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SUMMARY
Time-lapse microscopy can capture patterns of development throughmultiple divisions for an entire clone of proliferating cells. Images

are taken every fewminutes overmany days, generating data too vast to process completely by hand. Computational analysis of this data

can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to

produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides

access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied

populations of progenitor cells derived from the anterior and posterior embryonicmouse cerebral cortex, each growing in a standardized

culture environment. Progenitors from the anterior cortexwere smaller, lessmotile, and produced smaller clones compared to those from

the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex.
INTRODUCTION

Time-lapse microscopy enables the patterns of develop-

ment, cellular motion, and morphology to be observed

and captured for clones of proliferating cells. Phase

contrastmicroscopy allows image capture at a temporal res-

olution sufficient for accurate tracking through multiple

rounds of cell division in a label-free manner. By inte-

grating appropriate incubation, live cell development can

be imaged over a period of days or even weeks. An experi-

ment can produce 350 gigabyte (GB) of image data and

there is a pressing need for efficient analytical computa-

tional tools.

In general, humans are better able to correctly identify

and track cells than the best available software, but manual

tracking is prohibitively slow. In order to efficiently analyze

time-lapse phase image sequences of proliferating cells, the

best current approach is to combine human visual capabil-

ities with automated image analysis algorithms.

Human validation is essential to correct errors produced

by the automated programs, which fall into three classes:

segmentation, tracking, and lineaging errors. Segmenta-

tion identifies individual cells in each image. A segmenta-

tion error has occurred if a cell is not correctly detected.

Tracking is the process by which objects are followed

from one frame to another. Tracking errors occur when seg-

mentation results identifying different cells are associated

on the same track. Lineaging errors occur when the

parent-daughter relationships are incorrectly identified.

Our algorithms allow some segmentation errors, such as

when a cell is obscured for a single frame, but all tracking
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and lineaging errors must be corrected. Human validation

corrects these errors and the goal is to minimize the user

corrections required.

The clones used in this study were derived from neural

progenitor cells (NPCs) extracted from the embryonic

mouse cerebral cortex. NPCs include neural stem cells

and more restricted progenitor cells. The cortex performs

numerous functions, integrating sensory information,

thought, and memory with appropriate behavioral re-

sponses. Different cortical functions are achieved through

areal specializations. For example, the visual cortex is

concerned with processing information derived from the

retina, while the motor cortex drives movement via

subcortical connections to the spinal cord. The visual

cortex arises in the posterior region of the embryonic

telencephalon, and the motor cortex arises from the

anterior region. How these two distinct areas develop

differently from each other is an important question in

developmental neurobiology. It is possible that the ante-

rior and posterior NPCs are intrinsically similar and rely

on the presence of growth factor gradients (O’Leary

et al., 2007) to direct their output. Alternatively, the

growth factor gradients might instill cell-intrinsic changes

in the NPCs to alter their behavior. In order to discern

these two possibilities, we need to study the growth of

anterior and posterior NPCs exposed to the same environ-

ment, which can only be done ex vivo. The hypothesis we

tested is that anterior and posterior cortical NPCs are

intrinsically different, reflected in different lineage out-

puts and behaviors when cultured in a standardized

environment.
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Figure 1. Overview of Approach
Starting with an initial segmentation, cells
are tracked through the image data and a
lineage is obtained. The parent-daughter
relationships in the lineage are validated by
the human observer. The validated lineage
is then used to refine the segmentation and
tracking under supervision. This refine and
then validate process is repeated for each
image, achieving a significant reduction in
the segmentation error rate.
RESULTS

E12.5mouse anterior or posterior cortical NPCswere plated

in a 24 well plate at clonal density in serum-free culture

medium, with images captured every 5 min for over

4 days. Image data gathered in three separate experiments

was initially segmented, tracked, and lineaged, according

to the process outlined in Figure 1. These initial segmenta-

tion and tracking algorithms have been applied in a num-

ber of recent applications (Chenouard et al., 2014; Cohen

et al., 2009, 2010; Mankowski et al., 2014; Winter et al.,

2011, 2012). We developed a new segmentation algorithm

that uses lineage information to automatically improve

segmentation and tracking accuracy in a step referred to

as ‘‘post-lineage refinement’’. The post-lineage refinement

uses the parent-daughter information that is challenging

for current machine vision approaches (Seungil et al.,

2011), but relatively fast and easy for a human to identify.

The segmentation and tracking results were then automat-

ically refined from the corrected lineage information with

human observers correcting any remaining segmentation

and tracking errors interactively. All of the validation was

done using a program called Lineage Editing and Valida-

tion (LEVER) (Winter et al., 2011). LEVER allows a user to

visualize the lineage tree together with the segmentation

and tracking results. The results are color coded in order

to make errors as easy to identify as possible. Manual edits

and the automatic corrections are logged and counted to

determine the error rates of the different algorithms. All

of the software and algorithms are available free and

open source as detailed below.

Figure 2 shows a montage of all 160 lineage trees, a total

of 10,644 cells and 1,585,104 segmentations. Movie S1

shows a sample movie for a posterior clone with segmenta-

tion and tracking overlaying the image data in the left

panel and the lineage tree in the right panel. Our web-

based visualization program CloneView provides an inter-

active way to explore the data and results. Figure 3 shows

a screen shot of the CloneView program with a summary

listing the clones in one window and one image frame

with segmentation and tracking results overlaid in the

other window. All of the image data, together with all seg-
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mentation and tracking results, are available through our

web-based tool called CloneView. CloneView runs on any

computer that supports a modern web browser with no

software to download. CloneView is available at http://

n2t.net/ark:/87918/d91591.

The initial segmentation algorithm error rate of 8.1%

represents all the segmentation errors including both the

automatic corrections generated by the post-lineage refine-

ment (6.4%) and the user-provided manual corrections

(1.7%). This represents a 79% reduction in segmentation

error rate compared to the initial segmentation. This initial

segmentation incorporates our previous development of

stem cell segmentation algorithms (Mankowski et al.,

2014; Wait et al., 2014; Winter et al., 2011). The tracking

error rate was 1%. The total error rate, calculated from the

number of edit operations required to fully correct the seg-

mentation, tracking, and lineaging errors, was 1.3%. Once

validated, we can extract features such as cell lifespan, loca-

tion, and size, enabling quantification of the cell-cycle

time, motion, and morphology for individual cells, across

clones and broken down by generation. The analysis of

this feature data reveals significant differences in the pat-

terns of development between anterior and posterior cere-

bral cortical NPCs.

The Lineage Tree Is Used to Refine the Underlying

Segmentation

Of all the tasks required for this analysis, segmentation, or

delineation of individual cells in each image frame is the

most challenging and error prone. Even human observers

can find it difficult to establish the correct number of cells

in a close group from a single image. When the number of

cells has been correctly established, clustering models that

incorporate morphological characteristics of the cells,

together with temporal information from the tracking, reli-

ably separate the foreground pixels into individual cells.

We begin with an initial segmentation algorithm origi-

nally developed for phase contrast images of retinal stem

cells (Cohen et al., 2010) and applied previously to neural

stem cells (Winter et al., 2012). Modified versions of this

segmentation algorithmhave been applied to oligodendro-

cyte precursors (Cohen et al., 2010) and hematopoietic
uthors
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Figure 2. Lineage Trees for the 78 Clones of Posterior Progenitor Cells and 82 Clones of Anterior Progenitor Cells Analyzed Here
Note the differences in lineage tree shape within and between regions.
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Figure 3. All of the Images Together with the Results Can Be Browsed from an Easy to Use Web Application Called CloneView
CloneView lists summary information for each clone (left) and allows the images to be explored, with segmentation and tracking optionally
overlaid (right), CloneView: http://n2t.net/ark:/87918/d91591.
stem cells (Mankowski et al., 2014). Following the initial

segmentation, we apply a Multitemporal Assocation

Tracking (MAT) algorithm. MAT was originally developed

for tracking organelle transport (Chenouard et al., 2014;

Winter et al., 2012) and was found to be effective for

tracking stem cells (Winter et al., 2011), reducing the error

rates compared to previous approaches (Al-Kofahi et al.,

2006; Cohen et al., 2010) by 86%. Inference approaches

(Papadimitriou and Steiglitz, 1998; Pearl, 1988) automati-

cally improve the lineage tree, using the tracking graph

together with constraints that cells do not appear or disap-

pear between frames except across the imaging border,

unless there is a mitosis or cell death.

We integrate human validation with the automated pro-

cessing tasks because for our purposes the tracking and

lineaging results must be 100% correct. Using the fully

automated approach still significantly reduces error rates,

for applications that can accept some errors. Movie S2

shows an image sequence of a developing clone with

both automated (yellow boxes) and manual (red boxes)

edits indicated. For this clone, using the inference-

improved lineage to refine the initial segmentation pro-

duces an error rate of 1.5%. Using the human-corrected

lineage reduces the error rate to 1.1%. Including the lineage

and tracking errors and results, the total error rate for fully
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correcting the clone was 0.9%. This clone can also be

explored using CloneView, http://n2t.net/ark:/87918/

d91591?1.

An advantage of the new segmentation method is that

once the number of cells in the frame is established, as

described above, other important characteristics such as

cell morphology can be incorporated to improve accuracy.

Figure 4 shows the results of refining an existing segmenta-

tion for two different scenarios. Figure 4A shows three cells

initially segmented as one. Figure 4B shows the result using

the watershed transform (Gonzales et al., 2009) to estimate

the number of cells. Once the correct number of cells has

been established using information from the tracking and

lineaging algorithms, the foreground pixels need to be

separated into the individual cells. When the cells have a

circular morphology (Mankowski et al., 2014), a k-means

clustering algorithm works well; this is not the case for

the NPCs shown in Figure 4C. For elliptically shaped cells,

a Gaussian mixture model (GMM) clustering on the spatial

locations of the foreground pixels incorporates the

morphology of the cells and finds the correct separation,

as shown in Figure 4D. A second example with two

touching cells is shown in Figures 4E–4H.

Time-lapse image sequences of proliferating cells contain

inherent ambiguities that can be difficult to resolve from
uthors
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Figure 4. Resegmentation Using a
Known Number of Cells
Segmentation examples (top and bottom)
starting from initial segmentations that
incorrectly identify the number of cells
(A and E). We use the lineage tree to
correctly establish the number of cells,
improving over traditional methods such as
the watershed transform (B and F). Parti-
tioning of the pixels into cells (C and G) is
improved by using an elliptical shape
model (D and H). The scale bars represent
10mm, CloneView top: http://n2t.net/ark:/
87918/d91591?3 and bottom: http://n2t.
net/ark:/87918/d91591?4.
even a long sequence of image frames, as illustrated in Fig-

ure 5. The gray segmentations marked with an arrow

strongly resemble cells, but are actually cellular processes.

Neither the segmentation nor the tracking alone resolves

these as false detections. In the left panel of Figure 5, the

21 segmentations belonging to actual cells are shown

with colored outlines, while the segmentation results that

are not cells are shown with gray outlines. By using the

population information contained in the lineage tree, the

software can automatically identify the 21 correct segmen-

tation results in this frame.

Edit-Based and Functional Validation of the

Segmentation, Tracking, and Lineaging

When analyzing time-lapse image sequences of prolifer-

ating cells, any errors in tracking or lineaging will almost

certainly corrupt the subsequent statistical analysis (Cohen

et al., 2009). Given that the segmentation results presented

here contain over 200 million cell pixels, validation of

segmentation accuracy at the individual pixel level is

non-trivial. The LEVER validation does not enforce a

pixel-accurate correctness, only that the segmentation

has captured the correct number of cells. To validate the

performance of the segmentation algorithms at assigning

pixels to each cell, we used two functional approaches,

based on the algorithms and analyses that use the segmen-

tation results as input.

First, we compared the accuracy of the tracking algo-

rithmwith andwithout the full segmentation information.

Instead of the complete set of pixels that constitute the cell

segmentation, we provided the tracking algorithm with

just the centroid for every segmented cell. Tracking errors

that occurred were counted and then corrected so that

errors would not propagate. Thiswas repeated for every seg-

mentation in every image frame for all 160 clones. The

number of errors was measured as the number of edits

required to correct any tracking mistakes. Using the full

segmentation information resulted in an average per clone
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error rate of 1%. When only the centroids were used, this

error rate increased to 3.5%. The 71% reduction in the

number of tracking errors is an effective functional valida-

tion of the pixel-level segmentation accuracy in terms of

tracking performance.

The secondmethod used to validate the pixel accuracy of

the segmentation algorithmwas by comparison to forward

light scatter used to measure cell size in flow cytometry

fluorescent-activated cell sorting (FACS) (Shapiro, 2003).

FACSmeasurements are not directly comparable to our seg-

mentation area results, however, given two populations of

cells, the ratio of areas is independent of the measurement

technique. In this case, we used a Monte Carlo approach

to compare the FACS anterior to posterior average cell

size ratio to the mean ratio observed in our image data.

No significant difference was found (p > 0.92), providing

a second functional validation to our segmentation at the

pixel level, this time in the context of a biologically signif-

icant measurement.

Behavioral Differences betweenAnterior and Posterior

Cerebral Cortex Progenitors

An advantage of this methodology is that it constructs a

rich data set, allowing us to ask numerous questions about

aspects of the cells and clones that have been imaged. Here

we analyzed anterior and posterior mouse cortical NPCs,

comparing them individually, across clones, and by gener-

ation, for size, motion, and cell-cycle time. We found

anterior and posterior cells differ significantly across all

three measurements, using both the Wilcoxon rank-

sum method and the two sample Kolmogorov-Smirnov

test (Bain and Engelhardt, 1992). Posterior cortical cells

were found to be faster-cycling (p < 1 3 10�100), bigger

(p < 1 3 10�24), more rapidly moving (p < 1 3 10�9), and

to generate larger clones (p < 1 3 10�8).

Figure 6 (left) shows the distributions of size and motion

for anterior and posterior cells. Interestingly, the differ-

ences in motion and cell size between the anterior cells
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Figure 5. Lineage Information Resolves
Visual Ambiguities
The segmentations marked with red arrows
(gray outlines) are cell processes, not cells.
These structures persist for over 20 frames
and are indistinguishable from actual seg-
mentations in isolated frames. The lineage
tree (right) shows that there are 21 cells
(colored outlines) in the current frame,
allowing the correct segmentations to be
automatically identified. The scale bars
represent 20 mm, CloneView: http://n2t.
net/ark:/87918/d91591?5.
when considered individually versus averaging per clone

were statistically significant, while for posterior cells the

difference was not significant. The reason is that the ante-

rior population consists mainly of small clones, while the

posterior population consists mainly of large clones. In

order to compensate for this effect, we separated the ante-

rior clones into slow and fast dividing groups using the

clone average cell-cycle time (Figure 6). For these slow-

dividing and fast-dividing anterior cell groups, there were

no significant differences in cell sizes or velocity when

looking at features of individual cells compared to averages

per clone. Fast-dividing anterior NPCs are more similar to

posterior NPCs than are slow-dividing anterior NPCs.

Cell size and velocity per clone were not significantly

different between the posterior and fast-dividing anterior

cells (p > 0.13), but were significantly different between

slow-dividing anterior, fast-dividing anterior, and posterior

NPCs (p < 0.01).

An outcome of the differences in cell cycle time between

the posterior and the slow and fast dividing anterior cells

is the number of generations produced. Figure 6 (right)

shows the cell size, velocity, and cycle time change broken

out by generation for the different populations. Generation

zero is the first plated cell (E12.5), generation one cells

result from the first cell division, etc. The differences in

the observed features of motion, cell size, and cell cycle

time become greater in later generations, especially for

the slow dividing anterior cells compared to posterior and

fast dividing anterior cells. That embryonic cortical progen-

itors derived from different cortical areas are so clearly

different was surprising and demonstrates the value of

this software/approach to quantify dynamic aspects of

cell behavior.

It would be possible to identify differences in clone size

among populations of NPCs using only a static terminal

image. By segmenting, tracking, and lineaging each cell,

we obtain much richer information about cell and clone

development than would be possible from a terminal anal-

ysis. Figure 7 shows the ability to label NPCs retrospectively

by fate commitment from immunohistochemistry. The
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cells are fixed and then stained for b-Tubulin (neurons)

and Nestin (NPCs). The staining results are overlaid on

the final time-lapse image, and the lineage tree can be

colored according to the generation when each NPC com-

mits to progeny of the same fate.
DISCUSSION

Time-lapse phase contrastmovies provide awealth of infor-

mation about dynamic cell behavior. By culturing cells in

defined conditions, the impact of environmental factors,

such as drug treatments, on dynamic events, such as

morphological changes, migration, process outgrowth,

cell division, and cell death, can be captured using mini-

mally invasive phase contrast imaging. A bottleneck

encountered is effective analysis of the vast amount

of captured video data. Automated segmentation and

tracking algorithms are increasingly showing their value

in providing rapid, objective image quantification. How-

ever, no program is error-free, and the challenge has

become minimizing the time required for human valida-

tion. Here, we show that validating the lineage informa-

tion before considering the segmentation and tracking

results can reduce automated segmentation and tracking

errors dramatically, improving program throughput and

enabling the analysis of larger quantities of data.

We tested the hypothesis that anterior and posterior

cortical NPCs, which give rise to motor and visual cortical

areas respectively, have cell-intrinsic differences by

culturing each population in the same conditions and

asking whether they performed similarly, or differently,

the latter indicating that they are intrinsically patterned.

This required analysis of numerous individual NPCs,

made possible by the automated tools described here.

We found significant differences at the cellular and

clonal level from the anterior and posterior cortical NPCs

as they progress from E12.5 through the equivalent of

E16.5. Posterior NPCs are larger, move faster, and divide

more quickly, producing larger clones compared to anterior
uthors
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Figure 6. Differences in Characteristics and Behavior of Anterior versus Posterior Cerebral Cortex Progenitor Cells
Plots comparing all cells (left) and separating cells by generation (right) are shown for total posterior (P) cells (red), total anterior (A) cells
(blue), fast dividing anterior (FD) cells (green), and slow dividing (SD) anterior cells (purple). The whiskers represent the 95% CI.
cells. The anterior population is more diverse, containing a

mixture of slow and fast dividing clones. The differences in

cell-cycle time, size, andmotion becomemore pronounced

with increasing generations. The fact that these differences

were apparent when the anterior and posterior cell popula-

tions derived from the same animals were cultured concur-

rently in identical in vitro conditions, indicates that they

are cell-intrinsic rather than based on environmental

instructive factors. Given that the posterior cortex is larger

than the anterior cortex, it is possible that the embryonic

posterior NPCs are more proliferative to accommodate

greater cell production and growth.

A key advance is the use of lineage information to refine

the segmentation and tracking algorithms. The segmenta-

tion provides a unique identifier for every cell in every

image frame and is the basis for the subsequent tracking

algorithm and for extracting motion and morphology fea-
Stem Cell
tures. The segmentation results also enable robust valida-

tion and collaborative visualization of the tracking and

lineaging results by allowing human observers to uniquely

identify a particular cell in every image frame. A limitation

of any approach to quantifying this type of image data is

that once a human observer can no longer determine the

correct segmentation, tracking, and lineaging, validation

becomes impossible. To some degree, this problem can be

reduced by imaging at a higher temporal resolution or

incorporating fluorescence channels. There is also the

possibility for functional validation, as used here for

measuring the pixel-level accuracy of the segmentation

algorithms.

Our results include fully validated and corrected segmen-

tation, tracking, and lineaging results for 160 large and

complex clones of proliferating cells containing over ten

thousand cells and one and a half million segmentations.
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Figure 7. Immunohistochemistry Used to Display Fate Commitment by Generation on the Lineage Tree
Stain images for b-Tubulin (red, neuron) (A) and Nestin (cyan, neural progenitor cell, NPC, B). The final frame of live-cell time-lapse
sequence (C) with segmentation and tracking overlaid and stain results blended. The cell fate commitment is shown on the lineage tree
colored by the generation (in parenthesis) when all offspring take on the same fate.
Only 1% of the results required human correction, with

99% of the work being done by the automated image anal-

ysis algorithms. Future research efforts will include incor-

porating occasional fluorescence images to improve the

segmentation and also investigating different approaches

for optimally partitioning pixels into a given number of

cells. The validation software would also benefit from bet-

ter identifying regions where the automatic image analysis

results could best utilize human interpretation.

Other approaches to analyzing time-lapse phase contrast

images of proliferating cells are either fully automatic (Li

et al., 2008), with no option for identifying and correcting

errors in a large-scale manner, or completely manual

(Eilken et al., 2009). The accuracy of the automated

tracking algorithms developed by Li et al. (2008) was re-

ported at 87%–93%. A direct comparison is not possible

as the source code from that project was not released, but

the eight image sequences appear visually similar to the im-

ages analyzed here. There have also been approaches devel-

oped to correct for phase contrast images using models of

optical image formation (Yin et al., 2012), but we found

that approach did not improve on our model-based initial

segmentation. A limitation of our initial segmentation

algorithm is that it is designed for the specific appearance

and size characteristics of the cells being processed. Cell

segmentation algorithms that learn an appearance model

(Lou et al., 2014) may provide a more general approach

to the initial segmentation algorithm andmay also provide

improved approaches for alerting the user to possible

errors. Compared to 2D phase contrast microscopy, 3D

fluorescence imaging (Amat et al., 2014; Murray et al.,

2006; Wait et al., 2014) offers reduced imaging variability

and improved spatial discrimination provided by the

z-dimension information for separating touching cells.

The ability to incorporate lineage information into a 3D
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segmentation would still be useful in improving accuracy.

By releasing both the computational image analysis soft-

ware and all of the segmentation, tracking, and lineaging

results as open source, we hope to enable quantitative com-

parisons on this large data set for future research and devel-

opment efforts.

The methods we present allow fully validated and cor-

rected segmentation, tracking, and lineaging results to be

extracted from the image data with a minimum of human

effort. The analysis of these segmentation, tracking, and

lineaging results reveals previously unknown, cell-intrinsic

differences in the patterns of clonal development and

cellular behavior between anterior and posterior cerebral

cortical NPCs. Finally, the ability to visualize all of the re-

sults together with the image data on any computer with

no software to install is a profoundly valuable tool for

geographically distributed teams, providing the ability to

explore the data and results in an interactive and collabora-

tive manner.
EXPERIMENTAL PROCEDURES

Cell Culture
Anterior and posterior regions of E12.5 cerebral cortex were

dissected, with the intervening mid-region of approximately 75–

100 microns removed and discarded. The tissue was dissociated

enzymatically using 10 units/ml papain (Worthington) and then

triturated to produce single cells. Each well of a 24 well plate

(Corning/Costar) coated with poly-l-lysine was seeded with

5,000 single cells, in DMEM (Invitrogen), N2 (Invitrogen), B27

(Invitrogen), and 10 ng/ml FGF2 (Invitrogen). Immediately after

seeding, plates are placed into the time-lapse system, a Zeiss

Axio-Observer Inverted Z1 microscope equipped with a motorized

stage for imagingmultiple points. Imagingnine fields per well with

three wells per condition typically gives five to ten clones per field
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using a 103 neofluar objective. The microscope is fitted with a

Pecon incubation chamber with controlled temperature at 37�C,
98% humidity, and 5% CO2. Images were captured every 5 min

with a Hamatsua Orca high resolution black and white digital

camera for up to 5 days. All animal procedures were approved by

the University at Albany, Institutional Animal Care and Use

Committee.
Cell Segmentation, Tracking, and Lineaging in

Time-Lapse Phase Contrast Images
The initial segmentation was originally developed for retinal pro-

genitor cells (Cohen et al., 2010) andwas applied previously to seg-

menting NPCs (Winter et al., 2011). Only a single parameter, the

approximate cell radius (here 2.5 mm) is required. The algorithm

begins with an adaptive thresholding of the unprocessed phase

contrast images (Otsu, 1979). The thresholding identifies the

pixels belonging to the phase contrast ‘‘halo’’ artifact. Mathemat-

ical morphology (Gonzales et al., 2009) is then used to construct

a cell mask. This cell mask construction requires an approximate

cell radius parameter specific to the cell type being imaged. The

algorithm uses two separate models, one for bright cells and one

for cells with a dark interior. The thresholded morphological

gradient (Gonzales et al., 2009) image is used to separate touching

cells. Finally, a post-processing step eliminates false detections

using four empirically determined feature thresholds. Because

they are formed as a ratio, these features automatically adjust to

different cell sizes. The fourth feature is an area feature, computed

from the approximate cell radius parameter.

After the initial segmentation, we apply the MAT algorithm

(Chenouard et al., 2014; Mankowski et al., 2014; Winter et al.,

2011, 2012) to associate all segmentations to cell tracks over

time. Our use of MAT for tracking stem cells requires two parame-

ters, the approximate maximum velocity per frame and the same

approximate cell radius that was used by the initial segmentation.

For all of the adult and embryonic NPCs analyzed in this work and

previously, imaged at a 5 min per frame time resolution, the

maximum velocity was set to 40 pixels per frame (5 mm per min).

MAT is a windowed, graph-based approach that determines the

‘‘cost’’ of associating a given segmentation with all of the current

cell tracks that are within the maximum velocity threshold.

Together, these costs form the tracking graph.

Following tracking, an estimate of the lineage tree is formed from

the tracking graph. Proceeding frame-by-frame, possible parent

cells are identified for any newly appeared cells. The initial lineag-

ing algorithm chooses the most likely parent, subject to a mini-

mum cell-cycle time constraint (Winter et al., 2011). The lineage

tree structure can be automatically improved by using an inference

algorithm (Pearl, 1988) that also incorporates evidence from the

tracking graph. This inference approach uses Dijkstra’s (Papadimi-

triou and Steiglitz, 1998) algorithm to iteratively extend each leaf

node of the lineage tree so that it reaches the end of the image

sequence, leaves the frame, or dies. This step is repeated until no

further changes occur in the lineage. Extending tracks in this

manner enforces the assumption that cells should not disappear

without cause.

The post-lineage segmentation algorithm runs on each image

frame sequentially using a lineage tree as input to determine the
Stem Cell
tracks that need to preserve or acquire segmentation results. The

algorithm improves the segmentation result associated with each

cell on the lineage tree in every image frame, subject to the tracking

motion model and the image pixel intensities. The MAT tracking

algorithm identifies the set of segmentations in each frame that

most conform to the motion model, i.e., minimize the total cost

of each tracking assignment for all cells on the lineage tree. These

also include the set of segmentations that exhibit the most

evidence in terms of pixel-based image intensities, since the

post-lineage segmentation algorithm incorporates a more aggres-

sive version of the initial thresholding in evaluating the need to

add new detections. The post-lineage segmentation algorithm

can be much more aggressive in searching for segmentation re-

sults, because the lineage information in conjunction with the

tracking results localize the search space to only the most probable

regions.

During the post-lineage segmentation, each cell on the lineage

tree is processed to ensure that it has an associated segmentation

result in each image frame. If a cell is missing its segmentation

result in the given frame, the post-lineage algorithm generates

possible segmentations for the cell by either adding new segmen-

tations, or splitting existing segmentations into multiple cells, or

both. Once the post-lineage segmentation has generated new seg-

mentation results, the tracking algorithm selects the best set of seg-

mentations simultaneously for all cells on the lineage in the given

image frame. The post-lineage segmentation algorithm chooses to

add a segmentationwhen there is no existing segmentationwithin

a 2 pixel (1.3 mm) overlap with the previous segmentation for the

cell that is being processed. To add a new segmentation for a given

cell, we take a region surrounding the expected location of the cell

and re-run the initial segmentation reducing the threshold level

used to separate foreground and background pixels. This process

can fail, with no additional segmentation being returned. In that

case, if possible we try to split an existing segmentation.

The post-lineage segmentation algorithm splits existing segmen-

tations by using aGMMclustering (Theodoridis andKoutroumbas,

2009) on the spatial coordinates of the foreground pixels

belonging to the segmentation that is being evaluated to be split.

There are a number of ways to partition foreground pixels into in-

dividual cells once the number of cells has been established. The

GMM encourages elliptical shapes, rather than the round cells

favored by k-means (Mankowski et al., 2014). The watershed trans-

form can also be used with a basin-merging strategy (Beucher,

1994) to obtain a given number of cells. We have found this

approach generally obtains the same boundaries as the GMM,

but requires additional logic when trying to split a single basin

into multiple cells that occurs, e.g., in the frames following

mitoses.
FACS-Based Functional Validation of Computational

Segmentation Algorithms
Flow-cytometry based FACS is a common tool for measuring cell

size (Shapiro, 2003). We are able to validate our segmentation sizes

by comparison with FACS size data. FACS integrated photon

counts are an uncalibrated (unitless) measure, so direct compari-

son to cell sizes acquired from our segmentation algorithms was

not possible. To enable comparison of our segmentation results
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with FACS measured sizes, we compared the ratio of cell sizes

between anterior and posterior populations measured using both

approaches, which also reduces the potential for FACS size results

to be influenced by factors not related to cell size (Shapiro, 2003).

FACS data was obtained for E12.5 anterior and posterior cerebral

cortex NPCs and compared to the cell size averaged across the

160 initially plated NPCs (82 anterior and 78 posterior) that were

analyzed with our segmentation algorithms.

We modeled the distribution of cell sizes using a log-normal

random variable. The log-normal distribution is commonly used

for physical parameters such as cell size because unlike the normal

distribution, it cannot take values less than zero. There is also evi-

dence that quantities such as cell size and cell-cycle time can be

modeled as a product of independent identically distributed vari-

ables, which will produce a log-normal distribution in the limit

(Koch, 1966). We use a maximum likelihood estimate to fit log-

normal distributions to anterior and posterior populations of

FACS data. The goal of the comparison is to show that the ratio

of segmentation sizes obtained by our algorithms between anterior

and posterior populations is consistent with these ratio distribu-

tions obtained from the FACS cell size data.

A Monte Carlo simulation is used to test the hypothesis that the

average cell size ratios obtained from our segmentation algorithms

comes from independent random samples from the same log-

normal distribution that generated the FACS ratio data. The null

hypothesis asserts that our segmentation results and the FACS

data are different methods for measuring the same underlying

cellular property. The p value for this test is found by simulating

random values from the FACS distributions and calculating the

average ratio. Repeating this process many times creates an empir-

ical cumulative distribution function (CDF). We simulate 61 size

ratios sampled from the FACS distribution, representing the

maximum available anterior and posterior cells to compute a ratio

for our experiments. This sampling process is repeated onemillion

times to produce the CDF of sample means. From the CDF, the

probability of observing a sample mean ratio farther from the

FACS mean value (0.9963) than the segmentation mean value

(0.9988) is greater than 92% (p = 0.9214). This indicates that there

is no statistical difference between the ratio of sample means ac-

quired from our segmentation algorithms compared to the ratio

of cell sizes between the two populations obtained from FACS.

We cannot reject the null hypothesis with any confidence since

p is much greater than the standard 5%. This provides strong sta-

tistical evidence of a consistent relationship being captured by

the size data from the segmentation algorithm and the FACS size

measurements.
Statistical Comparisons of Anterior and Posterior Cells
The features incorporated into the comparison of anterior and pos-

terior cerebral cortex NPCs include cell-cycle time, cell velocity,

and cell area. These features are only computed for cells that

have been observed through an entire cell cycle, from birth

through subsequent division. Cell-cycle time is the duration in

minutes between birth and the division event that creates two

daughter cells from the given cell. Cell velocity is the mean

displacement of the center of the cell per frame divided by the

time duration between frames. Cell area is the number of pixels
618 Stem Cell Reports j Vol. 5 j 609–620 j October 13, 2015 j ª2015 The A
defined as interior to the cell times the area of a pixel. We use

the convex hull bounding the foreground pixels of each segmenta-

tion results as a proxy for cell area.

Significance of results was determined by using the non-para-

metric Wilcoxon rank sum (Bain and Engelhardt, 1992) method

to test if two distributions have equal median values. We also use

a robust graphical estimateof confidence intervals fromdistribution

quartiles (McGill et al., 1978). These graphical confidence intervals

are shown as error bars on Figures 6 and 7, plots ofmotion, velocity,

and cell-cycle features by individual cell, averaged across clones and

also by generation for the different populations. The limits for the

graphical confidence intervals CI are computed from the upper

(UQ) and lower (LQ) quartiles of the data for a number of cells N

as, CI = ð1:57 � ðUQ � LQÞÞ= ffiffiffiffi

N
p

. This method has been shown to

be a good visual approximation of a 95% CI for non-parametric

data (McGill et al., 1978). These error bars are a visual representation

of a statistical significance interval and are intended to complement

theWilcoxon rank-sum test used todetermine statistical differences

in median feature values between NPC populations.

In order to quantify behavioral differences between the anterior

and posterior cell populations, we applied the Wilcoxon rank-sum

test to individual versus clone averaged cell size and cell velocity.

This returned no significant difference when averaged across each

clone comparedwithwhen considered for individual posterior cells

(p > 0.08). However, in the case of the anterior cell population the

rank-sum test indicated a significant difference between individual

andcloneaveragedvaluesof cell size andcell velocity (p<0.01). This

implies a more heterogeneous structure in the anterior cell popula-

tion. The anterior populationwas partitioned into twogroups using

k-means clustering on clone averaged cell-cycle time. We applied

the same rank-sum test as above to the ‘‘fast dividing’’ and ‘‘slow

dividing’’ anterior populations to verify that this partitioning

reduced heterogeneity of the cell populations. We found no signif-

icant difference between individual and clone averaged values for

the fast dividing anterior population (p > 0.16) and similarly for

the slow dividing anterior population (p > 0.65). This provided

considerable evidence for treating the fast and slow dividing ante-

rior cell populations separately in all further analyses.
CloneView Distributed Architecture
The CloneView application is built using Javascript and HTML5.

CloneView consists of three distinct applications that interact

with each other. The main CloneView window lists all the clones

and shows a thumbnail of the lineage tree and descriptive statistics

for each clone. Clicking on a clone name brings up the image win-

dow, zoomed and centered on the given clone. The image window

shows images with segmentation results overlaid. From the image

window, a full lineage window can be accessed.

The image window has a navigation pane that shows the current

image with the current view region highlighted. Clicking in this

current view region will scroll the main display window. The navi-

gationpane also contains a list of all the validated clones in the cur-

rent image sequence. Clicking these clones will switch the current

display to the selected clone. The navigation pane also contains a

‘‘mini’’ lineage tree, with the horizontal red line indicating the cur-

rent image time point. Clicking in themini lineage tree will set the

current displayed image frame time to the point that is clicked on.
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From the image window, it is possible to activate the full lineage

window. This shows a large version of the lineage tree that is syn-

chronizedwith the imagewindow. Clicking in this window adjusts

the time frame in the image window, with the current time point

indicated by the horizontal red line. The control palette on the

left side of the screen provides information on the current clone,

controls the current view, toggles the visibility of segmentation

and tracking results, advances forward or backward to the next

mitosis event, and plays and pauses movie playback.

All of the graphics in CloneView are built using the HTML5

canvas element. This enables the rendering of images and results

to automatically benefit from graphics hardware acceleration if

they are available on the client. Systemswith a dedicatedGPU typi-

cally see frames rates greater than 60 frames per second. On lower

end systems using integrated graphics processing, 25–30 frames

per second is more typical. To ensure that the results do not stream

too quickly for comfortable viewing on high end systems, we have

capped playback speed at 30 frames per second.

CloneView requires three data sources. The images themselves

are JPEG compressed. This reduces the image sizes from �3 mega-

byte (MB) to�35 kilobyte (KB), while preservingmost of the visual

information. These compressed images should not be used for seg-

mentation, but are suitable for display purposes. The second data

source is the ‘‘.clone’’ file. This is a very small file that contains

the descriptive information for each clone along with a compact

plain text representation of the lineage tree. Finally, the segmenta-

tion results for each clone are stored in ‘‘.hulls’’ files. These files are

fairly large, e.g., up to 60 MB. The segmentation results are stored

using only the convex hulls (hence, the file type name) of the fore-

ground pixels from each cell, compressing the representation

somewhat without sacrificing too much visual information. The

hull files are broken up in 100 frame increments so that they can

be downloaded in parallel with themain image window execution

loop. Segmentation results for the first image framehulls are down-

loaded sequentially when the image window loads. Subsequent

segmentation results are downloaded in the background so that

the client application remains responsive while the data are down-

loaded. The segmentation information is downloaded by anHTML

worker thread in the background so that a user can begin exploring

the data before the full results have finished loading. While the

download is in process, the browser title bar displays a progress in-

dicator for the segmentation download, with elapsed time and the

number of frames completed.

The network load for a web server from CloneView is minimal.

The segmentation results are downloaded once per clone. For a

good wireless connection, the 60 MB of segmentation, tracking,

and lineaging results will download (asynchronously) in �10 s.

The images are �35 KB apiece, playing these at 30 frames per sec-

ond requires �10 Mb/sec of bandwidth. Many web browsers will

be able to cache the images after they have been downloaded

once, so at 30 frames per second, the download should be complete

in less than 60 s.
Open Source Software and Data, Machines, and

Timing
All of the software, including the LEVER program that contains the

image analysis and tracking algorithms, is available free and open
Stem Cell
source (GPL v3 license) from our GitLab server, at https://

git-bioimage.coe.drexel.edu/. The source code is a mixture of C++

and MATLAB and requires the MATLAB program with the image

processing toolbox and a C compiler. We also provide executables

for 64 bit Windows computers, version 7 or later, which work

stand-alone, with no additional software required. The CloneView

Javascript source code is also available, as are the segmentation,

tracking, and lineaging results for all of the data and the JPEG com-

pressed images.

Running LEVER is computationally demanding. Using a six core

Intel i7, the initial segmentation, tracking, and lineaging can be

run as a batch process, using all of the CPU cores in parallel and

on average requires approximately 20 min of processing time per

movie. The segmentation, implemented using MATLAB, is the

slowest step. In other applications where processing time became

prohibitive, segmentations have been implemented using C lan-

guage, with approximately 20 times speedup (Mankowski et al.,

2014). Validation timing depends on the complexity of the image

data, both for the algorithms and for the user to establish the cor-

rect results. The less complex clones took as little as 15–20 min to

validate and correct errors, while the most complex clone took

nearly 15 hr to fully validate and correct errors.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two movies and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.2015.
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