
damage. By fitting the experimental data from Tenthorey et al.
(1998), z ¼ 2 is obtained from the numerical solution, and z0 ¼ 3
is obtained for the permeability-porosity relationship.

David et al. (1994) plotted the effective permeability pressure in
a semi-log plot as a function of the compaction pressure below the
shear-enhanced compaction or dilatancy. They approximated the
compaction-induced reduction in permeability as an exponential
function:
K ¼ Ko exp½ � rðp0 � poÞ� (13)

Based on experimental work, Zhu (2006) demonstrated that,
prior to reaching a critical effective mean stress C*, the exponential
law provides a good estimation of the relation between perme-
ability and porosity. He proposed a probabilistic damage model to
characterize the evolution of permeability during shear-enhanced
compaction. Zhu et al. (2007) extended this model to quantify the
stress-induced anisotropy in the permeability during cataclastic
flow:

ln K ¼ ln Ko � rðp0 � poÞ � b

2

�
1þ signðp� jÞerf

				p� j
d

				



(14)

where b is a multiplier coefficient; j and d are the slight and mean
percentages of theGaussian distribution, respectively. The signðp� jÞ
is positive if p> j and is negative if p< j before the error function. The
error function erf jðp� jÞ=dj is introduced to very small if the effective
mean stress is below the critical stress C*, and the effect of the
deviatoric stress becomes negligible; if the effectivemean stress is in
the vicinity of C*, the error function changes rapidly, which means
that the shear stress may dominate in this deformation regime.

Similarly, Tang et al. (2002) proposed a coupled flow-stress-
damage (FSD) model for rocks by extending Biot’s theory to
include the effects of stress and damage on permeability:

K ¼
�

Ko exp½ � gðp� cpoÞ� ðD ¼ 0Þ
uKo exp½ � gðp� cpoÞ� ð0 < D � 1Þ (15)

where u is the damage factor of permeability which is greater than
1, and it is defined as the increase in permeability caused by
damage; c and g are the coefficients defined in Biot’s seepage
equation and permeability-stress relation, respectively. The results
of this model show that the nature of fluid flow in rocks varies from
material to material and that heterogeneity significantly affects
flow features. The FSD model proposed by Tang et al. (2002) is
formulated in two-dimensional (2D) space. As an extension, Li et al.
(2010) conducted a three-dimensional (3D) FSD model to study the
permeability-stress evolution for the pre-failure and post-peak
stress stages of rock at an elemental scale; and the failure process
and fluid flow are investigated in a large-scale element. Note that
the damage effects taken into account from Eqs. (15) and (12) are
totally different: u (Eq. (15)) accounts for the damage-induced
increment in permeability, and it does not mean that perme-
ability increases with increasing damage, which makes the FSD
model different from Eq. (12) by Lyakhovsky and Hamiel (2007).

The permeability evolution laws based on stress and damage
concepts combine semi-empirical and semi-mechanical ap-
proaches. This approach provides a good estimation of the variation
in permeability for materials subjected to mechanical changes or to
damage, which does not take into account the deformation vari-
ables. These models also enjoy a greater level of flexibility. They are
complex when considering mechanical or geometrical parameters,
or can be made simple under certain conditions when adopting an
empirical approach to a specific condition. Despite these advan-
tages, the lack of geometrical and mechanical parameters has
limited their application to practical problems.

Recently, due to rapid advance in industry of coal seam gas and
unconventional energy exploitation, stress-induced permeability
evolution models in fractured sorbing media and multiphase flow
media are investigated extensively. Notable work published
recently includes: Robertson and Christiansen (2007), Zhang et al.
(2008), Clarkson et al. (2008), Liu and Rutqvist (2010), Liu et al.
(2011a), Wang et al. (2012), Bedayat and Taleghani (2012), Arson
and Pereira (2013), Mokhtari et al. (2013), Cho et al. (2013),
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Latham et al. (2013), Peng et al. (2014), Wang et al. (2014), etc., with
major characteristics and development of this group of models
being discussed and investigated by Liu et al. (2011b). Due to
extensive discussion and comparison made by many investigators
(Liu et al., 2011b; Wang et al., 2012; Latham et al., 2013; Mokhtari
et al., 2013), details of this kind of models are not presented, with
brief summary being given herein. The advancement of these
models is the high accuracy to describe the variation of perme-
ability due to pressure/stress around fractures explicitly and to
account for the deformation process. This is attributed to careful
considerations of poromechanical responses and sorption-induced
deformation inside pore matrix, which also are addressed by
various approaches through different viewpoints. Application of
these models may encounter some difficulties: parameter identi-
fication, real in-situ stress conditions of coal seams/shale reservoirs
and coupling with deformation in numerical analysis.

4. Equivalent channel models

Paterson (1983) proposed an equivalent channel model for
permeability evolution (see Fig. 1), which can be expressed as

K ¼ BR2

F
(16)

F ¼ ðlc=lÞ2
f

(17)

where R is the hydraulic radius; the shape coefficient B of a pore is
1/2 for a circular cross-section, 2/3 for an equilateral triangular
cross-section, and 1/3 for a slot; ðlc=lÞ2 is a relative tortuosity factor,
in which lc is the real flow path and l is the straight path from flow-
in-point to flow-out-point; F characterizes the entire porous body
as a channel; and BR2 reflects the cross-section of the equivalent
channel as well as its resistance to fluid flow (see Fig. 1).

Walsh and Brace (1984) proposed an equivalent channel model,
which can be expressed as

K ¼ ðf=SÞ2
FB

(18)

where

F ¼ s2
.
f (19)

These two equivalent channel models are quite similar; there-
fore, most authors credit the equivalent channel model to both
Paterson (1983) and Walsh and Brace (1984). This model can
Fig. 1. Schematic diagram of equivalent model (Paterson, 1983). i is the unit length of
one element, A is the area of cross-section, q is the flow rate, and q0 is the flow rate in
equivalent channel.
provide useful insight into the relation between the pore geometry
and transport properties. However, it assumes that there are no
preferential paths and that the hydraulic flow paths are identical to
the electrical flow paths, which are not realistic assumptions
(Fredrich et al., 1993; David et al., 1994; Zhu et al., 1995).

5. Pore network models

A pore network, as shown in Fig. 2 (conceptual model) and Fig. 3
(simplified model), consists of a series of nodes that represent the
individual pores of the pore structure and the bones that link the
nodes of the neighboring pore spaces (Van Marcke et al., 2010).

The conceptual model developed by Bernabé (1991) includes
three types of pore tubes: nodal pores, tabular pores, and sheet-like
conduits. Zhu et al. (1995) proposed a simplified network model by
choosing a pipe with a circular cross-section as the conducting
element.

The permeability of porous media is determined by the pore
space geometry, such as the pore size distribution and the con-
nectivity of the pores (Bernabé, 1991). Fatt (1956) introduced a
network model of fluid flow in porous media and used a 2D lattice
of pore spaces to investigate the permeability evolution in
drainage; however, a 2D regular model may cause a very irregular
and complex geometry for the description of a 3D pore space (Van
Marcke et al., 2010). Thus, several studies have been conducted to
estimate the flow properties using regular networks (Chatzis and
Dullien, 1977; Blunt and King, 1991; Dixit et al., 1998), but regular
networks fail to capture the statistical distribution of the pore
space. Therefore, more realistic random networks have been used
to characterize the real complexity of the pore structure (Bryant
et al., 1993). Zhu et al. (1995) developed a network model with
regular topology (cubic), but with a local conductance distributed
randomly according to a probability function based on micro-
structure measurements. Similar investigations can also be found
in the literature (Zhu and Walsh, 2006; Zhu et al., 2008; Algive
et al., 2009; Raoof and Hassanizadeh, 2010). Garboczi and Bentz
(1996, 1997) used electron microscopy to obtain a 2D micrograph
of the pore structure and then measured the particle size distri-
bution to construct a 3D model to simulate the hydration of con-
crete. More recently, the X-ray computed tomography (CT)
technique has been used for applications of flow-deformation in
geo-materials; several network models are based on 2D or 3D
imagery (Vogel, 2000; Vandersteen et al., 2003; Balhoff et al., 2007;
Thompson et al., 2008; Lemarchand et al., 2009; Joekar-Niasar et al.,
2010; Raoof and Hassanizadeh, 2010; Van Marcke et al., 2010; Sun
et al., 2012; Jivkov et al., 2013; Raoof et al., 2013; van der Land et al.,
2013; Ma et al., 2014; Yin and Zhao, 2014), which provide visual
images and better understanding of fractured porous media under
Fig. 2. The conceptual model of a pore space (Bernabé, 1991).



Fig. 3. The simplified network model (Zhu et al., 1995).

J. Ma / Journal of Rock Mechanics and Geotechnical Engineering 7 (2015) 351e357 355
flow conditions. Despite this advantage, these models require
rigorous pore space images, which are not widely accessible. On the
other hand, these models are often conducted under static condi-
tions without considering the evolution of permeability associated
with deformation and damage.

6. Conclusions

Four main families of permeability evolution models are
reviewed and discussed in this paper. The first family is based on
the observed relationship between permeability and porosity,
established through a fitting process, which lacks a mechanical or
geometrical analysis of the problem. Nevertheless, this empirical
approach is still popular among engineering applications due to its
simplicity and limited number of parameters. The second family
takes into account the stress and damage concepts when devel-
oping permeability evolution model, and can be classified as a
semi-empirical and semi-mechanical approach. This approach
provides a good estimation of the variation in permeability for
materials subjected to mechanical changes or to damage, advances
in which can fully account for mechanical responses and pore/
fracture’s geometrical effects. Despite these advantages, identifi-
cation of geometrical/mechanical parameters and real in-situ stress
conditions of coal seams/shale, as well as difficulties in coupling
with deformation in numerical analysis has limited their applica-
tion to practical problems. The third main family is called equiva-
lent channel model, which can provide useful insight into the
relation between the pore geometry and transport properties. The
idealized geometry parameters and simplified flow path limit its
application and further development. The last large group of
permeability evolution models is network model, which has been
paid much more attention to and experiences faster advancement
due to flourishing unconventional gas/oil exploitation. This kind of
model provides visual images and better understanding of frac-
tured porous media under flow conditions. Despite this advantage,
these models require rigorous pore space images, which are not
widely accessible. Another main criticismmay come from the static
conditions addressed by this family, which is not able to account for
the evolution of permeability associated with deformation and
damage.

Most of these models aforementioned perform well under
certain conditions; however, none can be used universally without
modification, as the characteristics of the permeability evolution
with volumetric change and fracture deformation is complicated
under various loading conditions. Further modification of these
models and development of new permeability evolution models
are highly required to deal with flow problems.
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