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Abstract

We consider the brane-localized supersymmetry breaking in 5D compactifisd/afp. In case of a bulk gaugino with
arbitrary brane masses for its even and odd modes, we find the mass spectrum and the wave functions of gaugino. We show that
the gaugino masses at the distant brane are soft in the usual sense in the effective field theory with zero modes of bulk gauge
fields and they are also extremely soft in view of the one-loop finite mass of a brane scalar in the KK regularization.
0 2003 Published by Elsevier B.®pen access under CC BY license.
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1. Introduction

Orbifold compactification of extra dimensions is necessary to get a chiral fermion and a lower supersymmetry as
zero modes from higher dimensions [1]. Moreover, in recent works on GUT orbifolds, Scherk—Schwarz twists [2]
have been also used to break the GUT symmetry in higher dimensions into the SM gauge group and break further
the remaining supersymmetry after orbifolding. It is noticeable that as far as the mass spectrum and the mode
functions are concerned, a Scherk—Schwarz (SS) breaking in orbifolds represented by a local symmetry in the
Lagrangian is equivalent to a Wilson-line breaking along extra dimensions [3,4]. For instance, a SS twist for gauge
symmetry breaking in orbifolds corresponds to a Wilson lineAy) # 0 of the 5D gauge field, and a SS twist for
supersymmetry breaking in orbifolds corresponds to a Wilson Iir(e/éf+ iV52> # 0 of theSU(2) g gauge fields
in the 5D off-shell supergravity [5], which is the nonzeraerm of the radion multiplet [6]. There has been a lot
of discussion on the softness of SS breaking of supersymmetry in 5D compactified on the orbifold in view of the
one-loop corrections for the zero mode of a bulk scalar [7—12]. It has been shown that the one-loop finiteness of
SS breaking mainly comes from the so-called KK regularization [7,8,11,13].

As an alternative to the Scherk—Schwarz breaking of supersymmetry, in this Letter, we consider the brane-
localized supersymmetry breaking [14—23]. For simplicity, we consider the 5D SUEY gauge theories on
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$1/7, where the brane-localized supersymmetry breaking is parametrized by general brane mass terms for
gaugino. When one introduces brane mass terms for gaugino, it is likely to simply drop the mass term for the
odd mode of gaugino [6,19]. However, in case that the wave functions of odd modes have a discontinuity on the
branes, the odd mass term also contributes to the equations of motion so that it makes the wave functions of even
modes discontinuous on the branes [20-22]. Then, the brane coupling of the even modes are determined from the
careful integration of the brane action, but not from the equations of motion.

In this Letter, with general brane mass terms for gaugino, we find the mass spectrum and the wave functions
of gaugino. While the mass spectrum is the same as the case with a specific Scherk—Schwarz parameter, the wavi
functions of gaugino are modified due to the brane mass terms. Therefore, we find that the generic brane mass
terms are not soft even in the usual sense in the effective field theory with zero modes of gauge fields. We also
show that for the same brane couplings of gauge boson and gaugino, the one-loop finiteness of a brane scalar mas
in our model is guaranteed in the KK regularization scheme. We find that this is the case with distant breaking
of supersymmetry [15-18], i.e., brane matters at one brane and only brane masses of gaugino at the other brane
The one-loop finiteness in our model is due to the distant supersymmetry breaking which is necessary for the 4D
supersymmetric gauge coupling at the brane where matter fields are located.

This Letter is organized as follows. For comparison with our brane-localized supersymmetry breaking, we first
give a brief review on the Scherk—Schwarz boundary condition in 5D compactified /#p. In Section 3, we
consider the general brane-localized supersymmetry breaking in the gauge sector and show the wave functions anc
the mass spectrum of the bulk gaugino. Then, in Section 4, we present the one-loop KK gauge corrections to a
massless scalar located at the brane and discuss its finiteness in the context of the distant supersymmetry breaking
In Section 5, the conclusion is drawn.

2. Scherk—Schwarz boundary conditions

Let us first give a review on the Scherk—Schwarz breaking on orbifolds. One can impose a general SS boundary
condition on a bulk fieldp (x, y) living in ST with the radiusk as

D(x,y427R) =D (x, y), 1)

wherex, y denotes 4D and extra dimension coordinates respectivelwaadhe SS parameter. Then, one gets a
mode expansion of the bulk field as

D (x,y) = ol (1T @)Y/R g (1) () 2
(x,y) Nz i (x) (2)
After the Z orbifolding, which identifiesy with —y in S, the bulk field becomes even or odd underas follows
1 oo
Py(x,y) = (P, ) + P (x, — Z coq(n + w)y/R)d™ (x), ©
n —00
1 o0
P (x,3) = o (P(x,) = Px, =) = Z sin((n + w)y/R)® "™ (x) )
with the mass spectrum
,  (n+w)? :
M:=———, n= integer (5)

n R2
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Therefore, from Egs. (3) and (4), we can rewrite the SS boundary conditiofs/@h as

b, _ (co92nw) —sin2rw) Dy
(@) (x.y+2mR) = (Sin(an) cos 2 w) ) <q>_> x, ). ©)

For instance, in 5D SUSY/ (1) gauge theories compactified 6%/Z>, the bulk gaugino is composed of two
Weyl spinorsi, andiz, which are even and odd undgs, respectively. Then, performing a SS twist of the bulk
gaugino and replacing the twisted gaugino by the untwisted bulk gauinay) as

A 5. 9) coswy/R) —sin(wy/R)\ ( *1 5. 9) @)
-x’ = . I -x’ )
) Y T Usinwy/R)  coswy/R) ) \3p) Y
one can show that the twisted bulk gaugino without mass terms is equivalent to the untwisted bulk gaugino with
constant bulk mass terms such as

L 020,00 — 329y i1) = — 22 Giai + i) ©)
21)’2 20yA1) = 2R 1Al 2A2).

3. Brane-localized super symmetry breaking

Now we are in a position to consider the brane-localized supersymmetry breaking. We consider a 5D SUSY
U (1) model compactified 051/ Z, with the radius ofR. After orbifolding, there appear two fixed pointsya& 0
andy = 7 R where brane matters can be located. The 5D action for the bulk gaugino we are considering is

TR
4 - - 1
S= [ dx dy | Aiotdr1 + A2igH ko — é(xlayxg — A20yr1) + h.c.

—7R
— e0(A1A1 + por2A2)8(y) — €x (A1 + prr2A2)8(y — T R) + h-C-], 9

whereegg , are the dimensionless parameters of brane mass terms for gauginpg -amde the ratios between
brane mass parameters of even and odd modes of gaugino at each brane. The brane mass terms have been al
considered only at one fixed point §it/Z> in the presence of the Scherk—Schwarz breaking [22]. In our case, we
consider a more general situation where brane mass terms exist at both two fixed pstjtgzn

We have chosen two Weyl components of the bulk gauginanda,, to be even and odd und&p respectively
as the following

A(=y) =2r1(y), ro(=y) = —A2(y). (10)
Then, when we make a KK reduction of the gaugino as
(n)
kl(x,y)) ui (y) )
=) N AP (x), 11
(xzoc,y) Z ! <u<2">(y> ()

whereig#9, 1™ = M, 1™ with the KK massM, and N, is the normalization constant, the equations of motion
for the gaugino become

dyul” + (M, — 200508 () — 202 68(y — W R))uy” =0, (12)
—dyuy” + (M, — 2808(y) — 2628(y — wR))ul"” =0. (13)
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Now one can find it easy to solve the equation for the rgtia u(z”)/u(l”) as follows
oty
dy

Thus, after integrating both sides of the above equation over an infinitesimal interval around the branes, we obtain
the following limiting values of,, on the boundaries

= M, (1+ 12) — 260(1 + por2)8(y) — 26 (1 + prt2)8(y — T R). (14)

1
—— arctar{\/po tn) = —¢gp, (15)
\/% \/— " y=0+
arctar(\/or t,) =&y. (16)
T y:j'[R_
Then, we get solutions fay, as
o tar{Mny - arctana(,oo, soe(y))], —TR<y<mR, (17)
"7 | taM,(y — 7 R) — arctane(py, sxe(y — 7R))], O0<y <27R,
where
1
(0, £0€(y)) = —= tan(/po eoe(y)). (18)
(ro-0¢(1) = == tan( oo (1)
1
a(po, exre(y —mR)) = — tan(y/px ex€(y — T R)), (19)

with €(y) being the step function of periodicityrR given by
+1, O<y<mnR,
€(y)= { 0, y=0, (20)
-1, —-nR<y<O.
Here we notex(po, €0) = tanh(v/Ipol €0)/+/|pol for po < 0 and a(g, ex) = tanh(/1px | ex)/+/|px| for pr < 0.
We also find the mass spectrum of the gaugino as
n
R

wheren is an integer. The mass spectrum wittp, , £;) = 0, i.e.,s; = 0, is the same as the result in Ref. [22].
Thus, we find that the mass spectrum of gaugino is shifted by the amount given in terms of the brane mass
parameters. This is equivalent to the one from a Scherk—Schwarz breaking of parameter

1
M, =—+ —R(arctam(po, e0) + arctanx(px, €x)), (21)
T

1
w = —[arctar(po, £0) + arctanx(ox, £x)]. (22)
T

Particularly, fora(po, c0) = —a(pr, 7)), We have the remaining supersymmetry restored. This would be the case
with two fine-tunings okg = —&, andpp = p-.

For the strong supersymmetry breaking,> 1 and/ore,; > 1, the mass spectrum depends on the signoof
and p, . For positive sign of odd-mode mass parameters, depending on the large even-mode mass parameters,
the zero-mode gaugino mass oscillates between two vaMgs: +1/R for pg > 0 andp, > 0 in the case
with strong supersymmetry breaking on both branes wifije~ (:I:% + %arctam(pn(o), €x(0)))/R for poir) >0
in the case with strong supersymmetry breaking on either brane. On the other hand, for negative sign of odd-
mode mass parameters, the leading mass spectrum becomes independent of the large even-mode mass parame
but the still depends omy and/or p,: Mg = [arctarfl/+/[po]) + arctal//[p-])1/(wR) for pg < O and
pr < 0 in the case with strong supersymmetry breaking on both branes wWhijle: [arctar{1/./|powr)l) +
arctaru (o (0), €x(0))1/ (T R) for pgiry < 0 in the case with strong supersymmetry breaking on either brane.
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Moreover, from Egs. (12) and (13), we get the eigenmodes for the gaugirerffir< y < 7 R as follows
(n)
uy (y) cod M, y — arctarnx(pg, soe(y)
( (ln) ) = A(po. £0€(y)) ( S[ Y (po. e0€(y )]) . (23)
S (y) sin[ M,y — arctan(po, £0€ ()]
where

2 1/2
1+ a“(po, c0e(y)) ) (24)

1+ poa?(po, £0€(y))

The prefactorA (po, 06 (y)) has been already found in Ref. [22]. However, for the analysis of brane couplings
of gaugino, we need to know the correct normalization constant which is obtained by inserting the equations of
motion in the action as

A(po, c0e(y)) = (

7R -1/2
n n 1 1
v ( [l - =
—7R

Likewise, we get the eigenmodes for the gaugino fer © < 27 R as follows

(n)
up- MY " codM,(y — 7 R) — arctanx(px, exe(y — 7R))]
(ué”)(y)> = (=D"A(pr. exe(y —7R)) (sin[Mn(y — R) — arctaw(px, exe(y — 7R))] ) (26)
with the normalization constant
27 R -1/2 1 1
Nn — d (n)\2 (n)\2 = - 27
([t +6) = g @

where we inserted—1)" in comparison with the previous solutions foxOy < 7 R.

Then, the values of even and odd mode functions of gaugino at the branes are given by the definiiipasf
u(l”) 0) =1, u(ln)(n R) = (=1)" andu(z") 0) = u(z”) (wrR) = 0in any case. However, one should be careful in finding
thereal brane coupling of gaugino with the integration of the product of a discontinuous mode function and a delta
function. The brane coupling of theh (z is a nonnegative integer) KK mode of the bulk gauge béssgiven
asv21-4.0 g4 aty = 0 and(—1)"v21-%.0) g4 at y = = R wheregs = gs5/+/27 R. On the other hand, the brane
couplings of the:th (1 is an integer) even mode of gauginoyat 0 and y= = R are given from the integrations
of the brane action, respectively,

_1Sin(/po £0)
= dys(y)N, (m = g ATV IEETY 28
g0 g5/ Y8(y)Nuug ' (y) = gaAq Jhoeo (28)
and
n noa— SiN(y/ox &x)
ex zgsfdw(y—nmzvnu;)(y) = ga(~1yra; 3NV Pr o). (29)
A Pr Ex

whereAg = A(po, €0) and A, = A(pr, &). Of course, the brane couplings of the odd modes of gaugino turn out
to be zero after the integration of the brane action.
For genericog,» andeg , the brane coupling squared of the gaugino is different from that of the gauge boson.
Henceforth let us use the word bfane coupling for brane coupling squared without confusion. Irrespective
of the mass spectrum of gaugino, the same brane coupling of gauge boson and gaugino is necessary for no

1 The loop correction coming from each massive KK mode with the brane coupling squargﬁ obrzesponds to those from two extra
momentum states with the brane coupling squaregﬁof
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guadratic divergence, i.e., softly broken supersymmetry in usual sense, for a brane scalar which is located at either
brane [23]. However, since our mass spectrum of gaugino is given as that of a Scherk—Schwarz twist, the same
brane coupling of gauge boson and gaugino would give rise to one-loop finitenesstrieme softness of brane-
localized supersymmetry breaking, which is the case with the distant supersymmetry breaking as will be seen in
the next section.

Particularly, forpg = p, = 0, which is the usual assumption in the literature [6,19], the brane couplings at
y =0 and y= s R are proportional to A(1 + sg) and Y(1+ s,%), respectively. In this case, the mass spectrum
of gaugino isM,, = n/R + (arctareg + arctare;)/(r R), which is the same result as in [23]. Then, imposing the
additional conditioreg = 0 or e, = 0 is necessary for the same coupling at either brane. On the other hand, for
the equal masses of even and odd modes,dee= pr = 1 [21], the brane couplings at=0 andy = 7= R are
proportional to(sineo)z/eg and(sinsn)z/ef,, respectively. In this case, the mass spectrum of gaugino is given by
M, =n/R+ (g0 + &7) /(7 R), which is different from the case with vanishing odd mass terms. For the same brane
coupling of gauge boson and gaugino at either brane, we need the conditiof or ¢, = 0 again. Thus, for
generalpg andp,,, which then contributes to the shape of wave functions and the mass spectrum, we can show that
with the local supersymmetry breaking at the distant brane, the brane couplings of gauge boson and gaugino are
the same at the other brane.

4. One-loop correctionsat the brane

As far as the gauge interaction with brane matters is concerned, the only difference between the brane-localized
breaking and the Scherk—Schwarz breaking comes from the brane scalar-gaugino-brane fermion vertices. After
reducing the relevant brane interaction of gaugino, we get in the mass eigenstates

L5 / dy g5[—v2iqodir 108 (v) — V2ign i A1 8(y — T R) + h.c]

o0

= > [~2090v2i g3 " Y0 — gxqnV/2idp5 APy +hocl], (30)

n=—oo

where (¢o, ¥o) and (¢, ¥ ) are brane matter multiplets at= 0 and y= n R, respectively, ango » given by
Egs. (28) and (29) are brane couplings of gauginog@nddenotel (1) charges of brane matters. For comparison,
in the case with a Scherk—Schwarz twigt,= g4 at y = 0 which was used to show the one-loop finiteness of the
mass of a brane scalarat= 0 from the infinite sum of KK modes [7].

Thus, due to brane masses of gaugino, the one-loop correction to the mass of a massless acalarO [7,
15,18,23] becomes nonzero as

ro
i, = 4446 Z / (271)4[ (n/R)2 2—(n+w>2/R2}

n=—0oo

oo oo
. 84‘]0 3 1 ro
dx x3| - : 31
~'2n2R? | Z / ”[ x2+n2+x2+(n+w)2} 5D

)

whererg = gg/gi, andw given by Eg. (22) corresponds to a sort of SS parameter and in the second line, we
changed to the variable = pg R with the Euclidean momentumE Likewise, the one- Ioop correction to the
mass of a massless scalgy at y = 7 R is given bym¢ with (go, g0,70) = (&x, qrn,Tn = gn/g4) Then, with

the A cutoff regularization for the 4D loop integral at each KK level and the cutoff of the number of KK modes
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=[AR] [23], we get the one-loop scalar mass as

2 2 2 2
8292 (AR)? + (AR’ + (n + o)
n@fzm;£2§ [ﬂ—nmAR) ——;———+ ro(n + w)?In o }. (32)

Thus, forrg # 1, the one-loop scalar massyat 0 has a quadratic divergence as well as a log divergence at each
KK level. In fact, ro # 1 is not the supersymmetric gauge coupling in the 4D effective field theory with softly
broken supersymmetry. For the small brane mass parameajetgs], we getro ~ 1+ (%po - 1)85 + (9(83) from
Eq. (28), which gives rise to the reduction of the sum of quadratic divergences with the cutoff of the number of KK
modes [23].

Now let us take a different regularization scheme for the loop divergence. When we can rewrite the one-loop
scalar mass at=0 as

8298
MGy = 5553 (C0) —roC(®), (33)
where
Clw) = n;oo / - +(n +w)2 (34)

and change the infinite sum of KK modes@iiw) into the contour integral [7,15], we get
o

C(0) —roC(w) = / dx x?[coth(zx) — rocoth(m (x + iw)) + h.c.]

Nltl

=n(1—ro) / dx x? +73 5[2¢(3) — ro(Liz(e=#™) + Liz(e2™))]. (35)

wherez (3) is the Riemann’s zeta function andslct) is the trilogarithm as

o0 xk
Liz(x) = 1; 3 (36)

Therefore, forrg # 1, there would still appear a cubic divergent one-loop mass, which corresponds to the sum of
quadratic divergences coming from KK modes. However, there is no other divergence in this regularization. For
no cubic divergence in this regularization, we must take- 1, i.e.,sg = 0, for which the SS parameter is given
by w = arctafa(pr, £7))/7. This is the case with gaugino mediation of supersymmetry breaking at the distant
brane [17]. In this case, the one-loop radiative mass squared for a brane scalar is positive and finite, which means
that the brane-localized supersymmetry breaking is extremely soft in the so-called KK regularization scheme. This
infinite sum of KK modes was advocated from the mixed position-momentum propagator of the bulk field [18].
Likewise, a massless scalgg at y = 7 R also gets a similar finite one-loop mass for = g4, i.e.,e, =0, for
which the corresponding SS parameter is givemwby arctaria (oo, £0)) /7.

This result also sheds light on the aspect of supersymmetric flavor problem. In the presence of distant
supersymmetry breaking in the gauge sector, we can generalize the result to the case with a bulk non-Abelian
group. Thus, we find that radiative soft masses of brane scalars are to be finite and flavor diagonal as

83C2(¢) o Z Q- cOS(ana))) ~si8 84C2(9) (E) |:4_1 1 In(2na))] (37)

2
(m¢0)/_8lj 474 R2 —J g2
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where we picked up the leading term in powerss8fand Cz(¢) is the quadratic Casimir of thg-representation
under the gauge group.

5. Conclusion

To conclude, we considered the brane-localized supersymmetry breakifg @p by introducing brane mass
terms for the bulk gaugino. We have found that the brane mass terms for the odd mode of gaugino play a role in
modifying the mass spectrum of gaugino and determining the brane coupling of the even mode of gaugino. We
showed that in the presence of brane gaugino mass terms, the mass spectrum of gaugino is shifted by the amoun
given by brane mass parameters. For the local supersymmetry breaking at the distant brane, we found that KK
gauge corrections to the self-energy of a brane scalar is soft and flavor diagonal at one-loop order.
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