Expression of Desmoglein 1 Compensates for Genetic Loss of Desmoglein 3 in Keratinocyte Adhesion

Yasushi Hanakawa,¹ Norihisa Matsuyoshi,¹ and John R. Stanley
Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.

The desmoglein compensation hypothesis, namely that one desmoglein can compensate for loss of function of another, has been proposed to explain the tissue specificity of the autoantibody-induced loss of cell adhesion in pemphigus. To validate this hypothesis genetically, we used desmoglein-3 knockout mice (DSG3−/−) that lose their telogen hair prematurely due to loss of adhesion between keratinocytes of the telogen hair club and the outer root sheath, where the only desmoglein expressed in normal mice is desmoglein-3. To determine if desmoglein-1 could substitute for the function of desmoglein-3 in telogen hair, we produced transgenic mice that express desmoglein-1 driven off the keratin 14 promoter, and then bred the transgene (TG) into DSG3−/− mice. Immunoblotting showed transgene expression in skin, and immunofluorescence showed desmoglein-1 in the telogen club of DSG3−/−TG+ but not DSG3−/−TG− mice. DSG3−/−TG− mice lost telogen hair with each wave of telogen, whereas DSG3−/−TG+ mice had markedly delayed and decreased hair loss. DSG3−/− mice also show low weights due to blisters in the oral mucosa. Surprisingly, DSG3−/−TG+ mice showed similar low weights, because the transgene, although expressed in normal mice is desmoglein-3. To determine if desmoglein-1 could substitute for the function of desmoglein-3 in telogen hair, we produced transgenic mice that express desmoglein-1 driven off the keratin 14 promoter, and then bred the transgene (TG) into DSG3−/− mice. Immunoblotting showed transgene expression in skin, and immunofluorescence showed desmoglein-1 in the telogen club of DSG3−/−TG+ but not DSG3−/−TG− mice. DSG3−/−TG− mice lost telogen hair with each wave of telogen, whereas DSG3−/−TG+ mice had markedly delayed and decreased hair loss. DSG3−/− mice also show low weights due to blisters in the oral mucosa. Surprisingly, DSG3−/−TG+ mice showed similar low weights, because the transgene, although expressed in normal mice is desmoglein-3. To determine if desmoglein-1 could substitute for the function of desmoglein-3 in telogen hair, we produced transgenic mice that express desmoglein-1 driven off the keratin 14 promoter, and then bred the transgene (TG) into DSG3−/− mice. Immunoblotting showed transgene expression in skin, and immunofluorescence showed desmoglein-1 in the telogen club of DSG3−/−TG+ but not DSG3−/−TG− mice. DSG3−/−TG− mice lost telogen hair with each wave of telogen, whereas DSG3−/−TG+ mice had markedly delayed and decreased hair loss. DSG3−/− mice also show low weights due to blisters in the oral mucosa. Surprisingly, DSG3−/−TG+ mice showed similar low weights, because the transgene, although expressed in normal mice is desmoglein-3. To determine if desmoglein-1 could substitute for the function of desmoglein-3 in telogen hair, we produced transgenic mice that express desmoglein-1 driven off the keratin 14 promoter, and then bred the transgene (TG) into DSG3−/− mice. Immunoblotting showed transgene expression in skin, and immunofluorescence showed desmoglein-1 in the telogen club of DSG3−/−TG+ but not DSG3−/−TG− mice. DSG3−/−TG− mice lost telogen hair with each wave of telogen, whereas DSG3−/−TG+ mice had markedly delayed and decreased hair loss. DSG3−/− mice also show low weights due to blisters in the oral mucosa. Surprisingly, DSG3−/−TG+ mice showed similar low weights, because the transgene, although expressed in normal mice is desmoglein-3. To determine if desmoglein-1 could substitute for the function of desmoglein-3 in telogen hair, we produced transgenic mice that express desmoglein-1 driven off the keratin 14 promoter, and then bred the transgene (TG) into DSG3−/− mice. Immunoblotting showed transgene expression in skin, and immunofluorescence showed desmoglein-1 in the telogen club of DSG3−/−TG+ but not DSG3−/−TG− mice. DSG3−/−TG− mice lost telogen hair with each wave of telogen, whereas DSG3−/−TG+ mice had markedly delayed and decreased hair loss. DSG3−/− mice also show low weights due to blisters in the oral mucosa. Surprisingly, DSG3−/−TG+ mice showed similar low weights, because the transgene, although expressed in normal mice is desmoglein-3. To determine if desmoglein-1 could substitute for the function of desmoglein-3 in telogen hair, we produced transgenic mice that express desmoglein-1 driven off the keratin 14 promoter, and then bred the transgene (TG) into DSG3−/− mice. Immunoblotting showed transgene expression in skin, and immunofluorescence showed desmoglein-1 in the telogen club of DSG3−/−TG+ but not DSG3−/−TG− mice. DSG3−/−TG− mice lost telogen hair with each wave of telogen, whereas DSG3−/−TG+ mice had markedly delayed and decreased hair loss. DSG3−/− mice also show low weights due to blisters in the oral mucosa. Surprisingly, DSG3−/−TG+ mice showed similar low weights, because the transgene, although expressed in normal mice is desmoglein-3.
mouse is cyclical baldness from premature loss of telogen hair due to loss of cell adhesion of keratinocytes between the telogen hair club and the outer root sheath of the hair follicle (Koch et al., 1998). This area of the hair follicle normally contains only Dsg3 so that in the Dsg3−/− mouse there are no Dsgs, resulting in spontaneous loss of keratinocyte adhesion. The result is that as soon as the hair goes into synchronized telogen in the first hair cycle, the hair, which is normally firmly anchored until the next anagen hair replaces it, is lost. Subsequent hair cycles also show loss of telogen hair. The other phenotype of these DSG3−/− mice is poor weight gain. The keratin 14 promoter vector (pG32K14), which also contains the rabbit β-globin intron and K14 polyadenylation site, was a gift from Drs Elaine Fuchs and Toshihiro Tanaka (Vassar et al., 1989; Saitou et al., 1995). First, the keratin 14 promoter cassette was subcloned into pGEM-3Z (Promega, Madison, WI) vector (pGEM-K14). Mouse cDNA encoding Dsg1 was cloned as previously described (Amagai et al., 2000). Polymerase chain reaction (PCR) of the 3′ end was used to add 27 nucleotides that encode the FLAG octapeptide epitope, and the resultant cDNA was cloned into BamHI sites of the pGEM-K14. The final sequence was confirmed by nucleotide sequencing. The TG containing the K14 promoter and mouse DSG1-FLAG was excised from pGEM-3Z with HindIII and Xhol (Fig 1A), and then microinjected into the male pronuclei of B6SJLF1/J mice zygotes prior to implantation into pseudopregnant foster CD−1 mice.

DNA extracted from tails of mice (Puregene Genomic DNA Isolation Kit, Gentra Systems, Minneapolis, MN) was used for PCR and Southern blotting to establish genotypes. PCR primers from the rabbit β-globin intron and Dsg1 were used to identify transgenic DNA (288 bp, Fig 1B). After confirmation with Southern blotting, two independent TG lines were bred to the DSG3−/− line (Koch et al., 1997). Genotyping by PCR for DSG3−/− mice was described previously (Mahoney et al., 1999). PCR for the TG and for detecting the DSG3−/− phenotype were done simultaneously (Fig 1B).

Antibodies Rabbit antibodies against the extracellular domain of mouse Dsg1 (Mahoney et al., 1999), the extracellular domain of mouse Dsg3 (Koch et al., 1998), and the FLAG epitope (Abcam, U.K.) were used for immunofluorescence staining. A monoclonal antibody against the FLAG epitope (M2, Sigma, St. Louis, MO) was used for immunoblotting.

Immunohistochemistry and immunoblotting Indirect immunofluorescence of formalin-fixed mouse skin with rabbit antibodies against Dsg1 and Dsg3 was described previously (Wu et al., 2000). Non-fixed cryosections of mouse skin were used for indirect immunofluorescence to detect FLAG epitope staining. For immunoblotting, mouse back skin or mucous membrane (tongue) was homogenized on dry ice and then extracted with Lämmli sample buffer (Bio-Rad, Hercules, CA). Samples with equal protein amounts (Protein assay kit, Bio-Rad) were electrophoresed on 6% Tris–glycine polyacrylamide gels (Novex, San Diego, CA) and then transferred to nitrocellulose sheets (Trans blot, Bio–Rad). The sheets were incubated for 1 h in blocking buffer, 5% skim milk powder in Tris-buffered saline (50 mM Tris–HCl, pH 7.4, 150 mM NaCl). The FLAG M2 antibody conjugated with horseradish peroxidase (Sigma), diluted in blocking buffer, was applied for 1 h at room temperature. After two washes with 0.1% Tween-20 in Tris-buffered saline, the signals were detected with chemiluminescence (ECL, Amer sham Pharmacia, Arlington Heights, IL).

Adhesive tape hair loss test A 1 cm² piece of adhesive tape was gently pressed on the nape of the neck of approximately 23-d-old mice.
(in the first telogen phase of hair growth), and then gently pulled off in the direction of hair growth (i.e., toward the tail). Tape was photographed and weighed (before and after stripping).

RESULTS
Genetic and expression analysis of DSG3−/− and K14-DSG1FLAG transgenic mice To determine whether Dsg1 expression could compensate for the genetic loss of Dsg3 in mice, we first generated transgenic mouse expressing mouse Dsg1 in the deep epidermis, where Dsg3 is normally expressed, by using mouse Dsg1 cDNA under the control of the keratin 14 promoter. In addition, nucleotides encoding the FLAG peptide sequence were added to the 3’ terminus of the coding sequence for mouse Dsg1 to create an epitope for detecting expression (Fig 1A).

Figure 3. Immunofluorescence for TG expression in the telogen hair club. DSG3−/−TG+ mice showed positive staining of Dsg1 and FLAG at cell–cell contacts in the telogen hair club but Dsg3 is absent. DSG3−/−TG− mouse skin showed no staining of Dsg1, Dsg3, or FLAG, and DSG3+/−TG+ mice showed intense staining of both Dsg1 and Dsg3 in the telogen hair club. Bar: 50 μm.

Figure 4. K14-DSG1 reversed the phenotype of telogen hair loss in DSG3−/− mice. The DSG3−/−TG− mouse lost hair from head to tail during the first (A) and second (B) telogen cycles, whereas the DSG3−/−TG+ littermate retains its hair.
Analysis by PCR, with primers in the rabbit β-globin intron and 5' region of mouse Dsg1 cDNA identified a band of 288 bp in TG+ mice (Fig 1B). This genotyping was confirmed by Southern blotting (data not shown). Two independent transgenic mouse lines were obtained, and both showed grossly normal phenotypes.

These transgenic mice were then bred to the DSG3+/– line to generate DSG3+/–TG+ mice by first generating DSG3+/+–TG+/- and TG+/- mice. Analysis by PCR, with three sets of primers, in DSG3 exon 1, neomycin DNA, and the β-globin intron sequence in the TG, were used to identify DSG3+/+, DSG3+/-, and DSG3+-/- mice with and without the TG (Fig 1B).

Expression of the TG was detected by Western blotting for the FLAG-tagged mouse Dsg1 of extracted skin from transgenic 20-d-old mice (Fig 1C). Skin extracts from involucrin-DSG3FLAG transgenic mouse (Wu et al, 2000) were used as positive controls. Immunofluorescence staining for the FLAG epitope tag showed expression of the TG in the deep epidermis (data not shown).

TG expression did not reverse wasting of DSG3 knockout mice DSG3+/– mice show poor weight gain, presumably due to blisters in the mucous membranes secondary to trauma from surgical incision and skin biopsies. To try to semiquantitate this telogen hair loss, we used an adhesive tape hair pull assay (Koch et al, 1998; and see Materials and Methods). Adhesive tape was applied and removed from the nape of 21–23-d-old mice, just at the onset of telogen. Gross inspection of the tape indicates that DSG3+/–TG+/- mice lose much more hair than DSG3+/–TG+/- or TG-, while DSG3+/+–TG+/- mice do show some hair loss.

Figure 5. Adhesive tape hair pull test. On days 21–23, just before clinical hair loss in DSG3+/– mice, 1 cm2 adhesive tape was applied to and gently removed from the nape of the neck. The hair on the adhesive tape was photographed (A) and weighed (B). DSG3+/–TG+/- mice had much less hair loss than DSG3+/–TG-/- but still more than DSG3+/+–TG+/- mice.

TG expression reversed loss of telogen hair in DSG3 knockout mouse As compensation in mucous membrane could not be evaluated, we analyzed the other prominent phenotype of DSG3+/– mice, telogen hair loss. In normal mice, Dsg3 is the only Dsg in the telogen hair club, which is normally anchored in the outer root sheath of the hair follicle until the next anagen hair grows in. In DSG3+/– mice, the telogen club is not anchored properly and is prematurely shed due to loss of cell adhesion between the keratinocytes in the club and the outer root sheath.

First we determined if the transgenic Dsg1 was expressed in the telogen hair club. Figure 3 confirms that transgenic mice, whether they express Dsg3 or are Dsg3 knockouts, express Dsg1 on the cell surface of keratinocytes in the telogen hair club. Furthermore the FLAG epitope is detected in the telogen hair club, confirming that the TG is expressed. These data are consistent with the finding of K14 expression in the keratinocytes of the hair club (Bowden et al, 1998).

Because Dsg1 replaced Dsg3 in the telogen hair club of transgenic Dsg3 knockout mice, we could determine if it compensated for telogen hair loss by comparing hair loss in DSG3+/–TG-/- and DSG3+/–TG+/- mice. As previously described (Koch et al, 1998), DSG3+/–TG-/- mice lose hair from head to tail in the first wave of synchronized telogen starting about age 25–28 d (Fig 4A). With the second anagen wave, the hair grows back from head to tail, but then is lost again in the second telogen wave (Fig 4B). In later cycles the hair is less synchronized so that DSG3+/–TG-/- mice show patchy hair loss (Koch et al, 1998). Strikingly, DSG3+/–TG+/- mice show little, if any, hair loss in the first and second telogen waves (Fig 4A, B). Eight DSG3+/–TG+/- mice were analyzed and seven mice showed reduced hair loss and delayed starting of hair loss compared to DSG3+/–TG-/- mice. One DSG3+/–TG+/- mouse showed extensive hair loss like DSG3+/–TG-/- mice.

To try to semiquantitate this telogen hair loss, we used an adhesive tape hair pull assay (Koch et al, 1998; and see Materials and Methods). Adhesive tape was applied and removed from the nape of the neck of 21–23-d-old mice, just at the onset of telogen. Gross inspection of the tape indicates that DSG3+/–TG+/- mice lose much more hair than DSG3+/–TG+/- or TG-/- mice. Scale bar: 50 μm.

Figure 6. Histology of telogen hair in DSG3+/–TG+/- compared to DSG3+/–TG-/- mice. Hematoxylin and eosin staining of the telogen hair follicle of DSG3+/–TG-/- mice showed acantholysis in the club; however, we could not detect acantholysis in the telogen hair club of DSG3+/–TG+/- mice. Scale bar: 50 μm.
more hair loss than mice that express Dsg3, however (Fig 5A).
Quantitation of these results by weights of hair pulls is shown in
Fig 5B).
Finally, we confirmed by histology that, whereas DSG3−/−TG−
mice showed acantholysis (loss of cell adhesion) in the telogen hair
club (N = 6), DSG3−/−TG+ mice did not (N = 7) (Fig 6).
Interestingly, after the second telogen hair cycle DSG3−/−TG+
mice showed increasing hair loss correlating with decreased TG
expression as determined by Western blotting. By this time the hair
loss was difficult to evaluate comparatively between DSG3−/−TG−
and DSG3−/−TG+ mice, however, because the hair cycle was no
longer synchronized and the hair loss was sporadic and patchy.

DISCUSSION
The idea that one Dsg isoform can substitute for another in
adhesion is suggested by studies of the autoimmune blistering
diseases pemphigus vulgaris and foliaceus. In these diseases antibody
inactivation of Dsg1 or Dsg3 does not result in a blister if the other
Dsg is coexpressed in the same area (Mahoney et al, 1999; Wu et al,
2000). This correlation is consistent with the so-called Dsg
compensation hypothesis. More direct proof comes from studies
in transgenic mice in which forced expression of Dsg3 in the
superficial epidermis prevents anti-Dsg1 pemphigus foliaceus
antibodies from causing a superficial epidermal blister (Wu et al,
2000). The latter study suggested that Dsg3 could compensate for
adhesion from antibody-induced loss of function of Dsg1. The
exact pathway in which antibodies might inactivate Dsg is not
known; however, therefore it is possible that expression of Dsg3
could somehow interfere with the pathway of inactivation rather
than directly compensate for function.
We therefore sought direct genetic proof of the Dsg compen-
sation hypothesis. In this study we showed that forced expression
of Dsg1 in the telogen hair club prevents loss of cell adhesion due to
absence of Dsg3 in this area. This result demonstrated that Dsg1 can
compensate, at least partially, for the adhesive function of Dsg3 in
the desmosome. The compensation, however, was not perfect in that
there was some increased hair loss in some DSG3−/−TG+ mice
compared to normal mice even in the first two telogen cycles.
This is not unexpected and may be due to the fact that the
expression levels of the TG Dsg1 are not regulated properly because
the K14 promoter will not mimic perfectly the Dsg3 promoter.
Another possibility is that although Dsg1 can compensate for Dsg3
under normal conditions, in some areas one Dsg may be superior to
another if there is mechanical stress. Until we know much more
about the biophysical mechanisms of adhesion in the desmosome,
however, the clarification of this possibility will remain elusive.
In this study, we could not show Dsg1 compensation for absence
of Dsg3 in the mucous membranes. Although K14 should be
expressed in the basal layer of the mucous membranes, in our K14−
DSG1 TG, in two founders, DSG1 was not expressed strongly, as
inactivation of Dsg1 or Dsg3 does not result in a blister if the other
Dsg isoforms affects the epidermal barrier (Elias et al, 2001). Normal
mice only express Dsg3 in the deep epidermis, and not in the more
superficial epidermis, whereas they express Dsg3 throughout the
mucous membranes. Transgenic mice with mouse Dsg3 controlled
by the involucrin promoter express the Dsg3 isoform in the same
distribution in epidermis as in mucous membrane. These mice
show a severe barrier defect with markedly increased transepider-
mal water loss, probably due to premature degradation of
comedesmosomes in epidermal stratum corneum.
With these findings in mind, it is likely that Dsg isoforms have
more than one function. Adhesion is a major function, however,
and its importance is underscored by the loss of this function
cause the lister-threatening blistering diseases pemphigus vulgaris
and foliaceus. This study confirms that Dsg compensation in
adhesion can occur, and validates the Dsg compensation hypothesis
as an explanation for blister localization in these diseases.

REFERENCES
Amagai M, Hashimoto T, Shimizu N, Nishikawa T: Absorption of pathogenic
autoantibodies by the extracellular domain of pemphigus vulgaris antigen
Amagai M, Hashimoto T, Green KJ, Shimizu N, Nishikawa T: Antigen-specific
immunosorption of pathogenic autoantibodies in pemphigus foliaceus. J
impetigo and staphylococcal scaled–skin disease targets desmoglein 1. Nat
Anhalt GJ, Labib RS, Voorhees JJ, Beals TF, Diaz LA: Induction of pemphigus
in neonatal mice by passive transfer of IgG from patients with the disease.
Bowden P, Haniedy SD, Parker G, Jones DQ, Zimonjic D, Popescu N, Hodgins MB:
Characterization and chromosomal localization of human hair-specific keratin
genes cycle and comparative expression during the hair growth. J Invest
Desmoglein isoform distribution affects stratum corneum structure and
Green KJ, Gaudry CA: Are desmosomes more than tethers for intermediate
vulgaris antigen (desmoglein 3) gene in mice causes loss of keratinocyte cell
adhesion with a phenotype similar to pemphigus vulgaris. J Cell Biol 137:1091–
1102, 1997
Koch PJ, Mahoney MG, Cotsarelis G, Rothenberger K, Lakver RM, Stanley JR:
Desmoglein 3 anchors telogen hair in the follicle. J Cell Sci 111:2529–2537,
2000
Kowalczyk AP, Bormlaea EG, Norvell SM, Paika HL, Green KJ: Desmosomes:
intercellular adhesive junctions specialized for attachment of intermediate
Mahoney MG, Wang Z, Rothenberger K, Koch PJ, Amagai M, Stanley JR:
Explanations for the clinical and microscopic localization of lesions in
Saitou M, Sugai S, Tanaka T, Shirouchi K, Fuchs E, Narumiya S, Kakizuka A:
Inhibition of skin development by targeted expression of a dominant-negative
Schultz JR, Michel B: Production of epidermal acantholysis in normal human skin
260, 1976
Udey MC, Stanley JR: Pemphigus – diseases of antidesmosomal autoimmunity.
Vasav R, Rosenbery M, Ross S, Thyner A, Fuchs E: Tissue-specific and
differentiation-specific expression of a human K14 keratin gene in transgenic

We thank Hong Li for expert technical assistance, Dorothy Cambell for histology,
William Wiman for graphic and photographic preparation, Dr Elaine Fuchs and
Toshihiro Tanaka for providing K14 promoter vector, and Drs Leena Pulkinen and
Jouni Uitto for providing Dsg1 DNA.