Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

JOURNAL OF DIFFERENTIAL EQUATIONS 52, 378-406 (1984)

Nonexistence of Global Solutions to Semilinear
Wave Equations in High Dimensions

THomAS C. SIDERIS

Department of Mathematics, Purdue University,
West Lafayette, Indiana 47907

Received March 30, 1982; revised November 1, 1982

Consider the Cauchy problem for the semilinear wave equation

2

(%—A) u(x, t) = |u(x, t)) (p>1),

u(x,0)=fx),  ulx0)=gl(x) (1)

with f; g€ C°(R"). It is well known that this problem does not admit a
global solution (i.e., one defined for all (x,¢) € R" X [0, 00)) for any p > 1
when the initial values f and g are large in some sense (cf. [3, 9, 10]). On the
other hand, John [6] has recently shown that in three space dimensions
global solutions exist if p > 1 + /2 and the initial data is suitably small, and
moreover, that global solutions do not exist when 1 < p < 1+ /2 for any
(nontrivial) choice of f and g. Interestingly, Strauss discovered the same
number as the root of a dimension dependent polynomial in his work on low
energy scattering for the nonlinear Klein—-Gordon equation [18] (see also
[7])- This led him to conjecture that the critical value, p,(n), generalizing
John’s result to » dimensions, should be the positive root of
(n—1)x*—(n+1)x—2=0. Glassey [4, 5] subsequently verified the

In this paper, one half of this question is resolved in dimensions # > 3.
Namely, if p,(n) is the postive root of the quadratic above, then global
solutions of (1) do not exist when 1 < p < p,(n), provided that the initial
data is compactly supported and satisfies a certain positivity condition
(Theorem 2).

The main technical difficulty with the higher dimensional problem lies in
the fact that the Riemann function for the wave equation is no longer a
positive operator when n > 3. Consequently, the pointwise lower bounds of
the solution which were essential in showing the solution “blows up” in two
and three dimensions are not valid. Nevertheless, in Section 4 it is shown
that by averaging the Riemann function in time, a positive operator results.
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NONEXISTENCE OF GLOBAL SOLUTIONS 379

When combined with a positive nonlinearity such as |u|”, this yields a useful
lower bound for time averages of the solution. The introduction of time
averages is paid for, however, in the subsequent asymptotic analysis of
space—time averages of the free solution, which involves some rather lengthy
special function calculations.

The question of global existence of small solutions of (1) when p > p,(n)
and n> 3 is still open, due again to the more complicated form of the
Riemann function. Some simplification of the problem is achieved by
imposing radial symmetry on the Cauchy data. Then, while it would still be
technically involved, proving the analogue of John and Glassey’s wieghted
L~ estimate |6, 5] is at least conceivable. In fact, Glassey (unpublished) has
done this for n = 5. Without radial symmetry the problem requires some new
idea.

Section one is devoted to the construction of local solutions of (1) in
L9(R"™) (Theorem 1). A more classical space cannot be used since in higher
dimensions the usual energy methods are not adequate when the nonlinearity
is not smooth. The nonexistence argument of the following sections applies
to weak solutions, so there actually do exist solutions of (1) which are small
initially and which break down in finite time, provided p lies in the critical
range. In contrast to this, the dispersive equation

u,—Adu=—|ul" 'u

possesses a positive definite energy form which can be used to extablish the
existence of global weak solutions for all n and p > 1 [17]. Together, the two
examples illustrate the importance of both the strength and dispersive
character of the nonlinearity in determining the existence of global solutions.

The present work improves, in part, a result of Kato [8] which showed
that global solutions of (1) do not exist in # space dimensions when 1 < p <
(n+1)/(n—1) (<py(n)), provided the initial data is compactly supported
and g is positive on the average. Actually, Kato’s theorem applies to more
general hyperbolic equations. The proof of his result, for the case at hand,
will be outlined in Section 2 along with a brief description of the work of
Glassey and John.

It should be mentioned that the corresponding problem for the parabolic
equation

u,—Au = u® on R"

was solved earlier by Fujita [20]. Here the critical power is a,(n) =1 + 2/n.
Weissler [19] has shown that the critical power a,(rn) belongs to the blow up
case. For the hyperbolic equation (1), this has recently been done in three
dimensions by Schaeffer [15].
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1. EXISTENCE OF LocAL SOLUTIONS

In this section, local solutions of the Cauchy problem for the semilinear
wave equation

uy— du=lul’

are constructed in L(R"), n> 2. Although the approach used here is the
standard contraction argument, the details are given in order to demonstrate
the particular continuity and support properties of the solution required in
the next section.

First, a few lemmas concerning the homogeneous wave equation are
necessary. Define the tempered distributions R(¢) and R'(¢) by

R@,$)=[ |1 sine|e] (&) ae

and

R0, 9)=| cost|¢|9)ds

where ¢ € .. The solution in the sense of distributions of the homogeneous
wave equation with initial data f and g in .’ can be expressed as

WO =R'()* f+R(1)* g

The following lemma is well known (cf. [14, p. 309]).

LEmMMmA 1. If f, g€ %' and supp f, g < {|x| < k} for some k > 0, then
Sor every t > 0 supp u’(t) = {|x| < k + t}.

Throughout this paper, fix the indices

2 1
BTGRP (R 31}

n—1 n+3
LEmMMA 2. If g€ L'(R"), n>2, then R(t)* g € C((0, 0); LY(R") and
[R(@) * glla < Cem "=V g|l,,, for t > 0.
Proof. The inequality is due to Strichartz [16], and the continuity

follows from it at once.

LEMMA 3. If fEH'(R") and g€ L*(R"), n>2, then u°(t) € C(R;
L9(R™)).
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Proof. H'(R™)< LY(R™) by the Sobolev imbedding theorem, since

1

1
2 n

1
—2
q
Thus,
[[R"(t + A1) = R"(©)] * [l|.a
SC[R!(t+4) = R' (O] * fllm
= C||(1 +|&*)"*[cos(t + A1) |&] — cos 1 [£]] S, -

-0, as At- 0.
The continuity of R(z) * g follows from the inequality
IR(t + 4t) = R(1)] * glIL.

sin(t + 4t) _ sin ¢
14 1]

<ca+igr | ‘5'] £©

<C |At|j (1+[&17) |8 de

£l <1

+C[  sin(e+40) €[ —sin¢ (&) [ @)1 de. W

1£1>1

As is standard practice, the following local existence theorem is
formulated in terms of the integrated form of the equation. The lack of
smoothness in the nonlinearity makes it convenient to work with strong
solutions rather than classical ones.

THEOREM 1. Ler f€ H'(R"), g€L*(R"), n>2, with suppf, g
{ix| <k}, and suppose 1< p< (n+3)/(n—1). Then there exists a T> 0
and a unique solution u(t) € C([0, T]; LY(R™)) of the integral equation

u(t) = u’(t) +j' R(t— ) * |u(z)” d,

with supp u(t) < {|x| < k + ¢}.

Proof. Let X(T)={u€ C(|0,T]; LI(R")): suppu(t) < {|x| < k+t}};
X(T) is a Banach space with the norm ||u|| = sup,, 7 [|#(?)l| .- Define the
operator

Au(ty=u"(t) + Jr R(t— 1) * |u(r)|” dt

on X(7T).
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Lemmas 1, 3 show that ¥° € X(T) and, by Lemmas 1, 2, the integral term
maps X(T) into itself. If T is sufficiently small, 4 is a contraction on
{llu — u®|| < 1}. Thus, the contraction principle guarantees the existence of a
unique local solution. N

It is possible to construct local solutions for 1  p < (n+ 3)/(n — 1) when
the initial data is not compactly supported. To do this, the indices g and r of
Lemma 2 must be chosen so that 7p = g. Strichartz’s estimates do not permit
this when p is close to one, however, the more comprehensive estimates of
Marshall, Strauss, and Wainger [12] make this choice possible.

The case p > (n+ 3)/(n + 1) requires a different approach, and since such
results are not needed here they have been left to be considered along with
the still open question of global existence. Pecher [13] has also recently used
the LY estimates of Strichartz in connection with semilinear wave equations.

2. NONEXISTENCE OF GLOBAL SOLUTIONS

This section contains a statement of the main result, as well as the
essential steps in its proof. Several important technical lemmas will be used
which are proved in the later sections. Before proceeding, let us sketch
briefly the proofs of Kato and John’s blowup theorems so as to set the stage
for the forthcoming arguments.

Suppose u(x, ¢) is a smooth solution of

uy — du=ul” (2)
on R" X [0, T], with u(x, 0) = f(x) and u,(x, 0) = g(x). Assume that supp f,

gc {|x] < k}. By Theorem1, suppu(t)c{|x|<k+t}. If Eq.(2) is
integrated with respect to the spatial variables, one obtains

d’ .
- j _ulxr)dx= JW|u(x, 0P dx, 3)
since by the divergence theorem, [, du(x, t) dx = 0. Let
F(t) = f u(x, t) dx. 4)
Rn

Using the compact support of u(-, £) and Holder’s inequality, it follows from
(3) and (4) that

FO > (k+0)"~ D |F@)",  0<t<T. 5)
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Thus, F(t)>0, and so F(t)> F(0)t + F(0). Now F(0)= [, u/x,0)dx =
[en 8(x)dx=C,. If C,> 0, then

F(t) > (pos. const.)?, t large. (6)

Lemma 4 will show that any function satisfying (5) and (6) cannot remain
finite if 1 < p<(n+ 1)/(n—1). Hence, T < co. This is a special case of
Kato’s theorem [8].

Glassey has observed in [4] that by improving the lower bound (6) one
can obtain sharper results. For example, the solution of (2) satisfies the
integral equation

u(t)=u°(t)+ftR(t—r)* |u(r)|” dr. @)

In three or fewer dimensions the Riemann function R(r— 7)* is a positive
operator. Therefore, for n =3, (7) implies that

u(x,t) > u’(x, t). (8)

Since  uj, —A4u®=0, one  obtains upon integration,  that
(d*/dt*) [ u®(x, £) dx = 0. Hence,

| wndc=cur+c, 9)
R3

where C,= | gdx and C,= [ f dx.
In three dimensions, the strong Huygen’s principle states that

supp u’(x, ) = {t —k < |x| <t +k}, t> k. (10)

Combining (8)-(10), one has

Cgt+Cf=L u’(x, t) dx=J u’(x, 1) dx

~k<lx|<t+k)

<J u(x, t)dx
ft—k<|x|<t+k)

1/p
Kvol{t —k < |x| <t + k}p-1p (J lu(x, )} dx)
R3

S C(t + k)yxo-brr (fw lu(x, £)|* dx) W. (11)

505/52/3-7
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Assuming that C, > 0 again, (4) and (11) show that
F(t) > (pos. const.) 1, t large.
Integrating twice, one has
F(t) > (pos. const.)t* 7, t large. (12)

This is the desired improvement of (6) in three dimensions. Now (5) and
(12) imply, via Lemma4, that T < oo, provided 1 < p < 1 + /2. This is
essentially John’s result [6] except for the additional assumption C, > 0.

Glassey has found the corresponding argument in two dimensions. The
estimates are considerably more difficult, due to the lack of a strong
Huygen’s principle in two dimensions. The key feature in both cases is the
use of the positivity of the Riemann function R(¢). This positivity no longer
obtains in higher dimensions. However, the difficulty can be circumvented by
further averaging with respect to the time variable.

Let us now turn to the main result. p,(n) will denote the positive root
of the quadratic (n— 1)x*—(n+1)x—2=0. Note that 1< py(n)<
(n+3)/(n— 1). Hence, for 1 < p < py(n), let u(t) be the local solution of the
integral equation

u() =10 + | "Rt —1) * u(@) de

in C([0, T,); L9(R")) with initial values f, g € C°(R"), as constructed in
Theorem 1. Assume that T, is maximal, in the sense that the solution u(¢)
cannot be defined on any interval containing [0, 7).

Define # = n(n) to be 0 if n is odd and 3 if n is even.

THEOREM 2. Suppose n >3 and 1 < p < py(n). If [ga|x|" " f(x) dx and
[ra|x|™ g(x) dx are positive, then T, is necessarily finite.

Proof. The first step is to obtain a differential inequality. Although the
functional F(t) will be different from the one used in the previous examples,
let us begin by integrating the equation.

Let ¢ € .. Since u(t) and R(t — 1) * |u(7)|” (0 < 7 < ¢) both lie in LY(R")
and are supported in {|x| < k + t},
Wy $)= @09+ [ RE=D 4 |u@P > (13)
It follows from (13) that (u(¢), ¢) € C*[0, T,,) and

(o), 6) = (ult), 48) + (O 9 (14)
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Fix 0 < T, < T, and take ¢, € ¥ with ;=1 on {|x| < k + T,}. Then for all
0t Ty, (u(t), §o) = Jgnulf) dx, and (14) implies

j—;j u(x, t) dx:J’ u(x, 1)|” dx, (15)

since 4¢ = 0 on {|x| < k + T,}. Equation (15) actually holds on [0, T) since
T, was arbitrary. (In fact, (15) is also valid for the weak solutions of [17].)
Now, for k<t < T, (if Ty < k there is nothing to prove) define

F(T)= jTAk (T—-0)" JP" u(x, t) dx dt,

where

m

N NI—

(n—>5) if n is odd,

(n—4) if n is even.

(The reason for this choice will be made apparent in Section 4.) Since
a(t) = [pau(x, £) dx is a C? function of ¢, it follows from integrating by parts
that

m+1 m+2

(m + 1)(m + 2)

1

* mz_)fr_k (T —0)"*?d(t) dt.

Differentiating this twice and using (15), one sees that
.. T
= T~ juxordsar
T—k Rn

Therefore, by Holder’s inequality and the compact support of u(-, t)
FT) > Clk+T) """ |F(T), (16)
for some C > 0. In Section §, it will be shown that
F(T) > pos. const. (k + T)"+!—pin=D72, an

for T large. However, once this is done, (16), (17), and Lemma 4 imply that
T, < oo, provided 1 < p < p,(n). 1
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3. AN ORDINARY DIFFERENTIAL INEQUALITY

Lemma 4, required for the proof of Theorem 2, appeared implicitly in {4].

LEMMA 4. Suppose F(t) € C*[a, b), and for a <t < b,
F(1) > Colk + 1), (18)
FO)>Cilk+ 077 F@)", (19)

where Co, C,,and k> 0.Ifp> 1,2 > 1,and (p— 1)+ > ¢ — 2, then b must
be finite.

Proof. Since (p—1)2>g—2and 2 > 1,
D—g>t—=2>2—1 (20)
By (18) and (19),
FO)>Ck+0)P*~*

on {a, b). Upon integration, one has

F’(t)—F'(a)>cf (k + 5)P*~7 ds. (21)

From (20), p» — ¢ > —1 and so (21) implies that unless b is finite, F(t) must
eventually be positive. Thus, one may assume there exists an a, such that
a<ay,<band

F(t) >0, (22)

for all a, <t < b. It also follows from the assumptions on p, #, and « that
there is a 8 € (0, 1) such that

1 —2
LIDY P g ankd (23)
D D2

Thus, interpolating between (18) and (19), one has

F() > Clk + 007 =7 F(5)°. (24)

Let @ =@p and 8= ¢ — (1 — §) p. By (23), a > | and B < 2. Without loss of
generality, § > 0.
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By (22), one can multiply (24) by F(f) and integrate

LEQ ~ F@?1>C | (k+5)™ F(s)* Fs) ds

>Ck+1)" j " F(s)® F(s) ds (25)

> Clk + ) P[F(1)'** — F(a)'**].
Choose the constant C in (25) small enough so that
1F(ay) > C(k + ag) ® F(ay)' .
It then follows from (25) that
F(t) > Ck + 0P F(r)+ o/
for a, <t < b. One final integration yields
F(ag) ' = F()' =7 > Cl(k + 1) =2 — (k + a,)' 2.

Since 1 — (6/2) > 0, it is clear that ¢ cannot be arbitrarily large. 1

4. THE RIEMANN FUNCTION IN HIGH DIMENSIONS

Although the Riemann function for the wave equation is not positive in
more than three space dimensions, the following result shows that certain of
its time averages are.

LEmMA 5. Suppose v € C(|0, T,]; L"(R")), n >4, and v(¢) > 0 a.e. |x],
for every 0t T,. Let

w,(x, T) =J‘T (T—n" f R(t — 1) = v(r) dr dt,

where
m=3(n—>35) if nis odd,
=3(n—4) if nis even.
Then w,(-, T)E LY(R") and w,(x, T) >0 a.e. |[x] for every 0 TLT,.
(Recall that r=2(n+ 1)/(n+ 3) and g =2(n + 1)/(n — 1).)
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Proof.  First assume that v(x,¢) is a bounded C® function defined on
R™"X [0, T,]. R(t— 1) % v(r) then makes sense in .’ and is a C™ function
of its variables. Since

t
bale )= R(t—1) 5 v(0)dr

D

solves ((9°/0t*) — 4)¢, = v, with zero initial data, the classical formula (cf.
[1, pp. 691-692]) gives

¢, (x, 1) = Jr (3 )"—ZJx-r [(¢—2) —r}]"=372rQ (x, r; 1) drdr
t] ( 2)' 0 n\vs ls L]
where where Q,(x,r;7)=(l/w,) f,," v(x+ rw, 7)dw,; dw, being surface

measure on the unit sphere 2, = {w € R": |w| = 1}.
Suppose n is odd, and write n = 2k + 3. Define

G, (t1)= (-gt—)kf‘:—r [(t—1)* = r*]*rQ, dr.

Thus,

6.(x, 1) = E%T)_'fo' (g) o G, (1, 7)dr.

So now, inverting the order of integration, and then integrating by parts,

(( (T— 1) gu(x, ) dt = f (T— 1)k ;Wf (f_)kﬂ . drg }
(Z_kgl_)'J G, (T,7)dr
k 91
+/=0(2—k+—17f (T =7y [(”@7) G, T)er‘t.

(26)

The claim is that [(@/dr) G,(t,7)],.,=0, for j=0,1,.,k Since
[¢t—1)? —r*1* = (@t —t—r)*(t — v+ r)%, it follows from Leibnitz’ rule that

t—1 K

G,(t1)= f ZC(t—z—r) (t—t+r)t'rQ,dr (27)

with C;>0. Let p,(s,r)=3%_,Cs—r)(s+r*" and pY(,r)=
(8/6sY p,(s, r). Then from (27),
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(—7) G,(t,7)= f Pt —1,7)rQ,(x, r; ) dr

o1
+ Y <—§—t) Ut~ t—1) (t—1) - Qu(x, t — 13 7).
1=0
(28)
Now, (t —1)pY¥~?(t —1,t — 1) is homogeneous of degree k— (j— )+ 1 in
(t—1), s0

i

(‘9) [PVt —1,t—1) (t—1)- Q,(x, 1 — 13 7)]

is homogeneous of degree k — j+ 1 in (¢ — 7). Since j< k, it follows from
(28) that

=0.

t=1

4 oo

Hence, from (26)

[ (=t 6,600yt = [ er e

k!
2+ 1)
One differentiation of this with respect to T yields

T
wal 0= | (T =0 g, x, 1) dt
0

((2kk—+ 11))" ;j J' i'l)(T‘ 2 r) rQn(x’ r; T) drdr

+J p,(T—t,T—7)- (T—1)-Q,(x, T—1;1)dr.

Therefore, if v > 0, then w,> 0.
If n is even, reverse the descent method (cf. 1, p. 686]).

6,00 = gy E 5 j(: (%)Mj;ﬂ [(t = )% = r)"=972r0, (x, 7 7) dr dr

1 t o\ e .

= ¢,,+1(x, t).



390 THOMAS C. SIDERIS

By what was just proved for odd dimensions, one has that

W, (x, 1) = f (T (0 di

T

:f (T — 1)+ D=972 g 4 1(x, t) dt
0

= Wy (% D),

so that v > 0 implies w, > 0 again.
Now suppose v € X = C([0, T, |; L"(R")) and v > 0. Lemma 2 shows that
the map

v w(., T)

is bounded from X into LY(R"). Let {v;} be a sequence of positive C®
functions in X which converge to v in X. The corresponding w(:, T)
converge to w(-, T) in L9, and so some subsequence w;(x, T") converges to
w(x, T), ae. [x] for every 0 T<7T,. By the preceding argument,
wi(x, T) > 0, so the lemma follows. 1§

Again let us point out that this portion of the argument is valid for the
weak solutions of [17] since they are obtained as limits is strong solutions.

5. ASYMPTOTICS

The key step remaining in the proof of Theorem 2 is the estimate

F(T) > pos. const. (k + T)"*+1-#(n=D72 (29)

for T large. The result of Section 4 reduces the proof of (29) to the following
concrete statement concerning u’(x, t), be solution of the homogeneous
equation.

LEMMA 6. Suppose u’(x,t) is the solution of the homogeneous wave
equation with initia data satisfying the hypotheses of Theorem 2. Then

T
f (T- t)'nj u’(x, t) dx dt > pos. const. (k + T)"" V2
T—k x| >T

for large T.



NONEXISTENCE OF GLOBAL SOLUTIONS 391

Before proving this lemma, let us use it together with Lemma 5 to deduce
(29). Since the solution u(x, ¢) satisfies the integral equation

u@®)=u(t) + f R(t — 1) = |u(z)]? dr

on [0, T,), and since |u(¢)|” € C([0, T,); L"), Lemma 5 implies that

j (T =ty u(x, ) de > j C(T=0m ', 1) d, (30)

a.e. [x]. Recalling that both u(¢) and u°(¢) are supported in {|x| < k + ¢}, one
may integrate both sides of (30) over the set {|{x|> T} and then invert the
order of integration to obtain

J'T (T — z)'"j u(x, ) dx dt >jr (T~ t)'"j u®(x, t) dx dt.

x| >T |x|>T

Because of the special support property, these integrals are actually
equivalent to
-T - T

Jik(T—t)'"J u(x,t)dxdt}J_(T—t)'"J‘ W’(x, dxdt, (31

|x|>T IxI>T

provided T > k. Using Holder’s inequality on the left of (31) and the lower
bound of Lemma 6 on the right, one has

1/p

T
C (k4 T)tn-Dp=ie ([ (T—t)"'j |u(x, £)|” dx dt)
YT~k
> Cz(k+ T)(n—l)/z’

for T large. This can be rewritten as
-T

| @ —0" [ ute o) dxde> Clk + Tyt V7,
k

for T large. From (16), this last integral is £(T), so after two integrations,
one obtains

F(T)>C(k+ T)"+'—ptn=D72 L AT 1 B,

for large T. However, the linear term can be neglected, for large 7, since in
the present case (n + 1) — p((n — 1)/2) > 1. Thus, (29) is proved.
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Proof of Lemma 6. Begin by writing
u'=0v® 43, (32)
where 0¥ — 4o =0, v?(0) =0, and v (0) = g, v?(0) = f. Since the v
satisfy the homogeneous wave equation,
j vP(x,)dx=C,t  and j v®(x, t)dx = C,, (33)
R~ Rn
where C,= [, gdx and C,= [, f dx. Let
T
Isf (T— t)’"f u®(x, t) dx dt,
T—k r>T
where r = |x|. Substituting the expression in (32) for u°, this becomes
T T
1=j (T—t)"’j vD(x, 1) dx dt +j (T— t)"'j v (x, 1) dx dt.
T—k r>T T—k r>T
(34)

Suppose first that n > 5. Then m > 1, and the second integral above can be
integrated by parts. The boundary term vanishes since suppv?’ c
{|x] < k + ¢}, and so,

T T
1=f (T—t)'"j v W (x, 1) dx dt+mj (T—t)"’“‘f v (x, t) dx dt.
T—k r>T T—k

r>T

Making use of (33) and the fact that

f v‘j’(x,t)dx=J v‘j’(x,t)dx—f v (x, 1) dx,
r>T Rr r

<T

I can be written as

I=0(T) —f:_k (T—t)’"fr v (x, £) dx dt

<Tr
T
—mj (T—t)'"‘lf vP(x, t)dx dt
T—-k r<T
= O(T) 1, —ml,.

When n=4 or 5, m=0. So from (34),

T
1=f j oD (x, z)dxdt+j v (x, :mdx—j vP(x, T — k) dx.
T—kYr>T r>T r>T
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This last integral vanishes by the support properties of v‘?. Thus, using (33)
again, one has

T
1=0(T) —j J v (x, £) dx dt —j v D (x, £) dx
T—-k'r<T

r<T

=o(T)—1,- 13, (36)

when n=4 or 5.

After this preliminary reduction, the next step is to study the integrals
1,,1,, and IS by means of the Fourier transform.

Since

( ixeq Slntp n

vV (x, 1) = (27:)—"“J £&ds,  p=I¢&,

one has that

[ o0 ndr= @0 2] 4@ smtp U eix-zdx) de.

Switching to polar coordinates and performing the angular integration, one
obtains

. T
| e tar=n] ()" i) a,
r<

for some positive constant y, (cf. [11, p.79]). Because of the relation
(d/ds)[s"J (s)] = s"J,_,(s), this last integral can be computed. Thus,

n/2

. T
f e tdx =1y, (—“) Juo(Tp)-
r<T p
Hence,

L=7T" | §&) "{fg’f) ( j (T— )" sin tpdt) dp, (37)

where y, = (27) " y,. The interchange of the order of integration is justified
since the integral converges absolutely. Similarly,

L=nt [ FO |1 o tsinpat) a

n=6,7,8,.., (38)
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and
n=y1T" zf f© "ffxg +/1)) sin Tp di, n=4,5. (39)
First, consider 7,. Define
T
(T, p) = j (T — )" sin tp dt. (40)
Tk

Note that a is uniformly bounded. Now, substitute the asymptotic formula
(cf. [11, p. 139])

cos(z — 8, «(Z
Ju(2) =7, (21/2 ) ¢ 1(/2) , z>0, (41)

where 8,= ((n + 1)/4)n, y, > 0, and |¢,(z)| < C/(1 + z), into (37) to obtain

L=y | (é)ﬁ%—) o(T: p) de
+] 05 aTp) ] @2)

=73 T("_Wz{lu + 1,5},

where y,=17,7,. I,, can be estimated as

12l <CJ 18] p™ "7 (1 +Tp) ™" a&

< CT—SJ' |gf~(é)|p—((n+3)/2+ e)(l +p)—l+ Edé

This last integral is convergent for n > 4, s0 1, < CT™ %
Make the change of variables A = T — ¢ in (40) and use the double angle
formula. Then,

-k k
a(T, p) = sin TpJO A™ cos Ap dA — cos TpJ0 A™ sin Ap dA,

and so,

I, :J p ="t (&) cos(Tp — 6,) sin Tpf A™ cos Ap dA d¢

—f p~ "I E(E) cos(Tp — 6,) cos TpJ A™ sin Ap dA dé&
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- j p~ D2 5(8) sin(2Tp — 6,) j A™ cos Ap dA d&
k
+[ pm gy sin 8, | A7 cos Ap di
]
—J p~ I E(E) cos(2Tp — 6 )J ™ sin Ap dA d¢

—J p D2 E(E) cos O J A™ sin Ap dA d¢
=Ln+4hn—nLa—1h,.
The integrals I, and I,,; are o(1). For example, let 0, (p) = fg g(pw) dw
and u(p) = (¥ A™ cos p dA. Using the double angle formula, one obtains

Ty =cos 8, | "= Q,(p) u(p) sin(27p) dp

—sing, [ p" 970, (p) u(p) cos(2Tp) db.
0

Since §€ %7, Q, is small at infinity. Also, (n —5)/2 > —1 because n > 3.
Thus, p" >2Q,(p)u(p) € L'(R'), and the Riemann-Lebesgue lemma
implies that both integrals are o(1). An identical argument applies to I,,,.
Hence,

I, =1, —1,+0(1)

Let us now study the integral I,,,. This integral converges absolutely, so the
dominated convergence theorem justifies writing

k
I, =sing, lim [ p="*372 &) [ A" cos kpdi dé.
— o0 0

p<R

Label the truncated integral I5,,. Replacing §(¢) by its definition, one has

A k
Ba=@uy [ proeon (je-'f-yg(y) dy)j Am cos Ap d. de.
0

p<R

Now, because of the truncation, the iterated integral converges absolutely,
and Fubini’s theorem yields

k
I?, = (27:)‘"/2J' g(y)J( A”J p D2 cos dp e Y dE dA dy.
0 p<R
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Change to polar coordinates in the inner integral, and perform the angular
integration. As before,

—n k R Jos_ (1
Ih=0w’WJdﬁnﬂip‘*W%mwzﬁégbhhwﬁ@,

where r=|y|.
Denote the innermost integral by Fy(r, ). Then,

S am
|Fr(r, )| = lJ':p‘"‘s’/z cos ipﬁléz(—_p,—)dp‘

Jn/z—l(rp)

<C(1 + 71712,

1
<J p(n—S)/Z
0

R
dpt " T\ () dp

since |J,(s)/s”| < C, provided v>0. Now since |g(y) [KA™Fq(r,1)dA| is
bounded by the L' function C(1 + r'~"?)| g(»)|, the dominated convergence
theorem implies

k
L= (2m) "y, sin 6, lim [g(y) [ A"Fy(r,4)dhdy
k
=y, sin 0,,'[ g(») lim j ATFL(r, A) dA dy.
R-o0 Vo

Fp(r, 4) is uniformly bounded in A so, in fact,

. koo J 2 1(rp) '
Lia=visin 6, [ ()| p"~9" cos b EoSr dp dh .

Recalling that J_, ,(z) = (2/nz)"/* cos z, one may write

k ©
Liy=y,sin 0, [ r="g(y) [ A"V TN 2(0) Juos(0) dp dh dy.

where y, = (2/n)"*y,. Let us now invoke the following useful formula
attributed to Weber and Schaftheitlin (cf. [11, p. 99]).
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[0 aan) 9,090 o
=@ 2 b TG A v+~ 10)/TG + v+ do — ) T +u)  (43)
X FiG+v+iu—do,t+iu—v—doju+ 1;a%/b?)
valid for
Re(p+u~06+1)>0, Reo>-1, 0<a<h.

Here, I' represents the gamma function and ,F, is the hypergeometric
function. If either (1 + v+ o0 —u) or 1 +u is a nonpositive integer (ie., a
pole of I'), then the integral vanishes. Of course, if 0 < b < a, the formula
holds with the indices # and v reversed.

Thus, since r < k,

Iy, =7,sin8, § (r (";3 )/2r(”:3)1“(%))]#‘"’%0)

n—-3 1-n 1 A
4 > 4 207

A EE ) (5 () sl aeee

n—3 n—l_n r?

4 ) 4 ,—i‘;*ﬁ)'d}.dyg.

)dl dy

An analogous calculation shows that
e8]
0

K
Iy4=1y,cos BnJ r'="g(y) Jl) AMH/ZJ p_IJl/Z(A'p)JnﬂAl(rp) dp dA dy

s, (12 o () (3)) o

3—n 3 27
4 27,7

) ) () o e

Tt ' n—1
xjoz F, (—4, )dzdy

where y, is the same constant for both I,,, and I,,,.
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After making the change of variables A = rz in the first terms of I,,, and
1,,4, one has

I,=1,—1,,,+0(l)

=% 3Anfr‘5‘"”””'g(y) dy (44)
k n—1 n=3 n r
(3—n)/2 s s
+B,[2()] 2 zFl( g /12) didy! + o(1),
where
: n—3 n+3 1
A= (w0, (5= for (%57) (7))
fone (=52 32
1 n—3 l-n 1
m
F{r—_2 1"
><joz“(4’4 7 )dz
n+1 3
e (5o (52 ()
! n—1 3—n 3 '
m+1 LY p2
onz ,F, (——4——,—4—, 2,z)dz
and

B, — (sine,,r("f)/ﬁ(szn)F(%))
(eosaur (") o (T (),

In combining the second terms of I,,, and I,,,, the simple fact that
,Fi(a, b;c; z) = ,F,(b,a; c; z) has been used.

The claim is that B,=0. Indeed, if n=4j+1, j=1,2,., cosf,=
cos(jn + (n/2))=0, and (5—n)/4=1—j is a pole of I, so both terms
vanish.

If n=4j43,j=12,..,sinf,=sin(j+ 1)27=0, and (T—n)/4d=—jis a
pole of I.

Finally, if n = 2j, j = 2, 3,..., neither (5 — n)/4 nor (7 — n)/4 are poles of I'.
Using the functional equations

(1 +z)=z[(z) and r(@r(-:):j%z—), (45)
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one has

) (58 5 (5
=_—n<1;n> (n;l>sin(n;1>n
s (721

=-—nj/cosb,.

Similarly, I'((n — 3)/4) I'((7 — n)/4) = —n/sin §,. It follows that B, =0 in
this case as well.

The next task is to show that the constant 4, is strictly negative. Again,
the argument is given in three cases. First, suppose n=4j+ 1, j=1, 2,....
Then sin 8, = (—1)’ and cos 8, = 0. So from (44)

A= (D TG=DIG TG+ )| 2 2R =4 i 2 de

Let C;=TI(j—3)/2I'G)I'(j+ 1) (C;> 0), and make the change of variables
¢ =z% Then

A= (O | T F G- b0

Because the second index is negative, , F,(j — 3, —j; 3 () is a polynomial, so
one may write

A= (1Y) lim [ ¢8R G -5 s b Ol

= (e im |5

U R -1, 550
1Lt d i n . .1
AR R Il

The boundary term vanishes since ,F,(j —3,—j;3; 1) =0 (cf. [11, p. 40}).
Using the fact that

EdE (¢ F @ bie O] =al®" yFya+ 1, by c.0)

505/52/3-8



400 THOMAS C. SIDERIS

(cf. [11, p. 41}), one has
- . N S PR . .
A= (CICU =) lim — [ U F G b s B O
Now change variables again, let z> = ¢, and use the fact that
; 1 7o 1 2 jn2j 2j !
FU+4 42 = /2 (V) ey
where P, denotes the Legendre polynomial of order v (cf. [11, p. 229]). Then

1 27! v
4,=-C; (j+—) 2¥ (jj> lim —J Z2UT2H AP, (z) de.

2 &0+ € Jg
This last integral can be evaluated explicitly (cf. [11, p. 231}]),

1 127\ ! 1
A,,=—Cj<j+——> 221( _’) X lim —
2 J

(U —2+26)%— 4+ 26) - (2+ 26)(2¢)
2 —1+2e)2+1+2) - (4 — 1+ 2¢)

Therefore, 4, < 0 in this case.

The proof that 4, < 0 when n=4j+ 3, j=1, 2,..., is similar to the case
above, so the details have been omitted.

The remaining case is n = 2j, j=2, 3,.... Note that neither (3 — n)/4 nor
(1 — n)/4 are poles of I'. Using (45) and the fact that I'(}) = \/z, one has

e (2 (155 1 (5]
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Similarly,
— 3
—cosBF 4 /F 7)
1 n—3 1—n
<n—1>< 5T < 7)/r< Z )r( )
Therefore,
_ n—3 n+3 1 n-3 l—-n 1 ,
A=<s1n9,,F( y )F y )F<—2—>)2F1< R ,2,2)

From Erdelyi (2, p. 65],

(5]l ) o 2] o)

+ (F(—%)/F(a)F(b))zzFl (a+%,b+%;%;22>

1 L1
(/ <a+b+2))2F1 (2a,2b,a+b+2,2(1 z)),

provided a+b+43+#0, —1,—2,.. In the present case a+b+3=
((n—3)/4)+ ((1 — n)/4) + 3 = 0. However,

lim (1/I'(a+b+1%),F,Q2a2ba+b+35;0)

a+b+1/2-0

= (2a)(2b){ ,F,(2a + 1,2b + 1;2;0)
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(cf. [11, p. 38)). Thus,

=) E) ) () s

n—1 3—n 1 |
XzFx( > Ty ;2;—2‘—(1«2))]

n—1 3—-n 1 :
=20 -2),F (" 22 s 1),

Hence,

1
A,,:%f z"A dz
(1]
[P0 G- L - AR - (=240
0

1/2 .
—_4 jo (=20 F (-4, 3- 720 d

where { = 4(1 — z). Integrating by parts, one obtains

1/2

B S N N
== 5D CzF’( 72 J’Z’C) ,
o -1 4 b3 oA

The boundary terms vanish, so according to the formula

d
BE [C,F(a, by c; Dl=,Fiabc—1;0)
(cf. (11, p. 41]), one has

A= 2 (" awyr,E (=13 '~1-c) a
n J‘l 0 2 ](J 29 ) Ji b ‘ .
Switching to z = (1 — 2{) again, one has
1 ! 1 3 1
Ad,=——| 7 Flj—= —s L= .
n j—loz zx(./ ) Jil 2( z))dz

The hypergeometric function in the integrand is equal to the Legendre
function PY_, ,(z) (cf. [11, p. 174]). The integral can then be evaluated, with
the result
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1 JN i+ 1) ( 5 o1
A =——_fr(Lyr{*—=—)/or —)r< ——)
" j~1l<2) (2 7)) V3
(cf. [11, p. 192]). This shows 4, < 0 in the final case of even n.
Therefore, from (42) and (44}, and since B, =0,

L= 7203 A, T [ 917 g(9) dy + o717, (46)

where

0, nodd andA4, <0,
3, nodd andd, <O0.

Il

n

I

It follows from (38) by arguments identical to those for I, that
L=y, Ay T [ S dy +o(T" ) n>6, (47)

where

A,;:(}sinﬂ,,r(nf)/f(nﬁ)r(%))

! n—3 1—n 1
m—1 . .2
XJoz ,F, (——4 T ,—~2,z)dz

(st (ST 13

- n—1 3-n 3 ,
onz 2F1(~4—-, 7 ,7,z)dz.

That the constants 4/, are strictly negative can be proved as was done for the
A,. In fact, the argument is simpler since the &’s introduced in evaluating 4,
for odd dimension are unnecessary.

It remains to examine I (n=4,5). Again, one uses the asymptotic
expansion (41), this time in (39),

)=y, T2 U p~ "I (&Y sin Tp cos(Tp — 6,) dé

+ [ P2 f(&) sin Tp g(Tp)

=Y T("_”/z{lgl ‘*‘Igz}-
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As before, I3, =0(1). By an obvious trigonometric identity, /9, can be
rewritten as

13, =[ p="* 92 f(&) sin(Tp + 6,) dé
+ [ p 2 (&) sin 6, ae

E1(2)11 +I(2)12-

I3,, is o(1) as T— oo, by the Riemann-Lebesgue lemma. I3,, is treated as
was [, earlier:

Ba=yising, [ r'="0() [~ 1r0) do dy

=yisin6, [ r2T () [ 07, (0) do dy,
0

where ¢ = rp. The inner integral can be evaluated explicitly (cf. |11, p. 91]),

jo 6" J,n (0)do= S+ 3)4) =E,.
Hence,
= CB‘,’,I‘”‘””Ir"“f(y)dy+o(7 (=72, (48)

where BY =sin §,E, < 0, since n=4 or 5.
Combining (46)-(48) with (35) and (36), one has, because of the
assumptions concerning f and g, that

I = (pos. const.) TV~ 172 4 o(T("~ D7),

The lemma follows from this. 1

An interesting feature of this result is that while the integral
T o (T—0" [u®(x, t) dx dt behaves like T at infinity, an integral over a
smaller set, [7_, (T—)™f,., u’(x, t)dxdt, behaves like T"~"/?. Thus,
there is some cancellation in the first integral which indicates that the free
solution u°(x, t) oscillates to some degree. Of course, this is not surprising
for a solution to the wave equation.
Let us also remark that the growth rate 7"~ /2 for I is optimal in view of
the standard decay estimate

[°C, Dl < CE7 D2,
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Thus,

T
I< CT*(”'””J k(T—t)’"J dx dt

T— T<r<k+T

<CT" 72,

It is possible to weaken slightly the hypothesis that [|y|" g(y)dy and
{1 ¥ ' f(») dy both be positive. An examination of the proof shows that, in
fact, only a certain linear combination

[y e dy+C[ 13" S dy  (€,.€C;>0)

need be positive.

Finally, let us mention that the only quantities which actually biow up are
the L7 norm (for which there is local existence) and anything which can be
bounded below by the L norm. This does not include the quantity F(T).
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