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a b s t r a c t

The principal purpose of the paper is to present an efficient mathematical model for studying the buck-
ling behaviour of geometrically perfect, elastic Reissner’s two-layer composite columns with interlayer
slip and uplift between the layers. The present mathematical model is capable of predicting exact critical
buckling loads and corresponding buckling modes. Thus, it is used to study the influence of the transverse
interlayer stiffness in combination with the longitudinal interlayer stiffness on critical buckling loads and
modes. This effect is proved to be significant. The critical buckling loads calculated by the proposed
method can be up to approximately 89% smaller than those where interlayer uplift is neglected.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Layered composite structures are of practical importance in
many engineering applications, especially in civil engineering.
The reason for their wide-spread application is that they have
numerous advantages over the conventional structures, such as a
high strength-to-weight ratio, a high stiffness-to-weight ratio,
and many more. In spite of their many attractive qualities, layered
composites do, however, often suffer from partial interaction be-
tween the layers. As a result, interlayer slip and uplift between
the layers develop which can, in some cases, significantly affect
the mechanical behaviour of the layered composite system.

A large number of references exist in the literature on modelling
of incomplete interaction between the layers. A majority of the
papers only dealt with the analysis of interlayer slip between the
layers while uplift is ignored. For bending problems see e.g.
(Erkmen and Attard, 2011; Girhammar and Pan, 2007; Kim and
Choi, 2011; Nguyen et al., 2011a,b; Ranzi et al., 2010; Schnabl
et al., 2007), while for buckling problems see e.g. (Amadio and
Bedon, 2011; Challamel and Girhammar, 2011, 2012; Chen and
Qiao, 2011; Grognec et al., 2012; Kryžanowski et al., 2009; Schnabl
and Planinc, 2010, 2011).

Much less literature is available on the modelling of a combined
effect of interlayer slip and uplift on the mechanical behaviour of
layered composite structures. The analytical models taking both
slip and uplift into account have been proposed by Adekola
ll rights reserved.

bl@fgg.uni-lj.si, katja.schnabl@
(1968), Kroflič et al. (2010a), Nguyen et al. (2001) and Robinson
and Naraine (1988). Besides, some numerical formulations have
been proposed that take into account a bi-linear or a fully non-
linear interface law (Gara et al., 2006; Kroflič et al., 2010b; Ranzi
et al., 2005, 2006). Only very recently, a new finite element formu-
lation for a fully geometrically and materially non-linear analysis
of bending of two-layer beams with both interlayer slip and uplift
has been presented by Kroflič et al. (2011).

However, as far as the author’s knowledge is concerned it seems
that there exists no formulation in the open literature for a buck-
ling analysis of two-layer composite Reissner’s columns with inter-
layer slip and uplift between the layers. Consequently, the aim of
the present papers is to derive an exact mathematical model for
the aforementioned buckling analysis of two-layer composite col-
umns. For this purpose, a model previously presented by Schnabl
and Planinc (2011) has been upgraded to the model that takes into
account also the interlayer uplift.

In the numerical examples, the critical buckling loads and
modes are calculated for a wide range of possible material and geo-
metric parameters, such as interlayer slip modulus, K, interlayer
uplift modulus, C, and different boundary conditions. Thus, the ef-
fect of the interlayer uplift on the critical buckling loads and modes
is investigated in detail.
2. Theory

Consider a geometrically perfect, initially straight, planar, two-
layer composite column as shown in Fig. 1. The column has an
undeformed length L. In general, it is made from two dissimilar
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Fig. 1. Two-layer composite column. Initial undeformed and current buckled
configurations.

Fig. 2. Geometrical meaning of the mean contact line. Base vectors and contact
tractions.
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layers, a and b, joined by a layer of negligible thickness and finite
stiffness in normal and tangential directions. Each layer is
modelled by Reissner’s large-displacement finite-strain shear-
deformable beam theory (Reissner, 1972). The column is placed
in a ðX; ZÞ plane of spatial Cartesian coordinate system with coor-
dinates ðX;Y ; ZÞ and unit base vectors EX , EY and EZ ¼ EX � EY .
The initial undeformed reference axis of the layered column is
common to both layers. It is parametrized by the undeformed
arc-length x. Material particles of each layer are identified by mate-
rial coordinates xi; yi; zi ði ¼ a; bÞ in local coordinate system which
are assumed to coincide initially with spatial coordinates, and then
follow the deformation of the column. Thus, xa � xb � x � X,
ya � yb � y � Y , and za � zb � z � Z in the initial undeformed
configuration. The column is loaded axially through its ends by a
conservative compressive force, P. For further details an interested
reader is referred to Schnabl and Planinc (2010, 2011)).

2.1. Governing equations

The system of governing equations of the two-layer composite
column consists of kinematic, equilibrium, and constitutive equa-
tions along with the boundary conditions for each of the layers.
In addition, each individual layer is assembled into a two-layer
composite column by the constraining equations. While the
governing equations of the individual layer have been already
described in detail by Schnabl and Planinc (2011) and Kroflič
et al. (2011), only new constraining equations and a final linearized
form of the whole system of the governing equations will be de-
scribed next. In what follows, superscripts a and b indicate that
quantities are related to layers a and b, respectively.

2.1.1. Constraining equations
The layer a of the two-layer composite column under deforma-

tion is constrained to follow the deformation of the layer b, and
vice versa. It has been shown by Wells et al. (2002) and Kroflič
et al. (2011) that it is suitable to express the constraining equations
in the so-called ‘‘mean’’ contact axis x� with normal and tangential
base vectors, e�t and e�n, as (see Fig. 2):

e�t ¼
fea

t þ ð1� fÞeb
t

kfea
t þ ð1� fÞeb

t k2
¼ e�tXEX þ e�tZEZ ; ð1Þ

e�n ¼
fea

n þ ð1� fÞeb
n

kfea
n þ ð1� fÞeb

nk2
¼ e�nXEX þ e�nZEZ ; ð2Þ

where ei
t and ei

n (i ¼ a; b) represent the deformed tangential and
normal base vectors in the contact point of layers a and b; f repre-
sents the weight with a value between 0 and 1; k � k2 is the Euclid-
ean vector norm, and e�tX ; e

�
tZ ; e

�
nX ; e

�
nZ denote the components of the

unit base vectors e�t and e�n in the spatial Cartesian coordinate
system.

A stress-constraint requirement is determined from the third
Newton’s law, which ensures an equilibrium of the interlayer con-
tact tractions of the particles in contact. This requirement is ex-
pressed in the vector-valued function form as

dFa þ dFb ¼ 0! padxa þ pbdxb ¼ 0
����!dxa¼dxb

pa þ pb ¼ 0; ð3Þ

where pa and pb are the interlayer contact tractions, measured per
unit of layer’s undeformed length. Hence, from Eq. (3)

p ¼ pa ¼ �pb ¼ pXEX þ pZEZ : ð4Þ

When written along the e�t and e�n, the components pX and pZ can be
expressed with respect to the mean basis as

pX ¼ p�t e�tX þ p�ne�nX ; ð5Þ

pZ ¼ p�t e�tZ þ p�ne�nZ ; ð6Þ

where p�t and p�n are the components of the contact tractions along
the mean basis.

In order to define a general constitutive law of the contact, it is
again convenient to describe the components of the displacements
vectors ui with respect to the mean base (e�t ; e

�
n) as:

ui�
t ¼ ui � e�t ; ð7Þ

wi�
n ¼ ui � e�n: ð8Þ

A mean interlayer slip, D�, and a mean interlayer uplift, d�, are thus
defined as

D� ¼ ua�
t � ub�

t ; ð9Þ

d� ¼ wa�
n �wb�

n : ð10Þ

In general, a cohesive constitutive law of the contact considers a
mixed mode delamination with simultaneous sliding and uplifting.



Fig. 3. Geometrical and material properties of a timber-concrete column.

Table 1
Two-layer composite column boundary conditions.

Classical cases C–F C–C C–P P–P

Non-zero values
si

s0
2 ¼ s0

4 ¼ 1 s0
2 ¼ s0

4 ¼ 1 s0
2 ¼ s0

4 ¼ 1 s0
2 ¼ s0

4 ¼ 1

s0
6 ¼ s0

8 ¼ 1 s0
6 ¼ s0

8 ¼ 1 s0
6 ¼ s0

8 ¼ 1 s0
6 ¼ s0

8 ¼ 1

s0
10 ¼ s0

12 ¼ 1 s0
10 ¼ s0

12 ¼ 1 s0
10 ¼ s0

12 ¼ 1 s0
9 ¼ s0

11 ¼ 1
sL

1 ¼ sL
3 ¼ 1 sL

1 ¼ sL
3 ¼ 1 sL

1 ¼ sL
3 ¼ 1 sL

1 ¼ sL
3 ¼ 1

sL
5 ¼ sL

7 ¼ 1 sL
6 ¼ sL

8 ¼ 1 sL
6 ¼ sL

8 ¼ 1 sL
6 ¼ sL

8 ¼ 1
sL

9 ¼ sL
11 ¼ 1 sL

10 ¼ sL
12 ¼ 1 sL

9 ¼ sL
11 ¼ 1 sL

9 ¼ sL
11 ¼ 1

C = clamped (fixed); F = free; P = pinned.
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The contact tractions, however, are mutually dependent on D� and
d� (see, e.g. (Volokh et al., 2002; Alfano and Crisfield, 2001))

p�t ¼ Kðd
�
;D�Þ; ð11Þ

p�n ¼ Cðd
�
;D�Þ: ð12Þ

Since in most civil engineering applications, a cohesive interface
law can be decoupled in each direction, Eqs. (13), (14) can be
approximated as (Gara et al., 2006; Ranzi et al., 2006)

p�t ¼ KðD
�Þ; ð13Þ

p�n ¼ Cðd
�Þ: ð14Þ

In the literature, bi-linear interface laws are often considered, e.g. a
bi-linear interface law for slip (Foraboschi, 2009), and bi-linear or
fully non-linear interface law for uplift (Alfano and Crisfield,
2001; Gara et al., 2006; Kroflič et al., 2011; Ranzi et al., 2006). In
the present paper, only linear interface laws for slip and uplift will
be considered.
Table 2
The critical buckling loads of P–P two-layer composite column for various Ks and Cs.

Ca

Ka
10�3 10�2 10�1

Pcr½kN�
10�10 47.534513 80.074021 89.765236

10�5 47.535188 80.076243 89.768059

10�3 47.601669 80.295598 90.046852

10�2 48.180007 82.232032 92.517928

10�1 52.202794 97.257194 102.17982

1 60.994209 144.55766 184.54079

101 66.367806 197.25893 286.92709

102 67.559568 212.62507 323.65468

103 67.704022 214.56415 328.76655

105 67.720133 214.78185 329.36609

1010 67.720296 214.78405 329.37219

a In [kN/cm2].
b Pcr calculated by Schnabl and Planinc (2011), where d ¼ 0.
2.1.2. Linearized stability equations
To obtain the general linearized stability equations for a deter-

mination of critical loads, a linearized stability theory is applied.
This theory is based on the supposition that critical loads of the
non-linear system and corresponding linearized system coincide
(Keller, 1970). In order to apply the linearized equations to a
two-layer composite column buckling, the equations proposed by
Kroflič et al. (2011) have to be evaluated in the primary configura-
tion which is in this case any arbitrary deformed configuration in
which the two-layer composite column remains straight without
interlayer slip and uplift. The notation is explained in detail by
Schnabl and Planinc (2011) and Kroflič et al. (2011). Finally, the
linear buckling equations of the two-layer composite column are
defined as:

Kinematic equations:

dua0 ¼ dea;

dub0 ¼ deb;

dwa0 ¼ �ð1þ eÞdua þ dca;

dwb0 ¼ �ð1þ eÞdub þ dcb;

dua0 ¼ dja;

dub0 ¼ djb;

ð15Þ

Equilibrium equations:

dRa0
X ¼ dN a0 ¼ dpt ;

dRb0
X ¼ dN b0 ¼ �dpt ;

dRa0
Z ¼ dpn;

dRb0
Z ¼ �dpn;

dMa0
Y ¼ �N

adwa0 þ ð1þ eÞdRa
Z � dma

Y ¼ 0;

dMb0
Y ¼ �N

bdwb0 þ ð1þ eÞdRb
Z � dmb

Y ¼ 0;

ð16Þ

Constitutive equations:

dRa
X ¼ dN a ¼ Ca

11de
a þ Ca

12dj
a;

dRb
X ¼ dN b ¼ Cb

11de
b þ Cb

12dj
b;

dRa
Z ¼ �Ra

Xdua þ Ca
33dc

a;

dRb
Z ¼ �Rb

Xdub þ Cb
33dc

b;

dMa
Y ¼ Ca

21de
a þ Ca

22dj
a;

dMb
Y ¼ Cb

21de
b þ Cb

22dj
b;

ð17Þ
1 10 102 1b

90.881674 90.994878 91.006214 91.007473

90.884568 90.997780 91.009116 91.010376

91.170397 91.284322 91.295731 91.296999

93.704983 93.825370 93.837425 93.838765

114.12040 114.30166 114.31976 114.32178

189.75778 190.30141 190.35458 190.36076
299.08284 300.33612 300.45772 300.47186

339.28525 340.87918 341.00389 341.04721

344.85020 346.49739 346.63609 346.66198

345.48453 347.13784 347.30326 347.32169

345.49096 347.14433 347.31005 347.32847



Table 3
The critical buckling loads of P–P two-layer composite column for various Ks and Cs where extensibility effect on buckling loads is neglected.

Ca

Ka
10�3 10�2 10�1 1 10 102 1b

Pcr½kN�
10�10 47.530231 80.054250 89.733663 90.848494 90.961533 90.972852 90.974109

10�5 47.530906 80.056472 89.736485 90.851387 90.964432 90.975752 90.977010

10�3 47.597385 80.275740 90.015088 91.137010 91.250768 91.262160 91.296999

10�2 48.175702 82.211406 92.484455 93.669750 93.789955 93.801992 93.838765

10�1 52.198430 97.230576 112.29400 114.06858 114.24940 114.26757 114.32178

1 60.990319 144.51524 184.41678 189.61832 190.15844 190.21392 190.36076

101 66.364695 197.22114 286.64986 298.74899 299.99518 300.12154 300.47186

102 67.554302 212.56628 323.36548 338.77443 340.41864 340.57747 341.04721

103 67.700260 214.52501 328.41593 344.39283 346.03217 346.19640 346.66198

105 67.717259 214.75489 329.01354 345.05240 346.69713 346.86229 347.32169

1010 67.717432 214.75713 329.01962 345.05911 346.70390 346.86876 347.32847

a In kN/cm2.
b Pcr calculated by Schnabl and Planinc (2011), where d ¼ 0 and ecr ¼ 0.

Fig. 4. The influence of interlayer uplift on critical buckling loads of P–P composite
column for various Ks and Cs; where K, C are in [kN/cm2].

Fig. 5. The influence of interlayer uplift on critical buckling loads of composite
column for different boundary conditions and various Cs and K ¼ 1 kN/cm2; C is
also in [kN/cm2].

S. Schnabl, I. Planinc / International Journal of Solids and Structures 50 (2013) 30–37 33
Constraining equations:

dD� ¼ dD ¼ dua � dub;

dd� ¼ dd ¼ dwa � dwb;

dp�t ¼ dpt ¼ KdD;

dp�n ¼ dpn ¼ Cdd;

ð18Þ

where

e ¼ ea ¼ eb ¼ � P

Ca
11 þ Cb

11

; N a ¼ � Ca
11

Ca
11 þ Cb

11

P;

N b ¼ � Ca
11

Ca
11 þ Cb

11

P; ð19Þ

and C denotes the linearized contact stiffness in transverse direction
and d the uplift between the layers. All other variables have already
been explained in detail by Schnabl and Planinc (2011).

Eqs. (15)–(19) constitute a system of 22 linear algebraic-differ-
ential equations of the first order with constant coefficients for 22
unknown functions: dua, dub, dwa, dwb, dua, dub, dea, deb, dca, dcb,
dja, djb, dRa

X , dRb
X , dRa

Z , dRb
Z , dMa

Y , dMb
Y , dpt , dpn, dD, and dd along with

the corresponding natural and essential boundary conditions writ-
ten in the following general form as:

x ¼ 0:
s0
1dRa

Xð0Þ þ s0
2duað0Þ ¼ 0;

s0
3dRb

Xð0Þ þ s0
4dubð0Þ ¼ 0;

s0
5dRa

Zð0Þ þ s0
6dwað0Þ ¼ 0;

s0
7dRb

Zð0Þ þ s0
8dwbð0Þ ¼ 0;

s0
9dMa

Yð0Þ þ s0
10du

að0Þ ¼ 0;

s0
11dMb

Y ð0Þ þ s0
12du

bð0Þ ¼ 0;

ð20Þ

x ¼ L:

sL
1dRa

XðLÞ þ sL
2duaðLÞ ¼ 0;

sL
3dRb

XðLÞ þ sL
4dubðLÞ ¼ 0;

sL
5dRa

ZðLÞ þ sL
6dwaðLÞ ¼ 0;

sL
7dRb

ZðLÞ þ sL
8dwbðLÞ ¼ 0;

sL
9dMa

YðLÞ þ sL
10du

aðLÞ ¼ 0;

sL
11dMb

Y ðLÞ þ sL
12du

bðLÞ ¼ 0;

ð21Þ

where si 2 f0;1g are the parameters that determine different
combinations of boundary conditions of the two-layer composite
column. The superscripts ‘‘0’’ and ‘‘L’’ of s identify its value at
x ¼ 0 and x ¼ L, respectively.



Fig. 6. The first buckling modes of layers a and b, and critical buckling loads of P–P composite column for K ¼ 1 kN/cm2 and various values of C; where C [kN/cm2].

Fig. 7. Geometrical and material properties of timber-timber composite column.
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2.2. Exact solution of the buckling problem

The system of linear algebraic-differential equations (15)–(19)
and the corresponding natural and essential boundary conditions
(20), (21) can be written as a homogeneous system of 12 first order
linear differential equations as

Y 0ðxÞ ¼ AYðxÞ; ð22Þ

and

Yð0Þ ¼ Y0; ð23Þ

where YðxÞ is the vector of unknown functions, Yð0Þ is the vector of
unknown integration constants, and A is a constant real 12� 12
matrix. The exact solution of the problem is given by, see e.g. (Perko,
2001):

YðxÞ ¼ expAxY0: ð24Þ

The unknown integration constants which are in this case the initial
values of the generalized equilibrium internal forces and compo-
nents of the displacement vectors, are determined from the bound-
ary conditions (20) and (21). As a result, a system of 12
homogeneous linear algebraic equations for 12 unknown constants
is obtained

KY0 ¼ 0; ð25Þ

where K denotes the tangent stiffness matrix. A non-trivial solution
of (25) is obtained from the condition of vanishing determinant of
the matrix K
det K ¼ 0: ð26Þ

The condition (26) represents a linear eigenvalue problem. Its solu-
tion, i.e. the eigenvalues and eigenvectors correspond to the critical
buckling loads, Pcr, and critical buckling modes of the column. An
exact solution for the lowest buckling load, Pcr, and corresponding
buckling mode can easily be determined but are generally too cum-
bersome to be presented as closed-form expressions.

3. Application, numerical results and discussion

The applicability of the proposed mathematical model for
studying the buckling behaviour of geometrically perfect two-layer
Reissner’s composite columns with interlayer slip and uplift be-
tween the layers will be illustrated through the analysis of two
numerical examples. The first example will be introduced to study
the influence of interlayer uplift in combination with the interlayer
slip on critical buckling loads and modes and to make a compari-
son of buckling loads calculated with and without taking uplift into
account. In the second example, the effect of different boundary
conditions of individual layers on its critical buckling loads and
buckling modes will be analyzed. To this end, in both numerical
examples, the critical buckling loads will be computed for a wide
range of material and geometric parameters, such as interlayer slip
modulus, K, interlayer uplift modulus, C, and different boundary
conditions.

3.1. Effect of interlayer uplift on critical buckling loads and modes

In what follows, the effect of interlayer uplift in combination
with the interlayer slip on critical buckling loads and modes is
studied for a timber-concrete composite column analysed also by
other researchers (see e.g., Girhammar and Pan, 2007; Schnabl
and Planinc, 2010; and Xu and Wu, 2007). The geometrical and
mechanical properties of this composite column are presented in
Fig. 3.

The critical buckling loads are computed by the proposed math-
ematical model for various interlayer stiffnesses K and C, and dif-
ferent sets of boundary conditions summarized in Table 1.

The results for critical buckling loads in case of P–P composite
column are presented in Table 2 for various interlayer stiffnesses



Table 4
Two combinations of the two-layer composite column boundary conditions.

Classical cases Ca–Fa; Fb–Cb Pa–Pa; Fb–Cb

Non-zero values s0
2 ¼ s0

3 ¼ s0
6 ¼ s0

7 ¼ s0
10 ¼ s0

11 ¼ 1 s0
2 ¼ s0

3 ¼ s0
6 ¼ s0

7 ¼ s0
9 ¼ s0

11 ¼ 1
si sL

1 ¼ sL
4 ¼ sL

5 ¼ sL
8 ¼ sL

9 ¼ sL
12 ¼ 1 sL

1 ¼ sL
4 ¼ sL

6 ¼ sL
8 ¼ sL

9 ¼ sL
12 ¼ 1

BCs scheme

C = clamped (fixed); F = free; P = pinned; BC = boundary condition.
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K and C. Evidently, the influence of the transverse interlayer stiff-
ness, C, on critical buckling loads is significant and is dependent
on K. Thus, the buckling loads decrease tremendously as K and C
decrease. For example, the critical buckling load for almost freely
sliding and uplifting composite column (K ¼ C ¼ 0) is approxi-
mately 7 times smaller compared to the buckling load of the same
column but with an absolutely stiff connection between the two
layers (K ¼ C ¼ 1; D ¼ d! 0). In addition, the influence of axial
deformability on buckling loads is studied. The results are tabu-
lated in Table 3. It can be seen that the axial deformability has a
negligible influence on critical buckling loads of two-layer columns
with interlayer slip and uplift.

Similarly, the effect of C is more pronounced for higher Ks. The
dependence of this effect may be analysed by defining a relative er-
ror which is here defined as

e�r ½%� ¼
PcrðD – 0;d – 0Þ � PcrðD – 0;d ¼ 0Þ

PcrðD – 0; d – 0Þ � 100; ð27Þ

where PcrðD – 0;d – 0Þ and PcrðD – 0;d – 0Þ are the critical forces
obtained by the proposed exact procedure, where interlayer slip
and uplift are taken into account, and by Schnabl and Planinc
(2011) where interlayer uplift in neglected. The results for various
interlayer slip moduli K and C are given in Fig. 4.

It is apparent from Fig. 4 that critical buckling loads decrease
significantly if interlayer uplift is taken into account. For example,
it is interesting to note that for a practical value of interlayer slip
modulus K ¼ 1 kN=cm2, the corresponding relative errors are
mostly considerable: e�r ½log C ¼ �1� ¼ �3:06%, e�r ½log C ¼ �2� ¼
�24:06%, e�r ½log C ¼ �3� ¼ �67:96%, e�r ½log C ¼ �4� ¼ �79:98%,
e�r ½log C ¼ �5� ¼ �81:34%, while, in the two almost limiting cases,
Fig. 8. Critical buckling loads and corresponding buckling modes for the first suppo
when there is nearly no connection between the layers
(D – 0; K 	 0): e�r ½log C ¼ �1� ¼ �1:36%, e�r ½log C ¼ �2� ¼
�12:05%, e�r ½log C ¼ �3� ¼ �47:86%, e�r ½log C ¼ �4� ¼ �63:96%,
e�r ½log C ¼ �5� ¼ �66:03%, or there is approximately an absolutely
stiff connection between the layers (D 	 0; K 	 1), e�r ½log C ¼
�1� ¼ �5:16%, e�r ½log C ¼ �2� ¼ �38:11%, e�r ½log C ¼ �3�
¼ �80:47%, e�r ½log C ¼ �4� ¼ �88:35%, e�r ½log C ¼ �5� ¼ �89:19%.
Evidently, this indicates that the effect of the uplift plays a very sig-
nificant role in composite column buckling. The effect is negligible
only for C smaller or approximately equal to 10�1 kN=cm2. Further-
more, the influence of the uplift on critical buckling loads is inves-
tigated for different types of boundary conditions tabulated in
Table 1. The results for K ¼ 1 kN=cm2 and various Cs are plotted
in Fig. 5.

It is interesting to note that general distributions of the effect of
the interlayer uplift on the critical buckling loads are rather similar
for all types of boundary conditions. Nevertheless, this effect is for
smaller Cs the greatest for C–C columns and the smallest for C–F
columns, while, on the other hand, for higher Cs this effect is right
the opposite.

At the end of this example, the first buckling modes of
the individual layers a and b of the two-layer P–P composite
column are calculated for K ¼ 1 kN=cm2 and various Cs. The
results are given in Fig. 6. As would be expected, Fig. 6
shows that the layers a and b buckle almost independently
for very small values of C, while for higher values the defor-
mations of the layers become constrained. For example, when
the layers are rather rigidly connected in the transverse
direction, namely for C P 1 kN=cm2, the first buckling modes
of the two layers practically coincide.
rting combination for for K ¼ 1 kN/cm2 and various C; where C is in [kN/cm2].



Fig. 9. Critical buckling loads and corresponding buckling modes for the second supporting combination for K ¼ 1 kN/cm2 and various C; where C is in [kN/cm2].
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3.2. Buckling modes and loads for different combinations of boundary
conditions

The purpose of this numerical example is purely to demonstrate
the capability of the proposed mathematical model to analyze dif-
ferent combinations of supporting conditions, i.e. different for each
individual layer.

To this end, the critical buckling loads and the corresponding
buckling modes are calculated for the two-layer composite column
whose material and geometric parameters are given in Fig. 7 and
considered boundary conditions summarized in Table 4.

The results for the first combination of boundary conditions (i.e.
both layers are cantilever but supported at the opposite ends) are
shown in Fig. 8 for K ¼ 1 kN=cm2 and various C (e.g. a realistic va-
lue for nailed connection with 10 nails per meter length is
C ¼ 0:248 kN=cm2). It can be observed that layer’s buckling modes
are symmetrical compared to each other. Besides, it can be seen,
that while the method in not constrained with the non-interpene-
tration condition, the layers can buckle over each other. Addition-
ally, it can be seen that layers buckle freely for small Cs. On the
other hand, the buckling modes are constrained for higher values
of transverse interlayer stiffness, C. Thus, it is apparent that the
interlayer uplift has a considerable influence not only on the criti-
cal buckling loads but also on the buckling modes of the layers.

Finally, the results for the second combination of boundary con-
ditions are plotted in Fig. 9. Again, the effect of interlayer uplift, d,
on critical buckling loads and corresponding buckling modes is
negligible for small interlayer stiffness, C, while for higher values
it is considerable should not be neglected.

4. Conclusions

The paper presented an efficient mathematical model for study-
ing the buckling behaviour of geometrically perfect two-layer
Reissner’s composite columns with interlayer slip and uplift be-
tween the layers. The model is capable of predicting exact critical
buckling loads and corresponding buckling modes. The effect of
the transverse interlayer stiffness on the critical buckling loads
were studied in detail. From the results obtained in the present
study, the following conclusions can be drawn:

1. The effect of the transverse interlayer stiffness on the critical
buckling loads is proved to be significant and interlayer slip
modulus and boundary conditions dependent. Thus, the critical
buckling loads obtained by the present analytical model can be
up to approximately 89% smaller compared to those where
interlayer uplift is neglected, i.e. for C 	 1.

2. As expected, it is observed that the critical buckling loads
increases with the increasing of an interlayer uplift modulus, C.
3. The effect of the transverse interlayer stiffness on the buckling
modes is proved to be considerable as well and can not be
neglected for higher interlayer uplift stiffnesses.
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