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Consider the Cauchy problem for the semilinear wave equation 

4x, t> = I@, 41” (P > I), 

4x3 0) = f(x), %(X, 0) = g(x) (1) 

with f, g E CF(lR’). It is well known that this problem does not admit a 
global solution (i.e., one defined for all (x, t) E IR” x [0, co)) for any p > 1 
when the initial values f and g are large in some sense (cf. [3, 9, lo]). On the 
other hand, John [6] has recently shown that in three space dimensions 
global solutions exist ifp > 1 + &? and the initial data is suitably small, and 
moreover, that global solutions do not exist when 1 < p < 1 + d2 for any 
(nontrivial) choice off and g. Interestingly, Strauss discovered the same 
number as the root of a dimension dependent polynomial in his work on low 
energy scattering for the nonlinear Klein-Gordon equation [ 181 (see also 
[7]). This led him to conjecture that the critical value, p,(n), generalizing 
John’s result to n dimensions, should be the positive root of 
(n - 1)x’ - (n + 1)x - 2 = 0. Glassey [4, 51 subsequently verified the 
conjecture in two dimensions by showing p,,(2) = 4(3 + \/17). 

In this paper, one half of this question is resolved in dimensions n > 3. 
Namely, if pa(n) is the postive root of the quadratic above, then global 
solutions of (1) do not exist when 1 < p < pa(n), provided that the initial 
data is compactly supported and satisfies a certain positivity condition 
(Theorem 2). 

The main technical difftculty with the higher dimensional problem lies in 
the fact that the Riemann function for the wave equation is no longer a 
positive operator when n > 3. Consequently, the pointwise lower bounds of 
the solution which were essential in showing the solution “blows up” in two 
and three dimensions are not valid. Nevertheless, in Section 4 it is shown 
that by averaging the Riemann function in time, a positive operator results. 
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NONEXISTENCE OF GLOBAL SOLUTIONS 379 

When combined with a positive nonlinearity such as 1 u Ip, this yields a useful 
lower bound for time averages of the solution. The introduction of time 
averages is paid for, however, in the subsequent asymptotic analysis of 
space-time averages of the free solution, which involves some rather lengthy 
special function calculations. 

The question of global existence of small solutions of (1) when p > pa(n) 
and n > 3 is still open, due again to the more complicated form of the 
Riemann function. Some simplification of the problem is achieved by 
imposing radial symmetry on the Cauchy data. Then, while it would still be 
technically involved, proving the analogue of John and Glassey’s wieghted 
La: estimate [6, 51 is at least conceivable. In fact, Glassey (unpublished) has 
done this for n = 5. Without radial symmetry the problem requires some new 
idea. 

Section one is devoted to the construction of local solutions of (1) in 
L9(R”) (Theorem 1). A more classical space cannot be used since in higher 
dimensions the usual energy methods are not adequate when the nonlinearity 
is not smooth. The nonexistence argument of the following sections applies 
to weak solutions, so there actually do exist solutions of (1) which are small 
initially and which break down in finite time, provided p lies in the critical 
range. In contrast to this, the dispersive equation 

u,, --Au = -IulP-‘z4 

possesses a positive definite energy form which can be used to extablish the 
existence of global weak solutions for all n and p > 1 [ 171. Together, the two 
examples illustrate the importance of both the strength and dispersive 
character of the nonlinearity in determining the existence of global solutions. 

The present work improves, in part, a result of Kato [8] which showed 
that global solutions of (1) do not exist in n space dimensions when 1 < p < 
(n + 1)/b - 1) (<PO(n)), P rovided the initial data is compactly supported 
and g is positive on the average. Actually, Kato’s theorem applies to more 
general hyperbolic equations. The proof of his result, for the case at hand, 
will be outlined in Section 2 along with a brief description of the work of 
Glassey and John. 

It should be mentioned that the corresponding problem for the parabolic 
equation 

uI-Au=u= on [R” 

was solved earlier by Fujita [20]. Here the critical power is a,,(n) = 1 + 2/n. 
Weissler [ 191 has shown that the critical power aO(n) belongs to the blow up 
case. For the hyperbolic equation (l), this has recently been done in three 
dimensions by Schaeffer [ 151. 
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1. EXISTENCE OF LOCAL SOLUTIONS 

In this section, local solutions of the Cauchy problem for the semilinear 
wave equation 

are constructed in Lq(lR”), n > 2. Although the approach used here is the 
standard contraction argument, the details are given in order to demonstrate 
the particular continuity and support properties of the solution required in 
the next section. 

First, a few lemmas concerning the homogeneous wave equation are 
necessary. Define the tempered distributions R(t) and R’(t) by 

and 

where Q E 9. The solution in the sense of distributions of the homogeneous 
wave equation with initial data f and g in .Y’ can be expressed as 

u”(t)=R’(t)*f+R(t)* g. 

The following lemma is well known (cf. [ 14, p. 3091). 

LEMMA 1. If f, gE 9’ and suppf; gc {lx1 < k} for some k > 0, then 
for every t > 0 supp u’(r) c (1x1 < k + t). 

Throughout this paper, fix the indices 

2(n + 1) 2(n + 1) 
4= and r= 

n-l n+3 ’ 

LEMMA 2. If g E L’(lR”), n > 2, then R(t) * g E C((0, 03); Lq(lR”) and 
/[R(t) * g(lL4< Cc-(“-‘)‘(“+‘) 11 &,for t > 0. 

Proof: The inequality is due to Strichartz [ 161, and the continuity 
follows from it at once. 

LEMMA 3. If f EH1(Rn) and gEL*(IR”), n> 2, then u”(t)~ C(IR; 
Lq(lR “)). 
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PKXJJ H’(R”) c L4(R”) by the Sobolev imbedding theorem, since 

L,‘-i 
4 ‘2 n’ 

Thus, 

II[R’(t + At) -R’(t)1 * flL 
< C II [R’(t + At) -R’(t)] * fllw 
= c II0 + lrl*>“*[COS(~ + 3 ItI - cm t lrl] ml,2 
+ 0, as At-O. 

The continuity of R(t) * g follows from the inequality 

II VP + 4 - RWl * gll24 

SC .i [sin(t + At) l<l - sin t l<ll’ I &<)I* &. I Ill > I 
As is standard practice, the following local existence theorem is 

formulated in terms of the integrated form of the equation. The lack of 
smoothness in the nonlinearity makes it convenient to work with strong 
solutions rather than classical ones. 

THEOREM 1. Let fEH’(IR”), gEL2(lR”), n>2, with suppf, gc 
(1x1 < k}, and suppose 1 <p< (n + 3)/(n - 1). Then there exists a T > 0 
and a unique solution u(t) E C([O, T]; L4(IR”)) of the integral equation 

u(t) = u”(t) + j’R(t - r) * Iu(t)l” dz, 
0 

with supp u(t) c {[xl < k + t). 

ProoJ Let X(T) = (U E C([O, T]; L4(R”)): supp u(t) c (1x1 < k + t}}; 
X(7’) is a Banach space with the norm Ilull = supoG,,, IIu(t)llLY. Define the 
operator 

on X(T). 

Au(t) = u’(t) + j’ R(t - s) * I u(t)l” dt 
0 
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Lemmas 1, 3 show that u” EX(T) and, by Lemmas 1, 2, the integral term 
maps X(T) into itself. If T is sufficiently small, A is a contraction on 
{I] u - u”/] ,< 1 }. Thus, the contraction principle guarantees the existence of a 
unique local solution. I 

It is possible to construct local solutions for 1 < p < (n + 3)/(n - 1) when 
the initial data is not compactly supported. To do this, the indices q and r of 
Lemma 2 must be chosen so that rp = q, Strichartz’s estimates do not permit 
this when p is close to one, however, the more comprehensive estimates of 
Marshall, Strauss, and Wainger [ 121 make this choice possible. 

The case p > (n + 3)/(n + 1) requires a different approach, and since such 
results are not needed here they have been left to be considered along with 
the still open question of global existence. Pecher [ 131 has also recently used 
the Lq estimates of Strichartz in connection with semilinear wave equations. 

2. NONEXISTENCE OF GLOBAL SOLUTIONS 

This section contains a statement of the main result, as well as the 
essential steps in its proof. Several important technical lemmas will be used 
which are proved in the later sections. Before proceeding, let us sketch 
briefly the proofs of Kato and John’s blowup theorems so as to set the stage 
for the forthcoming arguments. 

Suppose u(x, t) is a smooth solution of 

on R ’ x [0, T], with u(x, 0) = f(x) and ut(x, 0) = g(x). Assume that supp f; 
gc {lx] (k}. By Theorem 1, suppu(t)c {lx] < k+ t}. If Eq. (2) is 
integrated with respect to the spatial variables, one obtains 

d2 
2 1 dt iRn 

u(x, t) dx = 
J 
eRn 1 u(x, t)l” dx, (3) 

since by the divergence theorem, jRndu(x, t) dx = 0. Let 

F(t) = I,, u(x, t) dx. (4) 

Using the compact support of u(., t) and Holder’s inequality, it follows from 
(3) and (4) that 

P(t) > (k + t)-“@-” IF(t)lP, O<t<T. (5) 
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Thus, P(t) 2 0, and so F(t) > p(O)t + F(0). NOW p(O) = jIRn u,(x, 0) dx = 
llRn g(x) dx = C,. If C, > 0, then 

F(t) > (pas. const.) t, t large. (6) 

Lemma 4 will show that any function satisfying (5) and (6) cannot remain 
finite if 1 ( p < (n + l)/(n - 1). Hence, T < co. This is a special case of 
Kato’s theorem 181. 

Glassey has observed in [4] that by improving the lower bound (6) one 
can obtain sharper results. For example, the solution of (2) satisfies the 
integral equation 

u(t) = u”(t) + ,f R(t - T) * lu(r)l” dr. VI 
0 

In three or fewer dimensions the Riemann function R(t - r)* is a positive 
operator. Therefore, for n = 3, (7) implies that 

u(x, t) > uO(x, t). 

Since tiff - Au0 = 0, one obtains upon integration, 
(d2/dt2) SIR3 u”(x, t) dx = 0. Hence, 

I IR3 
u”(x, t) dx = C, t + Cf, 

where C,=j gdx and Cf=Jfdx. 
In three dimensions, the strong Huygen’s principle states that 

supp u’(x, t) c {t-k < 1x1 < t + k}, t > k. 

Combining (8~(lo), one has 

C,t + c,= 
I u’(x, t) dx = . 
li2 n I u” (x, t) dx 

If-k<lxl<ttkl 

<” J u(x, t) dx 
It-k<lxl<ftk) 

< vol{t - k < Ix/ < t + k}‘D-“‘P (1, 3 I 4x, f>l” dx) I” 

< C(t + k)“P- ‘I’D 

(8) 

that 

(9) 

(10) 

(11) 

505/52/3 1 
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Assuming that C, > 0 again, (4) and (11) show that 

P(t) > (~0s. const.) t2 -p, 

Integrating twice, one has 

t large. 

F(t) > (~0s. const.) t4-p, t large. (12) 

This is the desired improvement of (6) in three dimensions. Now (5) and 
(12) imply, via Lemma 4, that T < co, provided 1 ( p ( 1 + \/2. This is 
essentially John’s result [6] except for the additional assumption C, > 0. 

Glassey has found the corresponding argument in two dimensions. The 
estimates are considerably more difftcult, due to the lack of a strong 
Huygen’s principle in two dimensions. The key feature in both cases is the 
use of the positivity of the Riemann function R(t). This positivity no longer 
obtains in higher dimensions. However, the difficulty can be circumvented by 
further averaging with respect to the time variable. 

Let us now turn to the main result. p,,(n) will denote the positive root 
of the quadratic (n - 1)x’ - (n + 1)x- 2 = 0. Note that 1 < p,,(n) < 
(n + 3)/(n - 1). H ence, for 1 < p < pO(n), let u(t) be the local solution of the 
integral equation 

u(t) = u’(t) + f R(t - z) * /u(r)/” dt 
0 

in C([O, To); L4(iR”)) with initial values f, g E Cr(iR”), as constructed in 
Theorem 1. Assume that To is maximal, in the sense that the solution u(t) 

cannot be defined on any interval containing [0, To). 
Define r = s(n) to be 0 if n is odd and f if n is even. 

THEOREM 2. Suppose n > 3 and 1 < p < pa(n). Zf j iRn 1 x 1’ ’ f(x) dx and 
SD,, 1 x 1 V g(x) dx are positive, then To is necessarily finite. 

ProoJ The first step is to obtain a differential inequality. Although the 
functional F(t) will be different from the one used in the previous examples, 
let us begin by integrating the equation. 

Let 4 E 9’. Since u(t) and R(t - r) * Iu(r)l” (0 < t < t) both lie in Lo@“) 
and are supported in { 1x1 < k + t), 

h(t), 0 = (u”(t), 6) + ( (R(t - z) * I u(t)lp, @ > dr. 
JO 

It follows from (13) that (u(t), 4) E C* [0, To) and 

-&WY 9) = w9 4) + (lu(t>l”, $1. 
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FixO<T,<T,andtake~,E~with~,~lon{Ixl<k+T,}.Thenforall 
0 < t < T, , (u(t), 4,) = JR,, u(t) dx, and (14) implies 

-&(x,f)dx=j Iu(x,t)lPdx, (15) 

since A# E 0 on {Ix] < k + r,}. Equation (15) actually holds on [0, T,) since 
T, was arbitrary. (In fact, (15) is also valid for the weak solutions of [ 171.) 

Now, for k < t < r,, (if r,, < k there is nothing to prove) define 

F(T)=jT 
T-k 

(T-t)“/‘ u(x,t)dxdt, 
R” 

where 

m = f(n - 5) if n is odd, 

= f(n - 4) if n is even. 

(The reason for this choice will be made apparent in Section 4.) Since 
a(t) = JR,, U(X, I) dx is a C* function of t, it follows from integrating by parts 
that 

F(t) = 2 
k In+2 

a(T- k) + 
(m + l)(m + 2) dV- k, 

1 
T 

+ (m+ 1)(m+2) 
(T- t)“+‘ii(t) dt. 

T-k 

Differentiating this twice and using (15), one sees that 

F(T)=jT (T-t)” j Iu(x,#‘dxdt. 
T-k IRn 

Therefore, by Holder’s inequality and the compact support of u(+, t) 

F(T) 2 C(k + T)-+I) IF(T) (16) 

for some C > 0. In Section 5, it will be shown that 

F(T) > pos. const. (k + T)“+ 1--p(n--1)‘2, (17) 

for T large. However, once this is done, (16), (17), and Lemma 4 imply that 
To < co, provided 1 < p < p,,(n). I 
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3. AN ORDINARY DIFFERENTIAL INEQUALITY 

Lemma 4, required for the proof of Theorem 2, appeared implicitly in [4]. 

LEMMA 4. Suppose F(t) E C2 [a, b), and for a < t < b, 

F(t) > Co@ + t>“, (18) 

F(t) > C,(k + t)-y F(t)P, (19) 

whereC,,C,,andk>O.Ifp>l,r~l,and(p-l)~>~-2,thenbmust 
be finite. 

Proof Since (p- l)b > p- 2 and 4 > 1, 

*p-p> 4 -2>-1. 

By (18) and (19), 

P(t) > C(k + t)P” - y 

(20) 

on [a, b). Upon integration, one has 

i(r)-#(a)>C,f’(k+s)p’-vds. 
a 

(21) 

From (20), pk - ~2 -1 and so (21) implies that unless b is finite, p(t) must 
eventually be positive. Thus, one may assume there exists an a, such that 
a < a,, < b and 

I$) > 0, (22) 

for all a0 < t < b. It also follows from the assumptions on p, 9, and 4 that 
there is a BE (0, 1) such that 

1 

F- 
<e< 1-p-2. (23) 

Pa 

Thus, interpolating between (18) and (19), one has 

P(t) > C(k + t) (l--B)P*-9F(@k’m (24) 

Leta=Bpandp=a-(l-B)p~.By(23),a>landP<2.Withoutlossof 
generality, p > 0. 
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By (22), one can multiply (24) by F(t) and integrate 

f [k(t)* - I$I~)‘] > Cf (k + s)+ F(s)” g.(s) ds 
00 

> C(k + t)-’ j’ F(s)~ k(s) ds 
00 

(25) 

> C(k + t)-qF(t)“” -F(u,)‘+“]. 

Choose the constant C in (25) small enough so that 

$(u,)’ > C(k + a,)-” F(u,)‘+? 

It then follows from (25) that 

k(r) > C(k + ty* F(l)” + a”2 

for a, < t < b. One final integration yields 

Wo) (‘-a)/* _ F(t) (1-a)‘2 > C[(k + t)‘-‘* - (k +a,,)‘-b/2]. 

Since 1 - @/2) > 0, it is clear that t cannot be arbitrarily large. 1 

4. THE RIEMANN FUNCTION IN HIGH DIMENSIONS 

Although the Riemann function for the wave equation is not positive in 
more than three space dimensions, the following result shows that certain of 
its time averages are. 

LEMMA 5. Suppose v E C([O, T,]; L’(IR”)), n > 4, and u(t) > 0 u.e. [xl, 
for every 0 < t < T, . Let 

w,,(x, T) = !’ (T - t)” 1; R(t - t) * v(s) dz dt, 
0 

m = f(n - 5) if n is odd, 

= f(n - 4) if n is even. 

Then w”(., T) E L9(R”) and wn(x, T) > 0 u.e. [x] for every 0 < T < T,. 

(Recall that r = 2(n + l)/(n + 3) and q = 2(n + l)/(n - l).) 
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ProoJ First assume that U(X, t) is a bounded C” function defined on 
R” x [0, 7’,]. R(t- r) * u(t) then makes sense in .Y’ and is a C” function 
of its variables. Since 

4,(x, t) G j; R(t - t) * U(T) d7 

solves ((~?‘/kJt’) - A)(, = 
[ 1, pp. 691-6921) gives 

v, with zero initial data, the classical formula (cf. 

[(t - 7)* - r2](n-3)‘2rQ,,(x, r; 7) dr dr, 

where where Q,(x, r; r) = (l/w,,) In, u(x + m, 7) dw, ; dw, being surface 
measure on the unit sphere R, = {w E IR’: 1 w ( = 1 }. 

Suppose n is odd, and write n = 2k + 3. Define 

Thus, 

1 
G,(t, r) d7. 

So now, inverting the order of integration, and then integrating by parts, 

jT CT- fJk 4,(x3 4 dt = jT CT- tJk 1 (2k : 1>, j’ (i) k+’ G,(t, 7) d7[ dr 
0 0 * 0 

+]go (2k; 1>, jb-74 (-3Wi7)/ d7. 
. 0 t=r 

(26) 

The claim is that [(c?/&)j G,(& 7)Jt,, = 0, for j = 0, I ,..., k. Since 
[(t - 7)’ - r21k = (t - 7 - r)k(t - 7 + r)k, it follows from Leibnitz’ rule that 

G,(t, 7) =jtp’ i C,(t- T- r)‘(t - 7 + r)k-irQn dr, (27) 
0 i=O 

with Ci > 0. Let pn(s, r) = Cf= I Ci(s - r)’ (s + r)k-i and pltj)(s, r) = 
(a/as)jp,,(s, r). Then from (27), 
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($)’ G,(t, 7) = ji p’,“(t - z, r) rQn(x, r; z) dr 

+ ;g; ($ j’ [p’,j-“(t - z, t - z). (t - 7) . Q,(x, t - r; r)]. 

(28) 

Now, (t - z)p’,j-” (t - z, t - t) is homogeneous of degree k - (j - I) + 1 in 
(t - t), so 

’ [pl;‘-“(t-qt- t) . (t - r) . Q,(x, t - 7; s)] 

is homogeneous of degree k - j + 1 in (t - s). Since j < k, it follows from 
(28) that 

Hence, from (26) 

I T (T- Qk 4,(x, t) dt = (2k: 1), IT G,(T, t) dz. 
0 . 0 

One differentiation of this with respect to T yields 

w,(x, t) = j= (T- t)k-’ $,(x, t) dt 
0 

(k - l)! T T-r 

= (2k+ l)! o I j 
py’(T - 5, r) rQ,(x, r; 7) dr dT 

o i 

+ joT P,(T- 7,T-r).(T-s).Q,(x,T-7;z)dz. 

Therefore, if u > 0, then w, > 0. 
If n is even, reverse the descent method (cf. [ 1, p. 6861). 

[(t - r)* - rZ](n-3)‘2rQn(x, r; 5) dr dt 

[(t - z)’ - rZ](n-2”2rQ,+l(x, r; 5) dr dz 
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By what was just proved for odd dimensions, one has that 

w,(x, t) = jT (T- t)‘“-4”2 4,(x, t) dt 
0 

= 1 ’ (T- t)““+1’-s”2 4, + 1(x, t) dt 
0 

=W ntt(x9 43 

so that u > 0 implies W, > 0 again. 
Now suppose u E X= C( [0, T,]; L’(lR”)) and u > 0. Lemma 2 shows that 

the map 

is bounded from X into L9(lR”). Let {vj} be a sequence of positive C” 
functions in X which converge to u in X. The corresponding wj(., 7) 
converge to w(-, 7) in Lq, and so some subsequence w;(x, 7’) converges to 
w(x, T), a.e. [x] for every 0 < T,< T, . By the preceding argument, 
wi(x, T) > 0, so the lemma follows. I 

Again let us point out that this portion of the argument is valid for the 
weak solutions of [ 171 since they are obtained as limits is strong solutions. 

5. ASYMPTOTICS 

The key step remaining in the proof of Theorem 2 is the estimate 

F(T) > pos. const. (k + qn+ 1-p(n-1)‘2 (29) 

for T large. The result of Section 4 reduces the proof of (29) to the following 
concrete statement concerning u’(x, t), be solution of the homogeneous 
equation. 

LEMMA 6. Suppose u”(x, t) is the solution of the homogeneous wave 
equation with initia data satisfying the hypotheses of Theorem 2. Then 

i:-, @-- f)mi,x,>r u”(x, t) dx dt > pos. const. (k + T)(“-l)” 

for large T. 
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Before proving this lemma, let us use it together with Lemma 5 to deduce 
(29). Since the solution u(x, t) satisfies the integral equation 

on [0, To), and since ]z~(t)]~ E C([O, T,); L’), Lemma 5 implies that 

jT(T--)mu(x,I)dlrjT(T-f)mu”(x,I)dl, (30) 
0 0 

a.e. [xl. Recalling that both u(t) and u”(t) are supported in {lx] < k + t}, one 
may integrate both sides of (30) over the set {Ix] > T} and then invert the 
order of integration to obtain 

Because of the special support property, these integrals are actually 
equivalent to 

!~~k(T-t)“i~~,:Tu(x,r)dxdr~j:_k(T-r)mj u”(x, t) dx dt, (31) 
1x1 >T 

provided T > k. Using Holder’s inequality on the left of (31) and the lower 
bound of Lemma 6 on the right, one has 

C,(k + T) (n- I)(P- I)/p 
(j;_, (T- 0” j 14~ t)l” dx dt) “’ 

> C,(k + 7Jcnm ‘I’*, 

for T large. This can be rewritten as 

IT (T-t)mj’(u(x,1)~Pdxdt~C(k+T)n-‘-p’n~”’2, 
T-k 

for T large. From (16), this last integral is k(T), so after two integrations, 
one obtains 

F(T)>C(k+ T)“+‘pP(“p’)‘2 +AT+B, 

for large T. However, the linear term can be neglected, for large T, since in 
the present case (n + 1) - p((n - 1)/2) > 1. Thus, (29) is proved. 
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Proof of Lemma 6. Begin by writing 

uo = y(l) + p, (32) 

where u$’ --AU(~) = 0, v(j)(O) = 0, and uj”(O) = g, r~j*‘(O) =J: Since the u(j) 
satisfy the homogeneous wave equation, 

J^ u yx, t) dx = c, t and 
IRn i uj’)(x, t) dx = C,, (33) IRn 

where C, = liRn g dx and C,= inn f a!.~. Let 

I- jkk(T-t)mj~,T#o(X,t)dxdt, 

where r= 1x1. Substituting the expression in (32) for u’, this becomes 

I= j~~x(T-t)mj~>~tl(‘)(x,t)dxdt+j~~x(T-t)”j~>~~~2~(x,t)~dt. 

(34) 

Suppose first that n > 5. Then m > 1, and the second integral above can be 
integrated by parts. The boundary term vanishes since supp u(j) c 
(1x1 < k + t}, and so, 

I= 
i:, CT- f)“Ir>T u(‘)(x, t) dx dt + mj ;-, (T- t)‘-’ jr>, u(*)(x, t) dx dt. 

Making use of (33) and the fact that 

J 2, (j) (x, t) dx = 
i 

u (j) (x, t) dx - 1^ 
u(j) (x, t) dx, 

r>T R” r<T 

I can be written as 

-m jk, (T- t)‘=‘jr<= r/*)(x, t) dx dt 

=0(T)--I,-mI,. 

When n = 4 or 5, m = 0. So from (34), 

T 

I= 
i s T-k r>T 

d’)(x, t) dx dt + jr>, 21(*)(x, 7’) a!~ -jr>= u(*)(x, T- k) dx. 
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This last integral vanishes by the support properties of u(*). Thus, using (33) 
again, one has 

I=O(T)-j~~kj~<ru~~)(X.I)dXdl-j~<TU(2~(X,c)dX 

E O(T)-I, -Ii, 

when n=4 or 5. 

(36) 

After this preliminary reduction, the next step is to study the integrals 
I,, I,, and 1; by means of the Fourier transform. 

Since 

uyx, t)= (2x)-n'*j e'x'" F g(r) d& p= I<\, 

one has that 

r<T D(l)(X,c)dX=(21[)-";*j &y(j 
I< T 

Switching to polar coordinates and performing the angular integration, one 
obtains 

j e ix.c dx= y. 
r<T I 

oT (rp)‘-“‘*J,,,-,(rp) FL dr, 

for some positive constant y,, (cf. [ 11, p. 791). Because of the relation 
(d/ds) [s”J~(s)] = s” J,- ,(s), this last integral can be computed. Thus, 

i 

n/Z 
e J,&P). 

r< T 

Hence, 

(T - t)” sin tp dt dp, (37) 

where y, = (27~))“‘~ yO . The interchange of the order of integration is justified 
since the integral converges absolutely. Similarly, 

12 = YI Tni2 f(t) 
i 

J,,,(TP) T 
P 

n,2+, ri T-k U-V- ’ sin rp dt d<, 
! 

n = 6, 7, S,..., (38) 
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and 

Ii = YI T”j2 f(r) 1 
Jn,dTp) 
P 

n,2 + , sin Tp d<, n = 4, 5. (39) 

First, consider I,. Define 

a(T,~)=j~ (T - t)” sin tp dt. (40) 
T-k 

Note that a is uniformly bounded. Now, substitute the asymptotic formula 
(cf. [ 11, p. 1391) 

J,,,(z) = ~2 
cos(z - en> + &r(z) 

z l/2 z1/2’ z > 0, (41) 

where 8, = ((n + 1)/4)z, y2 > 0, and 1$,(z)] < C/(1 + z), into (37) to obtain 

1, = y3T’“- 111.7 L%l 
cos(Tp - 13,) 

P 
(n t 3)/Z W,P)& 

~VP) 
+j i(t) p(n+3)/2 aKddr/ 

s y3 T(“-1)‘2{I,, + I,,}, 

where y3 = y1 y2. I,, can be estimated as 

(42) 

14214 I$(olP- (n+3)‘2 (1 $ Tp)-’ dr 

<CT-& ]g(<)]p-““+3)‘2+E)(1 +p)-‘+Ed<. 

This last integral is convergent for n > 4, so I,, < CT- “. 
Make the change of variables A = T- t in (40) and use the double angle 

formula. Then, 

a(T, p) = sin Tplok A”’ cos lp dA - cos Tpj,* 1” sin Ap dA, 

and so, 

I,,= p-(nt3v2 

i 
g(r) cos(Tp - 8,) sin Tp 

I 
ok I”’ cos lp dA d< 

1 

k 

- p-(“+ 3)‘2 g(t) cos(Tp - 0,) cos Tp A” sin Ap dA dt 
0 
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= j ppcn+3)/2&() sin(2Tp - B,)jOk 1” cos 1p dA dtl 

+jp- W+ “‘* g(r) sin 8, 
.I 

k 

,I” cos Ap dA d< 
0 

-"P I 
-(n+3)‘2g(() cos(2Tp - 8,)jok A” sin lip dL d< 

.I 
k 

-w+ 3)/2f(<) cos 8, A” sin Ap dA d[ 
0 

-‘,,I +z,,2-z,,3-z,,,* 

The integrals I,, , and Z1r3 are o(l). For example, let Q,(p) = In, &XO) dw 
and p(p) = I,” A”’ cos Ap dL Using the double angle formula, one obtains 

zlll=COSen p 
I 

m (‘-‘)” Q,(p)p@) sin(2Tp) dp 
0 

1 
O” - sin 8, p (n-5)‘2 Q,(p) p(p) cos(2Tp) dp. 

0 

Since f E 9, Q, is small at infinity. Also, (n - 5)/2 > -1 because n > 3. 
Thus, p-5)12 Q,@>lu@>='(W, and the Riemann-Lebesgue lemma 
implies that both integrals are o(l). An identical argument applies to Z,r3. 
Hence, 

11, =zllz -z,,‘i + 41). 

Let us now study the integral I,,*. This integral converges absolutely, so the 
dominated convergence theorem justifies writing 

Z1r2 = sin 8, lim 
s R+m p<R 

P-(“+~)‘~ m jok 1” cos &I dA d<. 

Label the truncated integral IT,,. Replacing g(r) by its definition, one has 

I?12 = (27L)-“‘2 jo<R P-(n+3)‘2 (1 e-i”‘yg(y) dy) jXi”’ cos Ap dA d& 
0 

Now, because of the truncation, the iterated integral converges absolutely, 
and Fubini’s theorem yields 

If12 = (2n)-n’2j g(g)jokImj~<Rp-‘“i”/2 cosApee-il.y dt;dA dy, 
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Change to polar coordinates in the inner integral, and perform the angular 
integration. As before, 

where r = ( y I. 
Denote the innermost integral by FR(r, ,I). Then, 

< C(1 + ?-‘-“‘*), 

since I.Z,(s)/s” I< C, provided v > 0. Now since 1 g(y) ji ,lmFR(r, A) dA 1 is 
bounded by the L’ function C(l + rlen’*) 1 g(y)/, the dominated convergence 
theorem implies 

I,,, = (2~))“‘*yO sin 8, lim Rim jg(Y)joxI”F,(r,rl)d~dY 

i 
k 

= yr sin 8, g(y) lim 
R+m ,, 

AmFR(r, A) d/l dy. 

FR(r, 2) is uniformly bounded in 1 so, in fact, 

I, I2 = y1 sin @,,I g(y) i,” p(n-5)‘2 cos @ ::r$‘_:) dp dA dy. 

Recalling that J- r,*(z) = (2/7rz) “* cos z, one may write 

I,,, = y4 sin 8, J P - ‘J- 1,2(3Ld Jn,z - 1 Q-P> dp c-a dy. 

where y4 = (2/w)“*y1. Let us now invoke the following useful formula 
attributed to Weber and Schaftheitlin (cf. [ 11, p. 991). 
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P -“J,(aP) J”(bP) dP 
= a’2-“bC-“-‘T(j + fv + flu - fa)/I$ + fv + ;u - $.l) I-( 1 + p) 

x *F,(f -t- fv + t,u - $a, f + fp - $v - &~;p + 1; a*/b*) 

(43) 

valid for 

Re(v+p-u+ l)>O, Reu>-1, O<a<b. 

Here, r represents the gamma function and *Fi is the hypergeometric 
function. If either f(1 + v + u - ,u) or 1 + p is a nonpositive integer (i.e., a 
pole of r), then the integral vanishes. Of course, if 0 ( b < a, the formula 
holds with the indices ,U and v reversed. 

Thus, since r < k, 

I,,2 = y4 sin 13, 

An analogous calculation shows that 

I, ,4 = y4 cos 8, I w/2 ~-‘J,,,(~~)J,,,-,(rp)dpd~ dy 

where y4 is the same constant for both I,,, and I,,,. 
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After making the change of variables L = rz in the first terms of I, L2 and 
I 114, one has 

I,, =z,,* -I,,, + 41) 

= y4 A, j r(5-n)‘2+m g(y) dy (44) 

fB,jg(y)jX~“-““*,F, (+,~;+;;) dAdy/ +o(l), 
r 

where 

y(zm ,F, (+$+z*) dz 

- (co, o,r (f+zo) r(+) ) 

n-l 3-n 3 
xj’z-+’ ,P, (T,-4;T;z2) dz 

0 

and 

In combining the second terms of ZL12 and I,,, , the simple fact that 
*Fl(a, b; c; z) = 2Fl(b, a; c; z) has been used. 

The claim is that B, = 0. Indeed, if n = 4j + 1, j = 1, 2 ,..., cos en = 
cos(jlr + (7r/2)) = 0, and (5 - n)/4 = 1 -j is a pole of Z’, so both terms 
vanish. 

If n = 4j + 3, j = 1, 2 ,..., sin 0, = sin(j + 1)~ = 0, and (7 - n)/4 = -j is a 
pole of Z-, 

Finally, if n = 2j, j = 2, 3 ,..., neither (5 - n)/4 nor (7 - n)/4 are poles of r. 
Using the functional equations 

r( 1 + z) = zz-(z) and T(z) zy-z) = -= 
z sin(7cz)’ (45) 
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one has 

= -n/co5 8,. 

Similarly, f((n - 3)/4) r((7 - n)/4) = -z/sin 0,. It follows that B, = 0 in 
this case as well. 

The next task is to show that the constant A, is strictly negative. Again, 
the argument is given in three cases. First, suppose it = 4j + 1, j = 1, 2,... . 
Then sin I!?, = (-1)j and cos 0, = 0. So from (44) 

A.=((-ly'r(j-f)/zr(f)r(j+ l))j~22j-22f,(j-fr-j;tiz2)dL. 

Let Cj= r(j- $)/2r(i)T(j + 1) (Cj > 0), and make the change of variables 
[= z2. Then 

Because the second index is negative, 2F,(j - j, -j; f ; c) is a polynomial, so 
one may write 

= ((-ly’C,/2) lim jg[j-1/2 2F,(j- 4, -j; $; 4) ’ 
&‘O+ & 0 

- f j’ c$ [<j-“2 2Fl(j - 4, -j; $ ; fg] d(. 

The boundary term vanishes since ,F,(j - f , -j; 4 ; 1) = 0 (cf. [ 11, p. 401). 
Using the fact that 

505/52/3 8 
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(cf. [ 11, p. 41]), one has 

Now change variables again, let zz = [, and use the fact that 

where P, denotes the Legendre polynomial of order v (cf. [ 11, p. 2291). Then 

An=-Cj (i+$j 2” (7,’ sfidz2”-2+“‘Pv(Z)dr. 

This last integral can be evaluated explicitly (cf. [ 11, p. 23 l]), 

(2j - 2 + 2&)(2j - 4 + 2~) se’ (2 + 2~)(2~) 

(2j-1 t2&)(2jt 1 t2&)...(4j-1+2&)’ 

Therefore, A, < 0 in this case. 
The proof that An < 0 when n = 4j + 3, j = 1, 2,..., is similar to the case 

above, so the details have been omitted. 
The remaining case is n = 2j, j= 2, 3,.... Note that neither (3 - n)/4 nor 

(1 - n)/4 are poles of r. Using (45) and the fact that I($) = 6, one has 
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Similarly, 

Therefore, 

401 

From Erdelyi [2, p. 651, 

provided a + b + 4 # 0, -1, -2 ,... . In the present case a + b + f = 
((n - 3)/4) + (( 1 - n)/4) + $ = 0. However, 

lim 
a+b+l/2-0 

(l/r(a + b + 4)) 2F,(2a, 2b; a + b + $; i) 

= (2a)(2b)[ 2F,(2a + 1,2b + 1; 2; C) 
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(cf. [ 11, p. 38)). Thus, 
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x zF, n-l 3-n 
-,-;2+1 -z) 

2 2 

=-2(1 -z)~F, 
i 

a-1 3-n 
T,T; 2;$1 -z)). 

Hence, 

A,=$ lzY4dz i 0 
1 

= i P(1 - z) ,F,(j - ;, 5 - j; 2; f(l - z)) dz (j = 2, 4,...) 
0 

= -4 1 

l/Z 
(1 -2r)j-*CzF,(j-4,~-j;2;i)dr, 

0 

where [= f (1 - t). Integrating by parts, one obtains 

1 
i 

112 

+ w- 1) 0 

The boundary terms vanish, so according to the formula 

; Itl $‘,(a, b; c; 01 = $,(a, b; c - 1; i) 

(cf. (11, p. 41]), one has 

Switching to z = (1 - 21;) again, one has 

1 ’ 
A,=--.- 

J j-1 0 

,+I ,F, l;+(l -z) dz. 

The hypergeometric function in the integrand is equal to the Legendre 
function PO ,-3,2(z) (cf. [ 11, p. 1741). The integral can then be evaluated, with 
the result 
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(cf. [ 11, p. 1921). This shows A,, < 0 in the final case of even n. 
Therefore, from (42) and (44), and since B, = 0, 

b=Y3Y44~“-‘)‘2 (‘Ivl”g(L’)d~~+o(T”-L”*), (46) 

where 

II = 0, nodd andA, < 0, 
I =3, nodd andA,, <O. 

It follows from (38) by arguments identical to those for I,, that 

I, = y3y4A:,T(“-“/4 
I ‘1?1I”-‘S(r)du+0(71”-““): n>6, (47) 

where 

That the constants A; are strictly negative can be proved as was done for the 
A,. In fact, the argument is simpler since the E’S introduced in evaluating A, 
for odd dimension are unnecessary. 

It remains to examine 1: (n = 4, 5). Again, one uses the asymptotic 
expansion (41), this time in (39), 

~!jj=y~T(“-‘)‘~ /j’~~‘“‘~“~j?(~)sin Tpcos(Tp-t?,,)dt 

+jP- (nf3)‘2t((r) sin Tp $(Tp) d< 
I 

E y3 T(“-‘)‘*{z;, + I;,}. 
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As before, Zt, = o(l). By an obvious trigonometric identity, Zi, can be 
rewritten as 

+ji- (n+ ““‘f(~) sin 19, d< 

= I!,, + I&,. 

It,, is o(l) as T -+ co, by the Riemann-Lebesgue lemma. Z!j,, is treated as 
was ZI12 earlier: 

I;,, = y, sin e, 
!^ rl-“‘2f(y)~o~P-3!2J,,2-,(rp) 4 d! 

= y1 sin 6, r3~2-“/2f(y)j-om u-3’2Jn,2-1(u) da dy, 

where (5 = rp. The inner integral can be evaluated explicitly (cf. [ 11, p. 91]), 

1 

cc 

u -3’2Jn,2-l(o) do = 
T((n - 3)/4) 

0 23’2~((n + 3)/4) = En* 

Hence, 

10 = CBOT(“- 1)/z 
2 n i 

r”+‘f(y) dy + o(T(~-‘)‘~), (48) 

where BE = sin B,E, < 0, since n = 4 or 5. 
Combining (46)-(48) with (35) and (36), one has, because of the 

assumptions concerning f and g, that 

Z= @OS. const.) T(n-1)‘2 + o(F”+‘)‘*). 

The lemma follows from this. I 

An interesting feature of this result is that while the integral 
J-F-, (T - t)” s u’(x, t) dx dt b e h aves like T at infinity, an integral over a 
smaller set, SF-, (T- t)” I,,, u’(x, t) dx dt, behaves like T(n-1)‘2. Thus, 
there is some cancellation in the first integral which indicates that the free 
solution u’(x, t) oscillates to some degree. Of course, this is not surprising 
for a solution to the wave equation. 

Let us also remark that the growth rate T (n-r)‘2 for Z is optimal in view of 
the standard decay estimate 
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Thus, 

< CT’“- 1)/2. 

It is possible to weaken slightly the hypothesis that I / y 1” g(y) dy and 
J’ 1 y I”-‘f(y) dy both be positive. An examination of the proof shows that, in 
fact, only a certain linear combination 

need be positive. 
Finally, let us mention that the only quantities which actually blow up are 

the Lq norm (for which there is local existence) and anything which can be 
bounded below by the Lq norm. This does not include the quantity F(T). 
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