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Abstract 

It is well known that cyclic linear codes of length n over a (finite) field F can be characterized 
in terms of the factors of the polynomial x"-1  in F[x]. This paper investigates cyclic linear codes 
over arbitrary (not necessarily commutative) finite tings and proves the above characterization 
to be true for a large class of such codes over these rings. (~) 1997 Elsevier Science B.V. All 
rights reserved 

Introduction 

Codes over rings have been discussed in a series o f  papers originating with Blake 

[2,3], who presented generalized notions of  Hamming codes, Reed-Solomon codes, 
and BCH codes over arbitrary integer residue rings. Spiegel [15,16] continued this 

work, concentrating on BCH codes involving group algebras over rings o f  p-adic 
integers. Both scholars unanimously view cyclic codes of  length n over the ring R as 

ideals in the group algebra RCn, where Cn is the cyclic group of  order n. Shankar 

[13] considered BCH codes over integer residue rings as well, but started with monic 

divisors o f  x n - 1 in R[x] used as generator polynomials for these codes. 

Further authors, such as Satyanarayana [12] presented analyses o f  codes o v e r  7/n 

considering their properties under the Lee metric. Klemm in the more recent papers 

[9,10] investigated the Mac Williams Identity for codes essentially over 7/4, and gave 

some invariant theoretic characterization of  weight enumerators of  self-dual linear codes 

over this ring. The most exciting development in this direction began with papers by 

Forney et al. [7] stating that the Nordstrom-Robinson code is the binary image of  a 
well-known 7/4-linear code, namely the Octacode. Hammons et al. [8] continued this 
line and were able to explain the quasiduality o f  some notorious nonlinear binary codes 
(Kerdock, Preparata and related codes) as a proper duality when considered as linear 
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codes o v e r  7/4. Since then further papers have been published dealing with linear and 
cyclic codes o v e r  ~'4 and further integer residue rings as well as the ring of p-adic 

integers (cf. [6,4] and also [14]). 

The above papers all coincide mainly in considering linear codes over integer residue 
rings, while neglecting the general question if the basic class of  rings could still be 
enlarged when generalizing the notion of a linear code. 

The present article suggests to investigate codes over arbitrary (not necessarily com- 

mutative) finite rings. We propose a notion of a (cyclic) linear code and give a charac- 
terization of a large class of  cyclic linear codes of length n over such rings by divisors 

of  x n - 1 serving as generator polynomials for the respective codes, thus proving that 
the classical relation remains valid as well in a more general context. 

The following text presupposes all rings to be associative rings possessing a unit 
element. 

I. Linear and cyclic codes over finite rings 

Definition 1.1. A linear left code C of length n over a finite ring R is a submodule 
of  gR n. We call C splitting if it is a direct summand of  RR ~. 

A cyclic code C over R shall be a code where any cyclic shift of  the entries in a 

codeword produces another codeword of C. For linear codes, Blake [2] and Spiegel [16] 
reflect this fact using the group algebra RG for some cyclic group G. Our investigations 
will follow a more classical approach where the polynomial ring over R is involved. 

Definition 1.2. A cyclic" linear left code C of length n over a ring R is a left ideal of  
R[x]/(x ~ - 1). C is called splitting if  it is a direct summand i of  R(R[x]/(x ~ - 1)). 

It is obvious that for R being a field all the definitions given coincide with the usual 
ones for linear and cyclic codes; only the notion of a splitting code is a specialization 
to a proper subclass of  linear codes over rings. 

Cyclic linear codes of  length n over a field F allow a characterization by the divisors 
of  x n - 1 in F[x]. This characterization may be stated as follows. 

Proposition 1.3. For a cyclic linear code C over the ( f n i t e )  f i eM F there exists  a 

unique monic polynomial  9 o f  minimal  degree such that the fol lowing hold: 

(a) C is generated by g in F[x]/(x  n - 1). 

(b) g is a divisor o f  x n - 1 in F[x]. 

The proof of  the foregoing proposition is straightforward and makes use of  the 
division algorithm in the polynomial ring F[x]. In the context of  codes over rings 

1 Note that we do not postulate C to be a complemented (left) ideal of R[x]/(x ~ - 1 ). 
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a statement such as Proposition 1.3 looks rather unlikely, because R[x] is far from 
possessing a division algorithm in the case of  a non-field R. It is surprising, however, 

that such a result holds for cyclic splitting codes over finite rings. We are going to 

develop a proof thereof in the following. 

2. Divisors of x n -- 1 generate splitting codes 

Let us first investigate divisors of  x" - 1 in the polynomial ring over a finite ring 

and discover what kind of cyclic codes they generate. The following lemma will be 

useful. 

Lemma 2.1. Le t  R be a f ini te  ring, and let g h = x  n - 1 f o r  some g,h E R[x]. Then: 

(a) g and h commute,  i.e. hg =x"  - 1. 

(b) R(R[x]h) is a f r ee  module. 

(c) R[x]g is a direct summand o f  RR[x]. 

Proof. For the constant coefficients go, h0 of g and h, respectively, we have goho = -  1 

and hence go and h0 are units of  R, since R ist finite. From this we get that f h  = 0 

implies f = 0 for all f C F[x]. This leads to the R[x]-isomorphy and hence to the 

R-isomorphy of R[x] and R[x]h which proves this module to be free. Computing 
(hg - (x" - 1 ) ) h = h g h  - h(x" - 1 ) = 0  we find h g = x "  - 1. Let us finally consider 
the R-linear epimorphism R[x] , R[x]h/(x n - 1). Its kernel is obviously R[x]g, 

and, since R[x](x" - 1) is a direct summand of the free module RR[x]h, we know 
R[x]h/(x" - 1) to be a projective R-module. This shows R[x]g to be a direct summand 

of RR[x]. [] 

What we have just observed allows the following conclusion: 

Corollary 2.2. For a f ini te  ring R every divisor o f  x" - 1 in R[x] generates a cyclic 

splitting code o f  length n. 

Proof. Let g be a divisor of  x" - 1 in R[x], then by Lemma 2.1 we know R[x]g to 
be a direct summand of RR[x] which contains the submodule R[x](x" - 1). Hence we 
obtain R[x]g/(x" - 1) to be a direct summand in R(R[x]/(x" -- 1)) which proves our 
claim. [] 

3. Characterization of all cyclic splitting codes 

The foregoing section has shown how a large class of  cyclic splitting codes of length 
n may be generated by divisors of  x" - 1. This result remains slightly unsatisfactory 
since it does not imply a characterization of all cyclic splitting codes by these divisors 
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in the sense of  Proposition 1.3. Therefore we are going to develop our principal result 

now and will first recall some important facts concerning finite and semisimple rings. 
It is well known that i f  R is a finite ring then S : --R/Rad(R),  i.e. the quotient o f  R by 

its Jacobson radical is a semisimple ring, and by one of  Wedderburn's  theorems we 
know semisimple rings to be direct products o f  matrix rings over (skew)fields. 

Proposition 3.1. (a) For a semisimple rin9 S the polynomial ring S[x] is a (left and 

right) principal ideal ring. 

(b) I f  R is a finite ring, then Rad(R)[x] is a small submodule Of RR[X], i.e. f o r  any 

submodule U Of RR[X] with Rad(R)[x] ÷ U =R[x] it fol lows that U =R[x]. 

Proof.  (a) Obviously we only have to check our claim for S = M k ( F ) ,  the ring of  
all k × k-matrices over the (skew)field F.  It is easily verified that the polynomial 

ring Mk(F)[x] is isomorphic to the matrix ring Mk(F[x]). The latter ring is a matrix 
ring over a principal ideal domain which refering to [5, Ch. 10.5, Ex. 6] leads to our 

claim. 
(b) Any standard text on (noncommutative) ring theory contains the proof  of  the fact 

that for a finite ring R and any module RM the relation RadR(M) =- Rad(R)M holds, the 

latter clearly being a small submodule of  RM. Together with Rad(R)[x] =Rad(R)R[x] 

this yields our statement. [] 

We are now able to state our complete characterization of  cyclic splitting codes by 

divisors of  x ~ - 1. 

Theorem 3,2. For a cyclic linear left code o f  length n over a finite ring R the fol-  

lowing are equivalent: 

(a) C is a splitting code. 

(b) There exists a divisor g o f  x ~ - 1 in R[x] such that C = R [ x ] g / ( x  ~ - 1). 

Proof.  That (b) implies (a) follows from Corollary 2.2. So let C be a cyclic splitting 
code of  length n over R. For a complement D of  C in R(R[x]/(x n - 1)) we have loosely 

Df ' ) ( t~  n-I spoken C + D = R [ x ]  and C N D = R [ x ] ( x "  - 1). Setting D I := ~a.,i=0 Rxi) we easily 
verify D' to be a complement of  C in RR[x]. Now consider the natural map - " R 
S := R/Rad(R) which induces the (semilinear) epimorphism RR[x] ~ sS[x]. The latter 
maps C to an ideal C of  S[x]. Applying Proposition 3.1(a) we therefore obtain an 

element g E C with C = S[x]~ and define Co :=R[x]g. Then Co ~<C and Co A D ~ =  0 
whereas Co + D'  + Rad(R)[x] = R[x]. By Proposition 3.1 (b) this yields Co ® D'  = R[x] 
and thus Co = C. Hence C is generated by g, and because of  R[x](x n - 1)~< C we 
obtain a polynomial h c R[x] such that hy = x  n - 1. [] 

The reader might have noticed that our results are valid for a much larger class 
of  rings. However,  because of  the more applied context here we have prefered to 
formulate them for the class of  finite rings. 
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