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Abstract

It is proved that a commutative family of nonexpansive mappings of a completeR-treeX into
itself always has a nonempty common fixed point set ifX does not contain a geodesic ray. As
consequence of this, we show that any commuting family of edge preserving mappings of a co
reflexive graphG that contains no cycles or infinite paths always has at least one common fixed
This approach provides a new proof of the classical fixed edge theorem of Nowakowski and
Several related results are also obtained.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The fixed edge theorem in graph theory [15] asserts that an edge preserving m
defined on a connected graph which has no cycles or infinite paths always leaves som
of the graph fixed. We will give precise definitions later. The object of this paper is to p
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some new fixed point theorems for nonexpansive mappings defined onR-trees and apply
these results to obtain some new results in graph theory. Among other things, we
that under the above assumptions on a graph, any commuting family of edge pres
mappings has either a unique fixed edge or a common fixed vertex. (These outcom
not mutually exclusive.) When the family consists of a single mapping this reduces
fixed edge theorem. We also show that an edge preserving mapping defined on a co
graph which has no cycles always leaves some edge fixed if it has bounded orbits.

Our results onR-trees should be of independent interest as well. These spaces a
a variety of contexts and have been studied intensively in recent years; see, e.g.,
references therein.

2. Preliminary definitions

The general framework we work in is the class of geodesic spaces. Let(X,d) be a
metric space. Recall that ageodesic pathjoining x ∈ X to y ∈ X (or, more briefly, ageo-
desicfrom x to y) is a mapc from a closed interval[0, l] ⊂ R to X such thatc(0) = x,
c(l) = y, andd(c(t), c(t ′)) = |t − t ′| for all t, t ′ ∈ [0, l]. In particular,c is an isometry and
d(x, y) = l. The imageα of c is called ageodesic(or metric) segmentjoining x andy.
When it is unique we denote this geodesic[x, y]. The space(X,d) is said to be ageodesic
spaceif every two points ofX are joined by a geodesic, andX is said to beuniquely geo-
desicif there is exactly one geodesic joiningx andy for eachx, y ∈ X. A geodesic ray
in X is a subset ofX isometric to the half-line[0,∞) ⊂ R.

A subsetY ⊆ X is said to beconvexif Y includes every geodesic segment joining a
two of its points, andY is said to begated[5] if for any point x /∈ Y there exists a uniqu
pointxY ∈ Y (called thegateof x in Y ) such that for anyz ∈ Y ,

d(x, z) = d(x, xY ) + d(xY , z).

Obviously gated sets in a complete geodesic space are always closed and convex.
Recall that a mappingf of a metric spaceX into itself is nonexpansiveif d(f (x),

f (y)) � d(x, y) for all x, y ∈ X. It is known [5] that gated subsets of a complete geod
spaceX are proximal nonexpansive retracts ofX. Specifically, ifA is a gated subset ofX,
then the mapping that associates with each pointx in X its gate inA (i.e., the gate-map, o
‘nearest point map’) is nonexpansive. Several other properties of gated sets can be
for example, in [21] (see p. 98). In particular it can be easily shown by induction
the family of gated sets in a complete geodesic spaceX has theHelly property. Thus
if S1, . . . , Sn is a collection of pairwise intersecting gated sets inX then

⋂n
i=1 Si �= ∅.

Another property we use below is the transitive law for gated sets: SupposeA ⊆ B ⊆ X. If
B is gated inX and ifA is gated inB, thenA is gated inX.

A metric spaceY is said to behyperconvex[1] if every family {B(yα; rα)} of closed
balls centered atyα ∈ Y with radii rα � 0 has nonempty intersection whenever

d(yα, yβ) � rα + rβ.

In particular, a complete geodesic spaceX is hyperconvex if it has the binary ball interse
tion property (that is, any family of closed balls inX has nonempty intersection whenev
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each two members of the family intersect). Such spaces include the classicalL∞ spaces
of analysis [12]. It is known that compact hyperconvex spaces (often calledHelly spaces)
are contractible and locally contractible; hence they have the fixed point property fo
tinuous mappings (see [16]). The fact that bounded hyperconvex spaces have th
point property for nonexpansive mappings is basically due, independently, to Sin
and Soardi [19]. Subsequently Baillon [2] extended this result to commuting famili
nonexpansive mappings.

We now turn to a concept introduced by Tits in [20].

Definition 2.1. An R-tree is a metric spaceT such that:

(i) there is a unique geodesic segment (denoted by[x, y]) joining each pair of points
x, y ∈ T ;

(ii) if [y, x] ∩ [x, z] = {x}, then[y, x] ∪ [x, z] = [y, z].

From (i) and (ii) it is easy to deduce:

(iii) If p,q, r ∈ T , then[p,q] ∩ [p, r] = [p,w] for somew ∈ M .

The facts linking the preceding notions are these.

(1) A metric space is a completeR-tree if and only if it is hyperconvex and has uniq
geodesic segments.

(2) The gated subsets of anR-tree are precisely its closed and convex subsets.

The first fact has been known for some time in the compact case. A detailed proof
general case is given in [11]. (Also see [13, Theorem B] for another proof that a com
R-tree is hyperconvex.) The second fact is an immediate consequence of the defini

The fact that compactR-trees have the fixed point property for continuous maps g
back to Young [22]; also see the discussion in [14].

3. Gated sets

We begin with two observations about gated sets that we will use later.

Proposition 3.1. Let (X,d) be a complete geodesic space, and let{Hα}α∈Λ be a collection
of nonempty gated subsets ofX which is directed downward by set inclusion. IfX (or more
generally, someHα) does not contain a geodesic ray, then

⋂
α∈Λ Hα �= ∅.

Proof. Let H0 ∈ {Hα}α∈Λ, selectx0 ∈ H0 and let

r0 = sup
{
dist(x0,H0 ∩ Hα): α ∈ Λ

}
.
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α∈Λ Hα we are finished. Otherwise chooseH1 ∈ {Hα}α∈Λ so that,H1 ⊂ H0,

x0 /∈ H1, and

dist(x0,H1) �
{

r0 − 1 if r0 < ∞;
1 if r0 = ∞.

Now takex1 to be the gate ofx0 in H1. Having definedxn, let

rn = sup
{
dist(xn,Hn ∩ Hα): α ∈ Λ

}
.

Now chooseHn+1 ∈ {Hα}α∈Λ so thatxn /∈ Hn+1 (if possible),Hn+1 ⊂ Hn, and

dist(xn,Hn+1) �
{

rn − 1
n

if rn < ∞;
1 if rn = ∞.

Now takexn+1 to be the gate ofxn in Hn+1. Either this process terminates after a fin
number of steps, yielding a pointxn ∈ ⋂

α∈Λ Hα , or we have sequences{xn}, {Hn} for
which i < j �⇒ xj is the gate ofxi in Hj . SinceX does not contain a geodesic ray,
must be the case thatrn < ∞ for somen (and hence for alln). By transitivity of gated sets
the sequence{xn} is linear and thus lies on a geodesic inX. SinceX does not contain a
geodesic ray, the sequence{xn} must in fact be Cauchy. Letx∞ = limn xn. Since each o
the setsHn is closed, clearlyx∞ ∈ ⋂∞

n=1 Hn. Also
∑∞

n=1 rn < ∞, so limn rn = 0.
Now let Pα , α ∈ Λ, be the nearest point projection ofX ontoHα , and for eachn ∈ N,

let yn = Pα(xn). Thend(yn, xn) � rn, and sincePα is nonexpansive, for anym,n ∈ N,
d(yn, ym) � d(xn, xm). It follows that Pα(x∞) = x∞ for eachα ∈ Λ. Thereforex∞ ∈⋂

α∈Λ Hα . �
Proposition 3.2. Let (X,d) be a complete geodesic space, and let{Hn} be a descend
ing sequence of nonempty gated subsets ofX. If {Hn} has a bounded selection, the⋂∞

n=1 Hn �= ∅.

Proof. Here we simply describe the step-by-step procedure. Let{zn} be a bounded selec
tion for {Hn}. Let x0 = z0. Then letn1 be the smallest integer such thatx0 /∈ Hn1. Let x1
be the gate ofx0 in Hn1 and takex2 = zn1. Now taken2 to be the smallest integer suc
that x2 /∈ Hn2 and takex3 to be the gate ofx2 in Hn2. Continuing this procedure induc
tively it is clear that one generates a sequence{xn} which is isometric to an increasin
sequence of positive numbers on the real line. Since{x2n} is a subsequence of the bound
sequence{zn} it must be the case that{xn} is also bounded. Therefore limn xn exists and
lies in

⋂∞
n=1 Hn. �

Remark. Proposition 3.2 holds for arbitrary descending chains; however the above i
ficient for our purposes (cf., the proof of Theorem 4.5).

4. Hyperconvexity and R-trees

For our next result we need the following fact about hyperconvex spaces.
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Theorem 4.1 [18]. Let (X,d) be a hyperconvex metric space and supposeT :X → X is
nonexpansive. Then for eachε > 0 the set

Fε(T ) := {
x ∈ X: d

(
x,T (x)

)
� ε

}
is also hyperconvex.

We will also need a result of Kirk [10]. Suppose(X,d) is a geodesic space with uniq
geodesics. We say that the metric ond is convexif the following holds: Givenp,x, y ∈ X

andt ∈ (0,1), let m be the point of[x, y] satisfying

d(x,m) = td(x, y) and d(y,m) = (1− t)d(x, y).

Then

d(p,m) � (1− t)d(p, x) + td(p, y).

The following is a special case of Theorem 3 of [10].

Lemma 4.2. Suppose(X,d) is uniquely geodesic with a convex metric, supposeT :X → X

is nonexpansive, and supposex0 ∈ X satisfies

d
(
x0, T (x0)

) = inf
{
d
(
x,T (x)

)
: x ∈ X

}
> 0.

Then the sequence{T n(x0)} is unbounded and lies on a geodesic ray.

The preceding observations combined with Proposition 3.1 give an easy proof
following fact. The significance of this result is the fact thatK itself is not assumed t
be bounded. (This result might also be compared with Theorem 32.2 of [7] wher
shown that the complex Hilbert ball with a hyperbolic metric has the fixed point pro
for nonexpansive mappings if and only if it is geodesically bounded.)

Theorem 4.3. Let (X,d) be a completeR-tree, and supposeK is a closed convex subs
of X which does not contain a geodesic ray. Then every commuting familyF of nonexpan-
sive mappings ofK → K has a nonempty common fixed point set.

Proof. Let T ∈ F. We first show that the fixed point set ofT is nonempty. Letd =
inf{d(x,T (x)): x ∈ K} and let

Fn :=
{
x ∈ K: d

(
x,T (x)

)
� d + 1

n

}
.

SinceK is a closed convex subset of a completeR-tree,K itself is hyperconvex, so by The
orem 4.1{Fn} is a descending sequence of nonempty closed convex (hence gated)
of K . SinceK does not contain a geodesic ray, Proposition 3.1 impliesF := ⋂∞

n=1 Fn �= ∅.
Therefore there existsz ∈ K such that

d
(
z,T (z)

) = d.

SinceK does not contain a geodesic ray, in view of Lemma 4.2,d = 0.
BecauseR-trees are uniquely geodesic, the fixed point setF of T is closed and convex

and hence again anR-tree. Now supposeG ∈ F. SinceG andT commute it follows tha
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G :F → F , and by applying the preceding argument toG andF we conclude thatG has
a nonempty fixed point set inF . In particular the fixed point set ofT and the fixed poin
set of G intersect. Since these are gated sets inX, by the Helly property of gated se
we conclude that every finite subcollection ofF has a nonempty common fixed point s
(which is itself gated). Now letA be the collection of all finite subcollections ofF, and for
α ∈A, letHα be the common fixed point set ofα. Then givenα,β ∈A, Hα∪β ⊆ Hα ∩Hβ ,
so clearly the family{Hα}α∈A is directed downward by set inclusion. Since these are
gated sets, we again apply Proposition 3.1 to conclude that

⋂
α∈A Hα �= ∅, and thus thatF

has a nonempty common fixed point set.�
A nonlinear nonexpansive semigroup on a metric space(X,d) is a familyS(t) :X → X,

t � 0, of nonexpansive mappings satisfyingS(0) is the identity andS(t1 + t2) = S(t1) ◦
S(t2). A nonexpansive mappingT (respectively, a semigroupS(t)t�0 of nonexpansive
mappings) defined on a metric spaceX is said to havebounded orbits(respectively, to be
bounded) if for eachx ∈ X there is a numberM(x) such thatd(x,T n(x)) � M(x) for all
n � 1 (respectively,d(x,S(t)x) � M(x) for all t � 0).

For our next result we apply the following theorem due to Khamsi and Reich.

Theorem 4.4 [9]. For a hyperconvex metric spaceX the following are equivalent:

(A) Any nonexpansive mapping ofX → X with bounded orbits has a fixed point.
(B) Any bounded nonexpansive semigroup onX has a nonempty common fixed point s
(C) Any decreasing sequence of hyperconvex subspaces ofX with a bounded selection ha

nonempty intersection.

Theorem 4.5. Let (X,d) be a completeR-tree. Then:

(i) any nonexpansive mapping ofX → X with bounded orbits has a fixed point; and
(ii) any bounded nonexpansive semigroup onX has a nonempty common fixed point se

Proof. Proposition 3.2 implies that condition (C) of Theorem 4.4 holds. Thus co
tions (A) and (B) also hold. �

Finally, we have a result about iteration. The following is a consequence of Propos
of [10].

Proposition 4.6. Suppose(X,d) is uniquely geodesic with a convex metric in the se
defined above, and supposeT :X → X is nonexpansive. Fixt ∈ (0,1) and definef :X →
X by takingf (x) to be the point of[x,T (x)] such that

d
(
x,f (x)

) = td
(
x,T (x)

)
, x ∈ X.

If d(f n(x), f n+1(x)) ≡ r > 0 for somex ∈ X, then the sequence{f n(x)} lies on a geo-
desic ray.

This fact yields the following result.
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Theorem 4.7. Let (X,d) be a completeR-tree, supposeK is a closed convex subset ofX

that does not contain a geodesic ray, and supposeT :K → K is nonexpansive. Fixt ∈
(0,1) and defineft :K → K by takingft (x) to be the point of[x,T (x)] such that

d
(
x,ft (x)

) = td
(
x,T (x)

)
, x ∈ K.

Then{f n
t (x)} converges to a fixed point ofT for eachx ∈ K .

Proof. Let x ∈ K . Since{d(f n
t (x), f n+1

t (x))} is nonincreasing

d := inf
n

{
d
(
f n

t (x), f n+1
t (x)

)} = lim
n

d
(
f n

t (x), f n+1
t (x)

)
. (1)

For eachn ∈ N let

Fn :=
{
u ∈ K: d

(
u,ft (u)

)
� d + 1

n

}
.

As in the proof of Theorem 4.3,Fn is gated for eachn, andF := ⋂∞
n=1 Fn �= ∅.

Let x0 = x and letn1 be the smallest integer such thatx0 /∈ Fn1. Now letx1 be the gate
of x0 in Fn1 and letx2 = f

n2
t (x) wheren2 is chosen so thatf n2

t (x) ∈ Fn1. Next letn3 be
the smallest integer such thatx2 /∈ Fn3 and letx3 be the gate ofx2 in Fn3. Proceed in this
way step-by-step. If the process terminates we clearly havef n

t (x) ∈ F for n sufficiently
large. In this case, in view of Proposition 4.6, we concluded = 0 andf n

t (x) is a fixed point
of ft (hence also ofT ). Otherwise we obtain a sequence{xn} which lies on a geodesic an
for which {x2n} is a subsequence of{f n

t (x)}. SinceK is linearly bounded,{xn} must be
a Cauchy sequence. This proves that a subsequence of{f mi

t (x)}∞i=1 converges, say to
pointz ∈ F . In view of (1) this impliesd(f n

t (z), f n+1
t (z)) = d , n = 0,1,2, . . . . By Propo-

sition 4.6 it must be the case thatd = 0. But this impliesz = ft (z) and hence that{f n
t (x)}

itself converges toz. �

5. Applications to graph theory

A graph is an ordered pair(V ,E) whereV is a set andE is a binary relation onV
(E ⊆ V × V ). Elements ofE are callededges. We are concerned here with (undirecte
graphs that have a “loop” at every vertex (i.e.,(a, a) ∈ E for eacha ∈ V ) and no “multiple”
edges. Such graphs are calledreflexive. In this caseE ⊆ V × V corresponds to a reflexiv
(and symmetric) binary relation onV .

Given a graphG = (V ,E), a path ofG is a sequencea0, a1, . . . , an−1, . . . with
(ai+1, ai) ∈ E for eachi = 0,1,2, . . . . A cycle is a finite path(a0, a1, . . . , an−1) with
(a0, an−1) ∈ E. A graph isconnectedif there is a finite path joining any two of its vertice
A finite path(a0, a1, . . . , an−1) is said to havelengthn. Finally, atreeis a connected grap
with no cycles.

For a graphG = (V ,E) a map f :V → V is edge-preservingif (a, b) ∈ E �⇒
(f (a), f (b)) ∈ E. For such a mapping we simply writef :G → G. There is a standar
way ofmetrizingconnected graphs; let each edge have length one and take distanced(a, b)

between two verticesa andb to be the length of the shortest path joining them. With
metric edge preserving mappings become precisely thenonexpansivemappings. (Keep in
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mind that in a reflexive graph an edge-preserving map may collapse edges between
points since loops are allowed.)

We now show how the classical fixed edge theorem of Nowakowski and Riva
consequence of results of the preceding section.

Theorem 5.1 [15]. Let G be a reflexive graph that is connected, contains no cycles,
contains no infinite paths. Then every edge-preserving map ofG into itself fixes an edge.

Proof. Supposef :G → G is edge preserving. Since a connected graph with no cycl
a tree, one can construct from the graphG an R-treeT by identifying each (nontrivial)
edge with a unit interval of the real line and assigning the shortest path distance to a
points ofT . It is easy to see that with this metricT is complete. One can now extendf

affinely on each edge to the corresponding unit interval, and the resulting mappingf̃ is a
nonexpansive mapping ofT → T . Thus f̃ has a fixed pointz by Theorem 4.3. Eitherz
is a vertex ofG, or z lies properly on a unit interval ofT in which casef must leave the
corresponding edge fixed.�

An application of Theorem 4.3 in its full generality tells us much more.

Theorem 5.2. LetG be a reflexive graph that is connected, contains no cycles, and con
no infinite paths. SupposeF is a commuting family of edge-preserving mappings ofG into
itself. Then either:

(a) there is a unique edge inG that is left fixed by each member ofF; or
(b) some vertex ofG is left fixed by each member ofF.

Proof. EmbedG in anR-treeT as in the preceding proof, and extend the mappingsf ∈ F

affinely toT to obtain a commuting familỹF = {f̃ : f ∈ F} of nonexpansive mappings o
T → T . In view of Theorem 4.3 there is a pointz ∈ T that is a fixed point of each memb
of F̃. Eitherz is a vertex ofG, or z properly lies on an interval ofT whose correspondin
edge is a common fixed edge ofF. However the only wayF can fail to have a commo
fixed vertex is ifz is the midpoint of some interval ofT corresponding to an edge(a, b)

for which f (a) = b andf (b) = a for somef ∈ F. Since fixed point sets of nonexpansi
mappings inT are convex, this would imply thatz is the unique fixed point of̃f . Since any
mapping commuting withf̃ maps the fixed point set of̃f into itself, z is a fixed point of
everymember of̃F. Therefore(a, b) is theuniqueedge left fixed by each member ofF. �

Theorem 4.5(i) also has a graph theory counterpart. In this context, a bounded
means that givenx ∈ G there existsM ∈ N such that each two points of{T n(x)} can be
joined by a path of length at mostM .

Theorem 5.3. Let G be a reflexive graph that is connected and contains no cycles.
every edge-preserving mappingT of G into itself which has bounded orbits fixes an ed
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The following algorithm is a consequence of Theorem 4.7 (although it can be p
directly as well).

Theorem 5.4. LetG be a reflexive graph that is connected, contains no cycles, and con
no infinite paths, and letT :G → G be an edge-preserving map. Fixx0 ∈ G, and having
definedxn choosexn+1 so that(xn, xn+1) is a nontrivial edge on the path joiningxn to
T (xn) if such an edge exists; otherwise setxn+1 = xn. Then there exists an integern for
which either

(i) xn+1 = xn (i.e.,xn is a fixed vertex), or
(ii) xn+2 = xn (and(xn, xn+1) is a fixed edge).

Proof. Again embed the problem in anR-tree and consider the mappingft from Theo-
rem 4.7, wheret ∈ (0,1) is chosen so small thatft (x0) lies on the interval of theR-tree path
corresponding to the edge(x0, x1). The desired integern is the smallest integer for whic
d(f n+1

t (x), f n+2
t (x)) < d(f n

t (x), f n+1
t (x)). Such an integer must exist because{f n

t (x)}
converges. �
Remarks. (1) Metric graphs are the spaces obtained by taking a connected grap
metrizing the nontrivial edges of the graph as bounded intervals of the real line. S
graph is anR-tree if the corresponding metric graph is connected and simply conne
However in generalR-trees are much more complicated than metric graphs. For exa
consider the set[0,∞) × [0,∞) with the distance between two pointsx = (x1, x2) and
y = (y1, y2) defined by

d(x, y) =
{

x1 + y1 + |x2 − y2| if x2 �= y2;
|x1 − y1| if x2 = y2.

The asymptotic coneHn
U of the classical hyperbolicn-spaceHn provides another non

simplicial example of anR-tree. In this case, the complement of every point in theR-tree
has infinitely many connected components. (Theasymptotic coneof H

n is the ultraprod-
uct

∏
Xn over some nontrivial ultrafilterU , whereXn = (Hn, 1

n
d). For a discussion

see [4]. Also, for some explicit constructions ofR-trees related to the asymptotic geome
of hyperbolic metric spaces see [6].)

(2) Straightforward examples show that the sufficient conditions for a fixed ed
Theorem 5.1 (connectedness, no cycles, and no infinite paths) are also necessary. S

(3) See [8] for an example showing that Theorem 4.5 does not hold in an arb
hyperconvex space.
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