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Borderline hypoplasia of the left ventricle in neonates: Insights for
decision-making from functional assessment with magnetic resonance
imaging

Lars Grosse-Wortmann, MD,a,b Tae-Jin Yun, MD,a Osman Al-Radi, MD,a Siho Kim, MD,a Masaki Nii, MD,a Kyong-Jin Lee, MD,a

Andrew Redington, MD,a Shi-Joon Yoo, MD,a and Glen van Arsdell, MDa

Objectives: We sought to compare the usefulness of echocardiography and magnetic resonance imaging in

neonates with a borderline small left ventricle.

Methods: The preoperative magnetic resonance and echocardiography studies of 20 consecutive patients (mean

age 10 � 9 days) undergoing magnetic resonance imaging were analyzed. The diagnoses were aortic stenosis

(n¼ 3), hypoplastic left heart complex (n ¼ 12), and unbalanced atrioventricular septal defect (n¼ 5). The mag-

netic resonance imaging protocol included ventricular volumetry, flow measurements, and angiography. Potential

left ventricular volumes, assuming an ideal geometric shape, were calculated by mathematically ‘‘unfolding’’ the

compressed left ventricle.

Results: Left ventricular end-diastolic volume was 16.0 � 7.0 mL/m2 of body surface area by echocardiography

and 33.5 � 15.5 mL/m2 by magnetic resonance imaging. Echocardiography consistently underestimated left

ventricular volume and did not correlate with magnetic resonance. Of all echocardiographic parameters, mitral

valve z-score was the best predictor of left ventricular end-diastolic volume by magnetic resonance (r ¼ 0.77;

P ¼ .02). The average potential volume increase was 8.8% for aortic stenosis, 35.0% for atrioventricular septal

defect and 23.0% for hypoplastic left heart complex patients. Aortic valve diameter did not correlate with flow

volume in the ascending aorta. Sixteen (80%) of 20 patients underwent biventricular repair, without early mor-

tality. Of these, only 5 (31.3%) had a preoperative left ventricular end-diastolic volume of more than 20 mL/m2

by echocardiography.

Conclusions: Magnetic resonance imaging is feasible in neonates with borderline left ventricular hypoplasia.

Echocardiography does not accurately measure left ventricular hypoplasia in these patients and may unfairly pre-

clude some patients from a biventricular repair in whom magnetic resonance is reassuring.
Almost 50 years ago Noonan and Nadas1 coined the term

‘‘hypoplastic left heart syndrome,’’ referring to a spectrum

of cardiac anomalies characterized by varying degrees of

underdevelopment of the left heart and aortic arch. At the

severe end of the spectrum, the aortic valve (AV) is atretic,

the mitral valve (MV) is severely hypoplastic, and the dimin-

utive left ventricle (LV) shows endocardial fibroelastosis. At

the mild end, hearts with small, but not intrinsically stenotic

AVs and MVs and without endocardial fibroelastosis have

been termed ‘‘hypoplastic left heart complex (HLHC).’’2

That spectrum, however, is dichotomized by the binary sur-

gical decisions of biventricular (BV) versus univentricular

(UV) repair made early in life. The consequences of the

wrong decision, if made toward a BV repair, are often detri-
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mental in the short term, whereas unnecessary selection to-

ward a UV course may have adverse long-term functional

outcomes.

We recognized the shortcomings of echocardiography,

which is the main diagnostic tool in assessing the adequacy

of the LV to support the systemic circulation after the BV

repair. We hypothesized that preoperative functional

magnetic resonance imaging (MRI) is feasible in neonates

with borderline hypoplasia of the LV and would aid in the

decision between UV and BV repair.

This report summarizes our initial experience in 20

patients with a small LV as measured by echocardiography

who underwent MRI before their first intervention.

METHODS
Between March 2003 and August 2006, 20 consecutive patients with

borderline hypoplasia of the LV and in whom there was controversy regard-

ing the decision between BV and UV repair underwent a preoperative car-

diac MRI. All patients had an LV end-diastolic volume (LVEDV) of less

than 30 mL/m2 of body surface area by the Simpson volumetric analysis

and none of them had obvious cardiovascular anatomy demonstrated on

echo that precluded a BV approach. There were three distinct groups: (1)

patients with intrinsic critical AV stenosis (AS, n ¼ 3), (2) patients with

structurally normal MV and AV and hypoplastic arches, grouped as

HLHC, with or without coarctation (n ¼ 12), and (3) patients with unbal-

anced atrioventricular septal defects (AVSD, n ¼ 5). All studies were
ardiovascular Surgery c Volume 136, Number 6 1429
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Abbreviations and Acronyms
AAO ¼ ascending aorta

AS ¼ aortic valve stenosis

AV ¼ aortic valve

AVSD ¼ atrioventricular septal defect

BV ¼ biventricular

DAO ¼ descending aorta

HLHC ¼ hypoplastic left heart complex

LV ¼ left ventricle

LVEDd ¼ left ventricular end-diastolic diameter

LVEDV ¼ left ventricular end-diastolic volume

MRI ¼ magnetic resonance imaging

MV ¼ mitral valve

PCMRI ¼ phase-contrast magnetic resonance

imaging

RV ¼ right ventricle

UV ¼ univentricular

performed on a 1.5-Tesla scanner (GE signa CV/i; General Electric Medical

Systems, Milwaukee, Wis) using a head coil. All but one patient were intu-

bated during the study. Ventricular volumes and flow volumes were calcu-

lated on a commercially available work station (Mass Analysis and CV

Flow; MEDIS Medical Imaging Systems, BV, Leiden, The Netherlands).

In patients with AVSD, LV volumes were measured by MRI and echocar-

diography by virtually extending the deficient interventricular septum to the

base of the heart.

The MRI protocol consisted of cine imaging in axial, 2-chamber, 4-

chamber, and short-axis planes, through-plane phase-contrast imaging

(PCMRI) of the main, right, and left pulmonary arteries, ascending aorta

(AAO) at the level of the right pulmonary artery, descending aorta (DAO)

at the diaphragm, patent ductus arteriosus, superior vena cava, and atrioven-

tricular valves, and contrast-enhanced MRI angiography.

True and Potential LV Volumes
The short-axis cine imaging for ventricular volumetry (Figure 1) was

performed by using a segmented spoiled gradient refocused echo sequence

with minimum echo and repetition times, flip angle 20�, bandwidth 31.25

kHz, number of excitations of 2, slice thickness 3.6 to 5.0 mm, number of

slices 5 to 11 without gap, minimum field of view (160–200 mm), matrix

256 3 160, 20 reconstructed phases per cardiac cycle.

Phoon and Silverman3 introduced the model of observed versus potential

preoperative volume to highlight the concept that the LV may be underfilled

and compressed by the volume-loaded right ventricle (RV), leading to an

underestimation of its potential postoperative volume (Figure 2). Potential

LV volume was defined as the expected volume when the crescentic LV

is mathematically converted to an ellipsoid chamber. This is the expected

shape after effective relief of RV overload and adequate LV filling. We ap-

plied this method to MRI volumetry. The endocardial circumference (C) of

the LV cavity was measured in end-diastole in each short-axis plane. As-

suming that C would be maintained after conversion of the crescentic to

a round configuration, the potential LV area in each short-axis plane

(Apot) and potential LV volume (Vpot) were calculated by using the follow-

ing formulas:

Apot ¼ C2=4p (1)

Vpot ¼
X

Apot 1�n X slice thickness (2)
1430 The Journal of Thoracic and Cardiovascular S
Blood Flow
Imaging parameters for PCMRI were as follows: Minimum echo and

repetition times, flip angle 20�, bandwidth 31.25 kHz, 1 to 2 k-space lines

per segment, number of excitations 2, slice thickness 4 mm, minimum field

of view (160–200 mm), matrix 256 3 160, velocity encoding 150 cm/s, 20

reconstructed phases per cardiac cycle. Pulmonary blood flow was calcu-

lated by summating the right and left pulmonary arterial flow. Systemic

blood flow was calculated by adding the flow volume to the upper compart-

ment, represented by the superior vena cava flow, to the flow volume to the

lower compartment, represented by the blood flow through the DAO.

Angiography
Magnetic resonance angiography was performed with suspended venti-

lation if tolerated by the patient’s condition. A 3-dimensional fast spoiled

gradient refocused echo sequence in the coronal orientation was used

FIGURE 1. Short-axis slice at end-diastole in a patient with unbalanced

atrioventricular septal defect. The left ventricle (LV) is compressed by the

right (RV). The left atrioventricular valve is suspended by a single papillary

muscle.

FIGURE 2. Observed (A) and potential (B) left ventricular volumes: As-

suming that the left ventricle is compressible but otherwise noncompliant,

the endocardial circumference (C) in any short-axis plane should remain

constant, irrespective of the filling state, whereas the encircled areas (A1

and A2) depend on the shape of the left ventricle. The potential volume

can be calculated from the area and the thickness of the imaging slices.
urgery c December 2008
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with the following parameters: Minimum echo and repetition times, flip an-

gle 30�, bandwidth 31.25 kHz, 33 to 45 partitions, slice thickness 1.5 to 3.0

mm, minimum field of view (160–200 mm), matrix 256 3 128, 33 to 45 par-

titions. A bolus of 0.2 mmol/kg dimeglumine gadopentetate (Magnevist;

Berlex Laboratoires, Quebec, Canada) was injected manually through an

antecubital or hand vein, followed by a saline chaser. Centric ordered

data acquisition was set to start 6 seconds after the contrast medium reached

the DAO by using an automated bolus tracking technique. The diameters of

the AAO, transverse aortic arch, aortic isthmus, DAO, and patent ductus ar-

teriosus were measured on the reconstructed images using maximum inten-

sity projections.

Echocardiography was performed on one of the following machines:

Hewlett-Packard Sonos 5500 (Agilent; Andover, Mass), ATL 5000 (Ad-

vanced Technology Laboratories, Seattle, Wash), Vivid 7 (General Electrics

Medical Systems, Milwaukee, Wis), IE33 (Philips Medical Systems, Bo-

thell, Wash). Measurements were partly obtained off-line and included

LV end-diastolic diameter (LVEDd) by M-mode in the parasternal long-

axis view, the diameters of the AV, MV, and tricuspid valve annuli in the

parasternal long-axis and apical 4-chamber views, the diameters of the

AAO, transverse aortic arch, aortic isthmus, DAO, and patent ductus arte-

riosus from suprasternal. Echocardiographic morphologic measurements

were standardized to body surface area as z-scores on the basis of published

normative data.4

LVEDV was estimated by the Simpson rule.5 Postoperative measure-

ments included the diameters of the AV and MV annuli in parasternal

long-axis and apical 4-chamber views, respectively, as well as the LVEDd.

Statistical Analysis
The MRI and echocardiographic data were analyzed following approval

by the institution’s ethics board. Continuous variables are presented as mean

� standard deviation and range. Proportions are presented as a frequency

(percent). Univariable associations between continuous variables were

assessed by the Spearman rho rank correlation test. Where appropriate,

multivariable ordinary least square linear regression was used to assess pre-

operative echocardiographic predictors of the observed preoperative

LVEDV by MRI. Serial echocardiographic measurements are presented us-

ing longitudinal data analysis plotting techniques. Moving average (Loess)

curves of longitudinal data was done where appropriate with a smoothing

span parameter (a) of 0.75 for the weighted least square method.6 All statis-

tical analyses were done using the R statistical Package,7 using the Design8

and NLME9 libraries.

RESULTS
The patients’ mean ages, weights, and body surface areas

at the time of MRI were 10 days (2–37 days), 3.23 kg (1.70–

4.40 kg), and 0.21 m2 (0.14–0.25 m2), respectively. The

mean study time was 62 minutes and there were no compli-

cations during any of the studies. The interval between the

echocardiogram and the MRI ranged from 1 to 15 days

(mean of 5 days) The preoperative LVEDV measured by

echocardiography ranged from 6 to 25 mL/m2 of body sur-

face area by the monoplane (n ¼ 20) and 10 to 30 mL/m2

by the biplane Simpson method (n ¼ 8). The MV and AV

z-scores were �4.0 � 2.0 (�6.8 to �0.2) and �4.6 � 2.2

(�8.6 to�0.1), respectively. A ventricular septal defect was

present in 2 of the HLHC patients.

Comparison Echocardiography—MRI
Applying the monoplane Simpson method for echocar-

diographic volumetry (Figure 3, A), the echocardiographic
The Journal of Thoracic and Ca
and MRI LVEDV measurements were 16.0 � 7.0 mL/m2

and 33.5 � 15.5 mL/m2, respectively (rho ¼ 0.16, P ¼
.08, n ¼ 20). Using two echocardiographic imaging planes

(Figure 3, B), the echocardiographic and MRI volumes

were 21.1 � 7.5 mL/m2 and 30.6 � 13.6 mL/m2, respec-

tively (rho ¼ 0.2, P ¼ .3, n ¼ 8).

The other anatomic measurements by echocardiography

and MRI are shown in Table 1. MV annulus z-score in the

echocardiographic 4-chamber view was an independent pre-

dictor of LVEDV observed by MRI (P ¼ .02), whereas AV

z-score and LVEDd z-score were not.

Potential LV Volumes by MRI
Every patient had a bigger potential than observed

LVEDV (Figure 4). The mean potential increase of LVEDV

was 8.8% for patients with AS, 35.0% for children with

AVSD, and 23.0% in patients with HLHC.

Aortic Blood Flow and Shunt Volumes
PCMRI data were available in 18 of 20 patients. The mea-

surements and calculations of the PCMRI flow analysis are

given in Table 2. Blood flow volume in the ascending aorta

did not correlate with LVEDV by echocardiography or MRI

(rho ¼ 0.01, P ¼ .7; rho ¼ 0.04, P ¼ .5, respectively). All

patients had antegrade flow in the AAO. In those with a sub-

sequent BV repair, all of whom survived the early postoper-

ative period, the AAO flow was 1.63� 0.57 L $ min�1 $ m�2

with a minimum of 1.0 � L $ min�1 $ m�2 in one patient.

There was no correlation between the AAO flow and AV an-

nulus z-score (rho ¼ 0.003, P ¼ .83), MV annulus z-score

(rho ¼ 0.02, P ¼ 0.69), or AAO diameter z-score (rho ¼
0.007, P ¼ .74) by echocardiography.

Outcome
Surgical decision-making was based on multiple factors,

including the patients’ age and weight, their clinical status,

associated cardiovascular and other lesions, imaging, as

well as parental preference. In particular, in the absence of

other contraindications toward a BV repair, if the MRI

showed an actual LVEDV of more than the previously pub-

lished cutoff of 20 mL/m2, we felt encouraged to pursue

a BV strategy, especially if the potential LVEDV was signif-

icantly larger. Likewise, if the MRI demonstrated that the

LV outflow tract was capable of handling more than 1.0 L

$ min�1 $ m�2 preoperatively, it seemed likely that a sufficient

cardiac output would pass through it after an intervention. In

the third patient of this series, hemodynamic measurements

were performed intraoperatively to confirm the adequacy for

BV repair.

Eighteen of 20 children underwent surgery or an inter-

vention. One patient (HLHC, 1.70 kg, LVEDV 12.8 mL/

m2 by MRI) was discharged home under compassionate

care by parental choice and another patient (HLHC, 2.30

kg, LVEDV by MRI 30.8 mL/m2, LV and RV ejection
rdiovascular Surgery c Volume 136, Number 6 1431
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FIGURE 3. Left ventricular end-diastolic volume (LVEDV) measured by echocardiography versus magnetic resonance imaging (MRI), indexed to body

surface area. A, Echocardiographic volume measurements, using the monoplane (mp) Simpson method from an apical 4-chamber view. B, Biplane (bp) echo-

cardiographic volumetry from the apical 4-chamber and 2-chamber views. AS, Aortic stenosis; AVSD, atrioventricular septal defect; HLHC, hypoplastic left

heart complex.
fractions 18% and 29%, respectively) died without an in-

tervention at 6 weeks of age owing to ventricular dysfunc-

tion and periventricular leukomalacia diagnosed on day 2

after birth that precluded heart transplantation. Two pa-

tients were palliated with a UV strategy: one patient

with critical AS, an MRI LVEDV of 44.1 mL/m2, but de-

creased ejection fraction, endocardial fibroelastosis, and

a small and dysplastic MV (z-score �2.3); the other with

an unbalanced AVSD, an LVEDV of 20.7 mL/m2, LV

outflow tract obstruction, a single left papillary muscle,

and decreased ventricular function with an ejection frac-

tion of 44% (Figure 1). This patient eventually underwent

a hybrid procedure (surgical pulmonary artery banding and

ductal stenting in the catheter laboratory) at 3 weeks of

age and a Damus–Kaye–Stansel anastomosis and bidirec-

tional cavopulmonary anastomosis at 7 months. Postoper-

atively, central pulmonary artery obstruction led to

a cardiac arrest followed by a cerebral ischemic injury

and death. Two patients with critical AS underwent bal-

loon valvuloplasty.

TABLE 1. Comparison of echocardiographic and magnetic resonance

imaging measurements (mean ± standard deviations)

Echocardiography MRI P value

LVEDV bp (mL/m2) 21.1 � 7.5 30.6 � 13.6 0.3

LVEDV mp (mL/m2) 16.0 � 7.0 33.5 � 15.5 0.08

AV annulus 4.9 � 1.0 5.9 � 1.0 0.006

MV annulus 7.5 � 1.5 8.9 � 1.2 0.01

TV annulus 12.8 � 2.3 14.1 � 2.3 0.14

AAO (mm) 6.5 � 1.4 5.9 � 1.2 0.4

Transverse arch (mm) 3.5 � 0.9 3.6 � 1.1 0.9

Isthmus (mm) 3.2 � 1.1 3.3 � 1.1 0.6

AAO, Ascending aorta; AV, aortic valve; bp, biplane; LVEDV, left ventricular end-di-

astolic volume; mp, monoplane; MRI, magnetic resonance imaging; MV, mitral valve;

TV, tricuspid valve.
1432 The Journal of Thoracic and Cardiovascular Su
The remaining 16 patients underwent a BV approach.

There was no early postoperative mortality. One patient

died at the age of 4 months (AVSD, LVEDV 29.1 mL/m2

by MRI) of aspiration pneumonia. Both patients with critical

AS, who underwent BV repair with balloon valvuloplasty as

their first intervention, survived after balloon valvuloplasty.

One of them had previously undergone an arch repair. Nei-

ther required a reintervention after the balloon valvuloplasty.

According to the original10 and the recently revised score11

by the Congenital Heart Surgeons Society, only one of

them was predicted to have a 5-year survival advantage

with this strategy (5.8% and 6.7%, respectively). In the other

patient, the original and the revised models estimated 2.9%
and 15.6% 5-year survival benefits with a UV approach. Ap-

plying the Rhodes score, both of these patients would have

been subject to a UV strategy.12 They also had an aortic

root size less than 3.5 mm/m2 and an MV annulus area less

than 4.75 cm2/m2, both indicating a bad prognosis after BV

repair.12 Merely the LV length/ratio predicted a successful

BV repair in both of them. An echocardiographic LVEDV

greater than 20 mL/m2, measured by biplane Simpson, was

present in 1 of the 2 patients with AS and 3 of 7 total survivors

with a BV repair.13

Two patients (one with HLHC and one with AVSD) un-

derwent MV repair as a secondary procedure; the AVSD pa-

tient eventually required an MV prosthesis. One patient with

HLHC received subaortic fibromyectomy 13 months after

the initial arch reconstruction. There were no operative

deaths in either the UV or BV groups. Of the 16 patients after

BV repair, 1 died at the age of 4 months (AVSD, LVEDV

29.1 mL/m2 by MRI) of aspiration pneumonia. There was

1 late death in the UV repair group following the second

stage of the repair.

The postoperative growth for the AV, MV, and LVEDd as

monitored by echocardiography is presented in Figure 5.
rgery c December 2008
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DISCUSSION

Predictors of early postoperative outcome must address

whether the LV, after BV repair, is able to generate enough

cardiac output to sustain the systemic circulation. Nearly

all published predictors, however, are based on 2-dimen-

sional anatomic rather than functional, indices.13-16 At our in-

stitution, there are two indications for cardiac catheterization

in patients with marginally small LVs: One is to outline anat-

omy that cannot be detailed by echocardiography (or MRI),

which was not the case in any of the patients presented

here. The second is to perform an intervention, such as aortic

valvuloplasty or ductal stenting during a hybrid procedure.

Ideally, however, only unequivocal candidates for an inter-

FIGURE 4. Potential left ventricular end-diastolic volumes (LVEDV) by

magnetic resonance imaging (MRI) compared with measured true preoper-

ative volumes. Dotted black lines, Patients with critical aortic stenosis; bro-

ken gray lines, patients with unbalanced atrioventricular septal defect; solid

black lines, patients with hypoplastic left heart complex.
The Journal of Thoracic and C
vention should undergo cardiac catheterization. The diffi-

culty in establishing a uniformly recognized predictor of

outcome after surgery, along with the observation that it is

not always the patients with the smallest LV structures that

have an unsuccessful BV repair, suggest that a different ap-

proach is needed.2 In this study, we attempted to overcome

these limitations and compress the size of the marginal deci-

sion-making zone within the spectrum of borderline hypo-

plasia of the LV by using 3-dimensional anatomic and

functional parameters of native LV performance. This study

is the first to show that functional MRI in these neonatal

patients is feasible and may be useful.

LV Output as the Result of Size and Function
Cardiac output is the result of a complex interplay of heart

rate, LV preload, ventricular interaction, myocardial

contractility, and systemic resistance. Notwithstanding the

ductal contribution to the systemic circulation, the presence

of forward flow in the ascending aorta, seen echocardio-

graphically, is reassuring when BV repair is considered.17

Our group has recently shown that a systemic flow of only

1.8� 0.6 L $ min�1 $ m�2 was present in survivors early after

the Norwood operation.18 The survivor with a BV repair in

our cohort demonstrated preoperatively that a flow compara-

ble with that number (1.63 � 0.57 L $ min�1 $ m�2) could

pass through the LV outflow tract and AAO, with a minimum

flow as low as 1.0 L $ min�1 $ m�2. Therefore, although our

data cannot provide a threshold below which preinterven-

tional aortic flow may be inadequate, we chose 1.0 L $
min�1 $ m�2 pragmatically in this series.

PCMRI is the method of choice for flow volume measure-

ments.19,20 If the region of interest contains at least 16 pixels,

the inaccuracy is less than 10%.21,22 In our study, the small-

est aortic cross-sectional area was 13 mm2, seen in the small-

est neonate, weighing 1.70 kg. In this child, the region of

TABLE 2. Flow measurements and shunt calculations

Mean SD

AAO flow (L $ min�1 $ m�2) 1.53 0.54

rSVC flow (L $ min�1 $ m�2) 1.16 0.56

lSVC flow (L $ min�1 $ m�2) 0.05 0.18

DAO flow (L $ min�1 $ m�2) 0.98 0.42

RPA flow (L $ min�1 $ m�2) 3.07 1.40

LPA flow (L $ min�1 $ m�2) 2.14 1.12

Qp (RPA flowþLPA flow) (L $ min�1 $ m�2) 5.21 2.44

Qs (SVC flowþDAO flow) (L $ min�1 $ m�2) 2.18 0.83

Qp/Qs 2.86 1.81

Total left-to-right shunt (L $ min�1 $ m�2)* 3.04 2.78

PDA flow (left to right) (L $ min�1 $ m�2) �0.46 0.95

Intracardiac left-to-right shunt (L $ min�1 $ m�2)y 3.51 2.39

AAO, Ascending aorta; DAO, descending aorta; LPA, left pulmonary artery; RPA, right

pulmonary artery; PDA, persistent ductus arteriosus; Qp, pulmonary blood flow; Qs,

systemic blood flow; r/lSVC, right/left superior vena cava. *Calculated using Qp�
Qs. yCalculated as Qp�Qs�PDA flow (left to right).
ardiovascular Surgery c Volume 136, Number 6 1433
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FIGURE 5. Postoperative growth after biventricular repair, monitored by serial echocardiograms: The first data point is the preoperative size; all subsequent

points are postoperative measurements. Z-scores for (A) aortic valve annulus, (B) mitral valve annulus (excluding patients with atrioventricular septal defect),

and (C) left ventricular end-diastolic diameter.
interest contained 28 pixels at a spatial resolution of 1.00 3

0.47 mm. This report is the first of noninvasive shunt calcu-

lations in neonates.23,24 We recently assessed the accuracy

of PCMRI in normal adult volunteers, using the same mag-

net as for this study, and found an error of only 0.02 � 0.2

L $ min�1 $ m�2 when comparing the measured flow through

the DAO with the measured flow (AAO�superior vena cava

flow). This deviation was equivalent to 0.69% � 5.96% of

systemic flow (H. W. Goo, MD, unpublished data, 2007). In

the present patient cohort, characterized by a labile balance

of the pulmonary and systemic blood flows, it is important

to obtain flow data from various locations as quickly as

possible and to keep the conditions for continuous breathing

or ventilation and the patient’s fluid status as constant as

possible.

Echocardiography Underestimates LV Volume
In older patients, MRI is the established gold standard for

ventricular volumetry inasmuch as it does not rely on a pre-

sumed shape of the ventricle, in contrast to the echocardio-

graphic Simpson method that assumes a bullet-shaped LV,

with a circular cross section.5,25-29 The fact that the shape
1434 The Journal of Thoracic and Cardiovascular S
of the LV in patients with a borderline LV is abnormal is al-

most certainly the reason for the inaccuracy of this tech-

nique, when compared with MRI (Figure 3).30 This error

leads to an underestimation of the true volume if the septum

is bowing toward the left side, which is amplified when the

LV diameter is measured only in the 4-chamber plane in-

stead of a biplane assessment (Figure 3). None of the patients

received an MRI and an echocardiogram on the same day. In

some of them, the two tests were 2 weeks apart. This,

through ventricular growth and altered shunts and loading

conditions, might have contributed to the discrepancy be-

tween echocardiography and MRI-derived volumetrics.

MV annulus size predicts survival in patients with left-sided

obstructive lesions.12,31,32 In a report by Schwartz, Gauv-

reau, Geva,31 echocardiographic MV annulus diameter and

LVEDV correlated in children with multiple left-sided ob-

structive lesions (rho ¼ 0.47, P< .001). Our data confirm

that echocardiographic measurements of LV inflow, but

not outflow size or end-diastolic dimension, predict true

LVEDV as measured by MRI.

MRI measurements of the AV and MV were significantly

larger than echocardiographic measurements (Table 1).
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Echocardiography, especially in neonates who typically

have very good ultrasound windows, appears superior to

MRI for intracardiac structures, owing to better temporal

resolution and tissue/blood contrast in echocardiography

versus white blood MRI.

MRI Changes Surgical Decision-making
Conversion to a UV circulation after a failed BV repair

carries a high mortality, whereas the opposite sequence of

interventions appears to have a better result.11,12,33 A UV

circulation, on the other hand, may limit the child’s func-

tional outcome. The hitherto largest study by the Congenital

Heart Surgeons Society estimated that half of all patients

with critical AS who underwent a primary BV repair should

have had a Norwood procedure, whereas 20% of those who

did have a UV repair would probably have survived after BV

repair.10 The Society’s original score to predict 5-year sur-

vival benefits of UV over BV repair was recently revised.11

In both the original and the new version, 1 of 2 patients with

AS and a successful BV repair in this cohort would not have

been given that chance.

Concluding that the adverse effects of inflow and outflow

hypoplasia and a small LV are cumulative, Rhodes and col-

leagues12 combined the diameters of the aortic root and MV

annulus and the LV length in a score to predict survival after

BV repair in patients with AS. In our cohort, it would have

mandated a Norwood operation in both patients with AS

who underwent successful BV correction.

The Rhodes score, however, is not applicable to patients

with HLHC or unbalanced AVSD.34 In these patient groups,

discriminating parameters are scarce, and although several

reports of survivors of BV repairs with smaller ventricles un-

dermine this cutoff, an LVEDV of at least 20 mL/m2, mea-

sured by echocardiography or x-ray angiography, continues

to be commonly used as a prerequisite for BV repair.31,35 In-

terestingly, these studies used echocardiography for their

volumetry, whereas the threshold of 20 mL/m2 was origi-

nally established angiographically.36 In our group of patients

with BV repair, none of whom died perioperatively, the

smallest LVEDV was 20 mL/m2 by MRI. More than half

of them would have undergone UV repair, applying this still

widely used criterion to their echocardiographic measure-

ments. Thus our data suggest that an LVEDV of 20 mL/

m2 or more is sufficient to undergo BV repair whereas echo-

cardiographically obtained volumes are less meaningful and

may be considerably smaller.

In patients with unbalanced AVSD or HLHC, who have

RV pressure and/or volume overload, a mere expansion of

the LV can lead to a substantial increase in volume, as ex-

pressed by a large difference between the true and the poten-

tial LVEDV (Figures 2 and 4).3,37 In patients with an actual

LVEDV of 20 mL/m2 or less but otherwise encouraging

anatomy and function, a large potential increase in ventricu-

lar size after optimized filling conditions is reassuring
The Journal of Thoracic and Ca
toward a BV repair. In contrast, in critical AS, which is char-

acterized by a markedly increased afterload, the LV retains

a near ideal shape. Therefore, the potential volume increase

in these patients is small, even if RV and LV loading condi-

tions are optimized. Expansion and an altered shape of the

LV immediately postoperatively, as well as continued

growth, presumably contribute to the increase in size of

LV structures after BV repair (Figure 5).

Of note, 2 of our patients underwent UV repair despite an

LVEDV greater than 20 mL/m2, because valvular anatomy

and/or myocardial function at the time of surgery was

deemed inadequate for a BV approach, underscoring the

continued importance of associated lesions, especially of

the LV inflow. Han and colleagues38 recently showed that

after neonatal intervention for critical AV stenosis the poten-

tial of the MV annulus for catch-up growth is smaller than

that of the AV and LV diameter.

It is important to appreciate that long-term survival does

not necessarily exclusively reflect appropriate selection, as

continuing growth and physiologic remodeling are neces-

sary in these BV repairs. Our early data and those of others

regarding expansion and growth of LV structures are reas-

suring in this regard, but careful follow-up will be re-

quired.38

The ideal outcome for any patient is a serial circulation us-

ing two ventricles, free of repeat interventions and late com-

plications. The recent analysis of 362 patients with critical

AS by the Congenital Heart Surgeons Society suggests

that 56% of patients who are submitted to a BV repair would

have had a long-term survival advantage from a UV ap-

proach, and that erring on the side of a BV repair has disas-

trous effects in a large proportion of these patients.11

LIMITATIONS
The principal limitation of this study is the relatively

small number of patients, making it difficult to test for sta-

tistical significance. Therefore, a lack of an association in

our analysis does not exclude it. Cardiac MRI is now part

of the standard of care in patients with borderline small

LVs in whom there is doubt whether to attempt BV or

UV at our institution. The present study contains a selection

bias inasmuch as not all patients with comparable patho-

logic anatomy underwent an MRI in the early phase of

this study.

This study was not designed to look at outcome for par-

ticular lesions or interventions. The patients were selected

on the basis of having undergone a preoperative MRI to as-

sess LV size. There were no perioperative deaths after the

initial BV repair and no patient had to be converted into

a UV circulation. Therefore, MRI-derived risk factors for

unsuccessful BV repair could not be isolated from our

data. Prospective studies of a greater cohort with more ad-

verse outcomes after BV repair are needed to answer this

question.
rdiovascular Surgery c Volume 136, Number 6 1435
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A biplane echocardiographic volume assessment in all pa-

tients would have been desirable as it is the most common

method and more accurate than a monoplane assessment.

Early postoperative MRI examinations are desirable to

detail how much of the potential volume is actually recruited

by loading the LV and unloading the RV.

In conclusion, MRI volumetric and flow measurements in

neonates with borderline hypoplasia of the LV are feasible.

Echocardiographic volumetry underestimates LV volume,

and indices based on anatomy alone may not adequately pre-

dict survival after BV repair. Consequently, assessment of

the LV volume and cardiac output by MRI may change sur-

gical decision-making regarding UV versus BV repair.
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