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Abstract Introduction: This study examinedwhether, among subjects with mild cognitive impairment (MCI),
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women progressed at faster rates than men.
Methods: We examine longitudinal rates of change from baseline in 398 MCI subjects (141 females
and 257 males) in the Alzheimer’s Disease Neuroimaging Initiative-1, followed for up to 8 years
(mean, 4.16 2.5 years) using mixed-effects models incorporating all follow-ups (mean, 86 4 visits).
Results: Women progressed at faster rates than men on the Alzheimer’s disease assessment scale-
cognitive subscale (ADAS-Cog; P 5 .001) and clinical dementia rating-sum of boxes (CDR-SB;
P 5 .003). Quadratic fit for change over time was significant for both ADAS-Cog (P 5 .001) and
CDR-SB (P 5 .004), and the additional acceleration in women was 100% for ADAS-Cog and
143% for CDR-SB. The variability of change was greater in women. The gender effect was greater
in apolipoprotein E (APOE) ε4 carriers.
Discussion: Women with MCI have greater longitudinal rates of cognitive and functional progres-
sion than men. Studies to confirm and uncover potential mechanisms appear to be warranted.
Trial Registration: ADNI ClinicalTrials.gov identifier: NCT00106899.
� 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Although men may have a greater risk for mild cognitive
impairment (MCI) [1], women make up almost two-thirds of
Alzheimer’s disease (AD) patients in the United States [2].
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The higher prevalence of AD in women has been attributed
previously to longer female life expectancy or sociocultural
detection biases, but some recent findings [1,3–32] also
support an alternate hypothesis that women at risk
progress to AD at faster rates than men due to greater
neurobiologic vulnerability. The Framingham study found
that the age-specific risk of AD was almost twofold greater
in women than men (17.2% vs. 9.1% at age 65 years and
28.5% vs. 10.2% at age 75 years) [3]. Holland et al. [6] re-
ported that female gender was associated with a greater
rate of cognitive change in MCI subjects than men over a
1-year period, raising further questions about what happens
over longer periods.
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Studies have also begun to examine underlying reasons
for a possible sexual dimorphism in rates of decline. A
greater potency of the AD risk associated with the apolipo-
protein E4 allele and the brain derived neurotrophic factor
(BDNF) Met66 allele has been noted in women
[1,5,7,9,11,12]. Other theories proposed to explain gender
differences include sex hormones (such as estrogen),
smaller head size, lower cognitive reserve, lower levels of
exercise in women (at least in the United States) and
differences in occupational or educational attainment.
Gender differences in pathologic vulnerability for AD are
supported by studies noting greater annual three-
dimensional tensor-based magnetic resonance imaging
(MRI) brain atrophy rates in women [4] and a significant
association of gender with neuritic plaques and neurofibril-
lary tangles [5]. In one study, equivalent increases in AD
pathology increased the odds of clinical AD by 20-fold for
women versus threefold for men [5]. Collectively, these
studies argue for more definitive long-term examination of
gender differences in MCI rates of progression and patho-
logic vulnerability.

The aim of this report was to use 8-year longitudinal data
on at-risk subjects from a national biomarker study to test the
hypothesis that women progress cognitively and function-
ally at faster rates than men, after covarying for baseline
cognition, age, and education. A second aim was to model
the long-term trajectories of decline in men versus women
to see if the assumptions of linear decline noted by the prior
1-year study [6] held true over a longer period of follow-up.
The long-term data allowed us to test for both linear and
curvilinear patterns of decline as well as acceleration over
time. A third aimwas to examine interactions between apoli-
poprotein E (APOE) genotype and gender on cognitive
decline and to see if gender had an effect beyond that
conferred by the E4 genotype. Finally, we examined gender
differences in the variability of decline in both cognition and
function, using instruments widely used in prevention trials.
2. Methods

2.1. Subjects

MCI subjects recruited in Alzheimer’s Disease Neuroi-
maging Initiative-1 (ADNI-1; adni.loni.usc.edu) were used
in our analyses. ADNI (ADNI ClinicalTrials.gov identifier:
NCT00106899) is the result of efforts of many coinvestiga-
tors from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50
sites across the United States and Canada. ADNI-1 origi-
nally recruited 398 MCI subjects who then had the option
to be followed in ADNI-2. For up-to-date information, see
www.adni-info.org. Additional details are also provided in
the ADNI-1 procedures manual [33,34].

All ADNI-1 MCI subjects were eligible for inclusion.
Criteria for classification as MCI in ADNI-1 are as follows:
an inclusive mini-mental state examination (MMSE) score
from 24–30, subjective memory complaint, objective evi-
dence of impaired memory calculated by scores of the
Wechsler Memory Scale Logical Memory II adjusted for
education, a score of 0.5 on the global CDR, absence of sig-
nificant confounding conditions such as current major
depressive episode, normal, or near normal daily activities,
and absence of clinical dementia. For a detailed list of all
selection criteria, readers are referred to the ADNI-1 proce-
dures manual [34]. In addition, data for all the following
parameters were required for subjects included for analysis:
baseline age, race, gender, and years of education; baseline
MMSE score; Alzheimer’s disease assessment scale-
cognitive subscale (ADAS-Cog) for at least two different
time points, and APOE genotyping results. APOE allele gen-
otyping of all subjects was executed using DNA extracted
from peripheral blood cells, and details are provided else-
where [34]. In total, 398 MCI subjects from ADNI-1 were
included. The term “baseline” is used to indicate data
collected at the subject’s first visit (which may be screening
or baseline).
2.2. Outcome measures

The ADAS-cog 11 is a 70-point scale designed to assess
severity of cognitive impairment, and it is commonly used
in MCI and Alzheimer’s trials. The ADAS-Cog is
composed of 11 tasks that assess learning and memory, lan-
guage production and comprehension, constructional and
ideational praxis, and orientation [4]. Higher scores indi-
cate worse performance, as it is scored based on number
of errors.

The clinical dementia rating-sum of boxes (CDR-SB),
with a range from 0 to 18, is the sum of the ratings for the
six domains of the CDR global dementia rating scale. It pro-
vides a quantitative assessment of cognitive and functional
impairments based on a semi-structured interview of the
subject and informant [35]. Higher scores indicate greater
impairment.
2.3. Follow-up

ADNI MCI subjects were followed through ADNI-1 and
then enrolled in ADNI-2. We compared ADAS-Cog and
CDR-SB scores from baseline to end point (using most
recent available scores at the time of our data extraction in
late 2014) yielding a study duration of up to 8 years (mean
duration, 4 years).

2.4. Statistical analyses (models)

We fit a quadratic model of the form (as it was found to be
a better fit than just a linear model).

AjðtÞ5m1bjt1gjt
21εjt (1)

In model (1), Aj(t) is the ADAS-Cog value of subject j
at follow-up time t. The model explains this in terms of m,
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Table 1

Baseline characteristics and follow-up duration of MCI subjects in ADNI-1

Variable Male Female P value

n 257 141

Age 75.32 6 7.31 73.67 6 7.45 .03

Years of education 15.87 6 3.04 15.20 6 2.99 .03

MMSE 26.86 6 1.78 27.11 6 1.77 .19

ADAS-Cog 11.52 6 4.25 11.49 6 4.72 .95

Follow-up visits 8.54 6 4.55 8.05 6 4.06 .27

Follow-up length 4.18 6 2.56 4.01 6 2.40 .53

%APOE ε41 41.24 41.84 NS

Abbreviations: MCI, mild cognitive impairment; ADNI, Alzheimer’s

Disease Neuroimaging Initiative; n, number of subjects; MMSE, mini-

mental state examination; ADAS-Cog, Alzheimer’s disease assessment

scale-cognitive subscale; APOE, apolipoprotein E; NS, not significant;

SD, standard deviation.

NOTE. For details of selection criteria, refer to the text. Mean and SD

shown in the table. Bold P values are statistically significant.

Table 2

Mixed-effects model of ADAS-Cog rate of change

Term Value

Standard

error t-value P value

Baseline rate 1.519 0.238 6.371 ,.001

Baseline curvature 0.094 0.028 3.340 .001

Female effect 1.179 0.311 3.793 ,.001

APOE ε41 effect 1.284 0.311 4.131 ,.001

APOE ε411 effect 2.305 0.482 4.787 ,.001

Education effect 0.107 0.048 2.231 .026

Baseline cognition effect 20.436 0.082 25.303 ,.001

Age effect 20.013 0.020 20.640 .523

Female effect on curvature 0.090 0.040 2.275 .023

APOE ε41 effect on curvature 0.134 0.039 3.414 .001

APOE ε411 effect on curvature 0.276 0.059 4.646 ,.001

Abbreviation: ADAS-Cog, Alzheimer’s disease assessment scale-

cognitive subscale; APOE, apolipoprotein E.

NOTE. Values are coefficients in model 2. To avoid confusion, only the

effects on rate of change, i.e. interactions with time are displayed here. Units

are ADAS-Cog score change per year. Women had greater rates of decline

thanmen. Positive changes in ADAS-Cog scores indicateworsening. BoldP

values are statistically significant.
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the ADAS-Cog value for subject j at 3.45 years, b, the
rate of change in ADAS-Cog and g, the curvature in
the ADAS-Cog trajectory. Finally, εjt is the measurement
error, assumed to have a zero mean Gaussian
distribution with standard deviation (SD) se. The curva-
ture parameter captures nonlinearity of the trajectories:
g 5 0 indicates linear growth, i.e. constant rate of change,
g . 0 indicates that the rate of change is increasing over
time, whereas g , 0 indicates that the rate of change is
decreasing over time. The follow-up time is centered;
the median follow-up time (3.45 years) is subtracted
from the actual follow-up time, to allow the slope and
curvature parameters to be estimated approximately
independently.

To confirm our findings with regard to slopes and curva-
tures, a mixed-effects model was used to model the effect of
gender on cognitive decline, taking into account the effect of
confounders, such as baseline MMSE, age, years of educa-
tion, and APOE ε4 status on baseline, with outcome being
ADAS-Cog, as follows:

AiðtÞ5m1bi1aFiIF1aA1iIA11aA11iIA111aAgeAgei

1aEducEduci1aMMSEMMSEi1b0t1bFiIFt1g0t
2

1gFiIFt
21bA1iIA1t1bA11iIA11t1gA1iIA1t

2

1gA11iIA11t
21bAgeAgeit1bEducEducit

1bMMSEMMSEit1rit1εit

(2)

In the mentioned model, Ai(t) is the ADAS-Cog value
of subject i at time t (in years). Model (2) explains this
in terms of m, the baseline ADAS-Cog value for a 75.1-
year-old male with 16 years of education, MMSE of 27
and of APOE ε4 negative. The terms with a are effects
of gender, APOE ε4 status, MMSE, age, and years of ed-
ucation on baseline ADAS-Cog values. The terms with b
are effects on rates of change and b0 is the baseline rate
of change. The terms with g are effects on curvature and
g0 is the baseline curvature. We include a random effect
bi and ri to account for the effect of unmeasured subject
factors on the baseline ADAS-Cog value and rate of
change, respectively: both are assumed to have a zero
mean Gaussian distribution with SD sb. Finally, εit is the
measurement error assumed to have an independent zero
mean Gaussian distribution with SD sb. Note that the
square root transformation was used to obtain approximate
Gaussianity of estimated error terms as well as constant
variance across fitted values of the response. A similar
model was fit for CDR-SB. Model (0.2) was fit by the
method of restricted maximum likelihood using the nlme
package in the R computing platform (www.r-project.
org). In our models, we used the subject’s initial MMSE
as a covariate to represent baseline cognition; however,
gender differences in cognitive decline remained signifi-
cant when the baseline ADAS-Cog was used as a covariate
in the model rather than the MMSE.
3. Results

3.1. Baseline characteristics

Baseline features of the sample are summarized in
Table 1. The mean baseline age and educational level in
males were statistically higher than those in females (P value
for both variables 5 .03), but the differences were small.
There are no significant differences by gender for baseline
ADAS, baseline MMSE, number of follow-up visits, or
follow-up length.
3.2. Effect of gender on ADAS-Cog change from baseline

As shown in Table 2 and Fig. 1, the quadratic (curvilinear)
term was significant for ADAS rate of change (P 5 .001).
The effect of baseline cognition, APOE ε4, and years of ed-
ucation on ADAS-Cog change from baselinewas significant,

http://www.r-project.org
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Fig. 1. ADAS-Cog changes over time by gender. Average trajectories of

ADAS-Cog scores by gender. Pointwise 95% confidence bands for the

mean are based on the number of subjects at any given time point. The figure

depicts time in years from baseline on the x-axis and ADAS-Cog 11 total

scores on the y-axis. Increasing ADAS-Cog scores indicate worsening.

Solid lines indicate mean ADAS-Cog scores, and dashed lines indicate

95% confidence intervals for these scores. The actual visit date of each sub-

ject was used (rather than pooling visits as “annual”) to give a more precise

depiction of variability and progression. Abbreviation: ADAS-Cog, Alz-

heimer’s disease assessment scale-cognitive subscale.

Fig. 2. Median rates of ADAS-Cog change by gender and APOE ε4 status.

Median rates of ADAS-Cog change per year by gender and number of

APOE ε4 alleles. APOE ε42 indicates no APOE ε4 alleles, APOE ε41 is

one allele, and APOE ε411 is two alleles. Women had higher median

annual rate of change than men regardless of APOE ε4 genotype group.

Abbreviation: ADAS-Cog, Alzheimer’s disease assessment scale-

cognitive subscale.

Table 3

Standard deviation of subject-specific slopes and curvatures averaged by

gender and APOE alleles for both ADAS-Cog and CDR-SB

Outcome APOE ε4 alleles 0 1 2
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but the effect of age was not (Table 2). There was a signifi-
cant effect of APOE ε4 alleles, both homozygous (carriers of
two ε4 alleles) and heterozygous (one ε4 allele), for APOE
ε4 on ADAS change (P , .001), and APOE ε4 influenced
decline in both genders (Fig. 2). After adjusting for baseline
cognition, APOE ε4, age, and education status, the effect of
female gender on ADAS-Cog worsening over time was sig-
nificant (P , .001). The annual change in women was 2.7
ADAS points versus 1.5 points in men (Table 2). Female
gender contributed an additional 95.7% to baseline curva-
ture. The variability of change in ADAS-Cog tended to be
greater in women than in men, for both slope and curvature
(Table 3).
Slopes

ADAS-Cog Females 2.38 3.51 2.26

Males 2.24 2.61 2.04

CDR-SB Females 0.8 1.09 1.05

Males 0.79 0.9 0.95

Curvatures

ADAS-Cog Females 2.33 2.86 2.81

Males 1.32 1.8 2.5

CDR-SB Females 0.58 0.92 0.53

Males 0.56 0.56 0.36

Abbreviations: APOE, apolipoprotein E; ADAS-Cog, Alzheimer’s dis-

ease assessment scale-cognitive subscale; CDR-SB, clinical dementia rating

sum of boxes.

NOTE. All numbers reported in the table are standard deviations.
3.3. Effect of gender on CDR-SB progression over time

As shown in Table 4 and Fig. 3, the quadratic (curvilinear)
term was significant for CDR-SB rate of change (P5 .004).
The effect of APOE ε4 on CDR-SB change was significant
(P, .001), but the effect of age and education did not reach
significance. After adjusting for these variables, the effect of
female gender on CDR-SB worsening over time was signif-
icant (P 5 .003). The annual change in women was 0.91
CDR-SB points versus 0.59 points in men. Female gender
also had a significant effect on the slope curvature
(P 5 .004); female gender contributed an additional 143%
to baseline curvature.
4. Discussion

This study found a marked gender difference in longitu-
dinal rate of change in ADAS-Cog and CDR-SB inMCI sub-
jects and demonstrates that there is a curvilinear acceleration
of rate of change over time (influenced by both gender and
APOE ε4 status.) Previously, Holland et al. [6] reported a
smaller gender difference in a much shorter (1 year)
follow-up study of MCI subjects. We confirm and extend
this to a follow-up period of up to 8 years (mean of 4 years).
The baseline rate of ADAS change reported in Holland et al



Table 4

Mixed-effects model of CDR-SB rate of change over time

Term Value

Standard

error t-value P value

Baseline rate 0.595 0.085 7.003 ,.001

Baseline curvature 0.023 0.008 2.850 .004

Female effect 0.325 0.111 2.934 .003

APOE ε41 effect 0.496 0.111 4.461 ,.001

APOE ε411 effect 0.837 0.171 4.895 ,.001

Education effect 0.008 0.008 1.018 .309

Baseline cognition effect 0.023 0.017 1.341 .180

Age effect 0.010 0.007 1.331 .183

Female effect on curvature 0.033 0.011 2.914 .004

APOE ε41 effect on curvature 0.017 0.011 1.486 .138

APOE ε411 effect on curvature 0.078 0.017 4.559 ,.001

Abbreviation: CDR-SB, clinical dementia rating sum of boxes; APOE,

apolipoprotein E.

NOTE. Values are coefficients in model 2. For brevity, only the effects on

rate of change, i.e. interactions with time are displayed here. Units are CDR-

SB score units change per year. Women had greater rates of decline than

men. Bold P values are statistically significant.
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(0.49 points/year) was lower than that in our study—likely
due to the fact that our much longer follow-up allowed us
to quantify a curvilinear acceleration of change over time.
The similarity of the gender effect on ADAS-Cog and
CDR-SB indicates that women have a faster rate of decline
Fig. 3. CDR-SB changes over time by gender. Average trajectories of CDR-

SB scores by gender. Pointwise 95% confidence bands for the mean are

based on the number of subjects at risk at any given time point. The figure

depicts time in years from baseline on the x-axis and CDR-SB scores on the

y-axis. Higher CDR-SB scores indicate worsening. Solid lines indicate

mean ADAS-Cog scores, and dashed lines indicate 95% confidence inter-

vals for these scores. The actual visit date of each subject was used (rather

than pooling visits as “annual”) to give a more precise depiction of vari-

ability and progression. Abbreviations: CDR-SB, clinical dementia

rating-sum of boxes; ADAS-Cog, Alzheimer’s disease assessment scale-

cognitive subscale.
in both cognitive performance and functional status. Our
models adjusted for age and APOE ε4, which correlate sub-
stantially with risk for amyloid positive status. Gender dif-
ferences are present in APOE ε4 carriers and noncarriers;
however, gender effects appear to be greatest in E4 homozy-
gotes, a group at greatest risk for conversion. Overall, these
data confirm and extend prior findings [3–6] that women
with MCI may have a greater vulnerability for cognitive
and functional decline.

The strengths of our study include its use of a relatively
large baseline sample size (398 MCI subjects recruited
nationally), the employment of specific clinical criteria for
amnestic MCI with standardized data collection across mul-
tiple sites, and relatively long (mean, 4 years) follow-up
duration. We focused primarily on MCI subjects originally
recruited in ADNI-1 because they had a more traditional
form of MCI (i.e. late MCI) whose memory criteria are
well established. We did not include any subjects newly
recruited in ADNI-Go or ADNI-2 with early MCI because
they lacked sufficient long-term follow-up. One potential
limitation is that ADNI MCI subjects are not necessarily
representative of the population as a whole and as such are
more representative of MCI subjects recruited at research
centers or those who have been enrolled into secondary pre-
vention trials. Although our mean follow-up time of 4 years
is longer than that of others addressing this question, it may
still not have been long enough to conclusively test for
gender differences in rates of conversion to dementia. The
rate of conversion fromMCI to dementia was slightly higher
among women than men but this was not statistically signif-
icant. Subjects who progressed to AD dementia were not
excluded. All data points on subjects who entered the study
as MCI in ADNI-1 were analyzed.

Although ADNI classified subject visits as “annual” (e.g.
year 1, 2, and so forth), there was considerable variability in
actual visit dates. AD does not progress in fixed annual
chunks but there is a slow steady progression that is some-
what variable for each subject. Therefore, in our analyses,
we used the actual date of the follow-up visit for each subject
to give a more precise statistical measure of progression and
variability (due to drop outs or fluctuations) over time. This
is one reason why our figures show dips and peaks (e.g.
around year 6). Attrition biases are possible, but the baseline
cognitive status, follow-up period, and number of follow-up
visits were similar between males and females. Finally, our
study cannot determine causality or pathologic mechanisms
because we did not look at other biomarkers or genes aside
from APOE ε4. In this regard, it should be noted that amy-
loid positron emission tomography (PET) and cerebrospinal
fluid (CSF) data are only available in a small fraction of
ADNI-1 subjects.

Several different factors could underlie possiblegender dif-
ferences in rates of cognitive progression, including genetic,
lifestyle, hormonal, psychological, and neurobiological. We
found a gender effect after adjusting for the APOE ε4 effect,
suggesting that additional factorsmay be at play. Some reports
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have noted an increased effect of APOE ε4 in women; for
example, inwomen,APOE ε4was reported to result in greater
conversion risk [11], altered default mode connectivity [12],
greater atrophy of hippocampus [30], and greater decrements
on delayed word recall [30]. In contrast, Holland et al. [6] did
not report a gender byAPOE interaction on brain atrophy. The
greater variability ofADAS-Cog andCDR-SB rates of decline
in women suggests there could be potential undiscovered
genetic causes. In this regard, it is of interest that the Met66
allele of BDNF gene, which reduces the transport of BDNF,
as well as the 219K allele of the ATP Binding Cassette Trans-
porter 1 gene have both been linked to increased risk forAD in
women [1].

Further analysis should include other genetic factors
besides APOE ε4 that may be significant to cognitive
decline, and ADNI genetic data are now becoming avail-
able. Likewise, in a few years, we will have access to at
least 4 years of ADAS and CDR data from ADNI-2 MCI
subjects for our analysis to be replicated, and it should
be possible to correlate gender differences in cognitive pro-
gression with various biomarkers such as amyloid deposi-
tion, cognitive reserve, and brain atrophy rates; ADNI-2
subjects receive MRI scans, florbetapir PET scans, CSF
studies, and resting state functional MRI. This is highly
relevant in light of a prior study which noted that women
may be at much greater risk than men for cognitive decline
and dementia diagnosis for every one unit of increase in
global brain pathology [5]. These data raise the hypothesis
that there may be gender differences in cognitive reserve
(with men having higher reserve).

Our findings also have relevance for clinical treatment/
prevention trials, including Dominant Inherited Alzheimer
Network Treatment Units, Alzheimer’s Prevention Initia-
tive, and the Amyloid Lowering Trial in Asymptomatic In-
dividuals (A4 trial). Despite many candidate drugs being
in trials, the causes of AD are not fully known, and uncover-
ing mechanisms underlying gender differences in cognitive
progression may yield additional new treatment targets or
nonpharmacologic strategies for risk modification and
allowing a more personalized intervention. For example, tri-
als of anti-amyloid therapeutics have revealed a greater
vulnerability for cerebral adverse events such as amyloid-
related imaging abnormalities in E4 carriers and many
ongoing studies stratify enrollment by E4 and also use differ-
ential treatment dosing by E4. In a similar vein, our findings
support a prior call for AD prevention trials to deliberately
stratify by sex and have adequate sample size to test for a
therapeutic risk-benefit in men and women separately [1].
One could conceivably also have separate thresholds for ef-
ficacy. In addition, differences in variability in the rate of
change by gender suggest that unequal numbers of males
and females may be required to measure the same effect
size. Furthermore, the curvilinear acceleration noted in this
study suggests that usual statistical approach in trials of
linear models may not be optimal to model MCI disease
progression over longer periods. The CDR-SB has been
suggested as an acceptable single cognitive/functional end
point for MCI trials, and our data suggest that lower baseline
MMSE, female gender, and APOE ε4 are predictors of faster
decline, and sample sizes for various specific effect sizes can
be computed using the data. To our knowledge, no prior
study has modeled long-term changes in cognition and
function in MCI, as well as the effects of covariates, so
comprehensively.
5. Conclusions

In conclusion, our results show a robust gender differ-
ence in the rate of change in ADAS-Cog and CDR-SB in
MCI subjects, with women declining at much higher rates
than men. These findings support prior calls
[1,3–5,10–12,36] to make gender-specific research in
AD a priority.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional sources (PubMed, conference
abstracts). Women have a higher prevalence of Alz-
heimer’s than men but the reasons are not fully un-
derstood. Several recent publications have
investigated gender differences in Alzheimer’s risk
and pathophysiology, and these are cited appropri-
ately.

2. Interpretation: Women with mild cognitive impair-
ment have significantly greater longitudinal rates of
cognitive and functional decline than men. These
findings confirm and extend prior reports on gender
differences in neurobiological risk for Alzheimer’s.

3. Future directions: Because the Alzheimer’s disease
assessment scale and clinical dementia rating are
used as outcomes in secondary prevention trials,
gender differences should be considered in the
design and interpretation of such studies. Further
studies to replicate and elucidate underlying
gender-specific AD genetic and biomarker mecha-
nisms are warranted.
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