Embedding of a Pseudo-residual Design into a Möbius Plane*

Agnes Hui Chan

Department of Mathematics, Northeastern University, Boston, Massachusetts 02115

AND

D. K. RAY-CHAUDHURI

Department of Mathematics, The Ohio State University, Columbus, Ohio 43210

Communicated by R. C. Bose

Received October 20, 1977

Let \mathfrak{A} be a class of subsets of a finite set X. Elements of \mathfrak{A} are called blocks. Let v, t and λ_i , $0 \le i \le t$, be nonnegative integers, and K be a subset of nonnegative integers such that every member of K is at most v. A pair (X, \mathfrak{A}) is called a $(\lambda_0, \lambda_1, \dots, \lambda_t; K, v)$ t-design if (1) |X| = v, (2) every i-subset of X is contained in exactly λ_i blocks, $0 \le i \le t$, and (3) for every block A in \mathfrak{A} , $|A| \in K$. It is wellknown that if K consists of a singleton k, then $\lambda_0, ..., \lambda_{t-1}$ can be determined from v, t, k and λ_t . Hence, we shall denote a $(\lambda_0, ..., \lambda_t; \{k\}, v)$ t-design by $S_{\lambda}(t, k, v)$, where $\lambda = \lambda_1$. A Möbius plane M is an $S_1(3, q + 1, q^2 + 1)$, where q is a positive integer. Let A be a fixed block in M. If A is deleted from M together with the points contained in A, then we obtain a residual design M' with parameters $\lambda_0 =$ $q^{3}+q-1$, $\lambda_{1}=q^{2}+q$, $\lambda_{2}=q+1$, $\lambda_{3}=1$, $K=\{q+1, q, q-1\}$, and $v=q^{2}-1$. We define a design to be a pseudo-block-residual design of order q (abbreviated by PBRD(q)) if it has these parameters. We consider the reconstruction problem of a Möbius plane from a given PBRD(q). Let B and B' be two blocks in a residual design M'. If B and B' are tangent to each other at a point x, and there exists a block C of size q + 1 such that C is tangent to B at x and is secant to B', then we say B is r-tangent to B' at x. A PBRD(q) is said to satisfy the r-tangency condition if for every block B of size q, and any two points x and y not in B, there exists at most one block which is r-tangent to B and contains x and y. We show that any PBRD(q) D can be uniquely embedded into a Möbius plane if and only if D satisfies the r-tangency condition.

* This research was supported in part by ONR Contract N00014-67-A-0232-0016 and NSF Grant MPS75-08231.

1. INTRODUCTION

Let (X, \mathfrak{A}) be an ordered pair, where X is a finite set and \mathfrak{A} is a collection of subsets of X. Members of X are called *points* and elements of \mathfrak{A} are called *blocks*. Let \mathbb{N}_0 denote the set of nonnegative integers, and $v, t \in \mathbb{N}_0$ such that $v \ge t \ge 0$; for every $i, t \ge i \ge 0$, let $\lambda_i \in \mathbb{N}_0$. Let K be a set of nonnegative integers such that every member of K is smaller than or equal to v. A structure $D = (X, \mathfrak{A})$ is called a $(\lambda_0, \lambda_1, ..., \lambda_t; K, v)$ *t*-design, denoted by $S(\lambda_0, ..., \lambda_t; K, v)$ if and only if (1) every *i*-subset of X is contained in exactly λ_i blocks, $0 \le i \le t$, (2) for every block A in $\mathfrak{A}, |A| \in K$, and (3) |X| = v. If |A| = k, then A is called a k-valent block. In cases where Axiom (1) is only known to be satisfied by i = t, the design D will be denoted by $S_{\lambda}(t, K, v)$, where $\lambda = \lambda_t$. Further, if $\lambda = 1$, we only use S(t, K, v). For simplicity, if K consists of a singleton k, we write D as an $S_{\lambda}(t, k, v)$ instead of $S_{\lambda}(t, \{k\}, v)$. Since λ_0 denotes the number of blocks contained in the design D, it is customary to write b in place of λ_0 ; also, r usually takes the place of λ_1 .

Let A_{∞} be a fixed block in *D*. A *block-residual* design of *D* with respect to A_{∞} is a design $D' = (X', \mathfrak{A}')$, where $X' = X - \{\text{points contained in } A_{\infty}\}$, and $\mathfrak{A}' = \mathfrak{A} - \{A_{\infty}\}$. If *D* is an $S_{\lambda}(t, K, v)$, then *D'* is an $S_{\lambda}(t, K', v - k)$ where *k* is the size of the deleted block A_{∞} and every member of *K'* is not larger than the maximal member of *K*. A design with parameters equal to those of a block-residual design is called a *pseudo-block-residual* design.

DEFINITION. Let D' be a pseudo-block-residual design. D' is said to be *embeddable* if and only if there exists a design D such that the residual design D'' obtained from D is isomorphic to D'.

Hall and Connor [5] proved the embedding theorem for a pseudo-blockresidual design of an $S_2(2, k, v)$. Bose *et al.* [2] and Shrikhande and Singhi [6] extended the result to $S_{\lambda}(2, k, v)$ for $\lambda \ge 3$. In this paper, we prove an embedding theorem for a pseudo-block-residual design of a Möbius plane.

2. MOTIVATION AND STATEMENT OF THEOREM

A *Möbius plane* M is an $S(3, q + 1, q^2 + 1)$, where q is a positive integer. If M' is a block-residual design obtained from M, then M' is an $S(\lambda_0, \lambda_1, \lambda_2, \lambda_3; K, v)$, where

$$\lambda_0 = q^3 + q - 1, \qquad \lambda_1 = q^2 + q, \qquad \lambda_2 = q + 1, \\ \lambda_3 = 1, \qquad K = \{q + 1, q, q - 1\}, \qquad v = q^2 - q.$$
(1)

Any 3-design with parameters as those given in (1) is called a pseudo-block-residual design of order q, abbreviated by PBRD(q).

Let us first study properties possessed by a Möbius plane M. (For a detailed treatment of Möbius planes, Dembowski [4, Chap. 6] is an excellent reference.) A block B is said to be *tangent* to another block B' at a point x if and only if $B \cap B' = \{x\}$. They are said to be *secant* to one another if $|B \cap B'| \ge 2$. Let B and B' be two distinct blocks in M that are tangent to a block A at a point x. It can be seen easily that B and B' are mutually tangent at x. A maximal set of blocks which are mutually tangent at a point x is called a *pencil with carrier* x. One can show that every pencil in M consists of q blocks. If the point x is deleted from M, then the blocks in a pencil with carrier x are pairwise disjoint. A set of pairwise disjoint blocks that partition the set of points in a design is called a *parallel class* of blocks. Clearly, a pencil in M with carrier x is a parallel class of blocks in M - x.

For every deleted point x in A_{∞} there exists a pencil \mathfrak{A}' in M with x as the carrier, which contains A_{∞} . Clearly, $\mathfrak{A}' - A_{\infty}$ forms a parallel class of blocks in M'; moreover, each block in $\mathfrak{A}' - A_{\infty}$ is q-valent. Conversely, given any parallel class of q-valent blocks in M', there corresponds a unique point deleted from A_{∞} . Thus, in order to embed a PBRD(q) into a Möbius plane M, first of all, we have to establish the q + 1 parallel classes of q-valent blocks in D.

When the parallel classes are established in D, we still have to find means to "complete" the (q-1)-valent blocks to (q+1)-valent blocks. Again, we are motivated by examining the (q-1)-valent blocks in M'. Let B be any (q-1)-valent block in M' and let x and y be the corresponding deleted points in A_{∞} . Consider the pencil \mathfrak{A}' in M with carrier x; every block in the corresponding parallel class is tangent to B at a point. We define this type of tangency to be *r*-tangency. One can easily check that if B is *r*-tangent to B'at a point z, then there exists a (q + 1)-valent block A such that A is tangent to B at z but is secant to B'. On the basis of this, we generalize the definition of *r*-tangency.

DEFINITION. Let D be an $S_{\lambda}(t, K, v)$ with $K = \{k + 1, k, k - 1\}$. A block B in D is said to be *r*-tangent to another block B' at a point x if and only if there exists a (k + 1)-valent block A such that A is tangent to B at x and is secant to B'.

We define a block B to be an r-transversal of a parallel class \mathfrak{A} if and only if B is r-tangent to every block in \mathfrak{A} . It is obvious then that any (q-1)valent block in M' is an r-transversal of exactly two parallel classes. Conversely, given any two parallel classes of q-valent blocks in M', there are q common r-transversals, namely, the blocks in M that contain the two corresponding deleted points. Hence if we can show that every (q-1)-valent block in a pseudo-block-residual design D' is an r-transversal of exactly two parallel classes, then we can "complete" the (q-1)-valent blocks by adjoining their corresponding parallel classes. Our Fundamental Lemma, stated in the next section, shows how these parallel classes and r-transversals lead to the embedding of an $S(v, \{k+1, k, k-1\}, 1)$ 3-design into an S(v + k + 1, k + 1, 1) 3-design.

From the above discussions, we see that we have to set up the parallel classes in PBRD(q). To do so, we consider the set of blocks that are *r*-tangent to a given q-valent block. We define a maximal set of blocks which are mutually *r*-tangent at x and contains at least four blocks to be an *r*-pencil with carrier x. We show that each *r*-pencil consists of one q-valent block and q (q-1)-valent blocks.

A PBRD is said to satisfy the *Tangency Condition* if given two distinct points x, y and a block A with $x \in A$, $y \notin A$, there exists at most one block containing y and tangent to A at x.

This condition is certainly satisfied by a block-residual design of a Möbius plane. If a PBRD(q) satisfies the Tangency Condition, then we can show that the r-tangents of B which contain a common point x are mutually r-tangent. Furthermore, these r-tangents determine a unique r-pencil whose q-valent block is either B itself or disjoint from B. From this, we obtain the q + 1 parallel classes of q-valent blocks. We also show that every (q - 1)-valent block that is r-tangent to a q-valent block B, is an r-transversal of the parallel class containing B. Thus, we are able to establish the main theorem as stated below.

THEOREM. If D is a pseudo-block-residual design of order q and satisfies the Tangency Condition, then D is uniquely embedded into a Möbius plane of order q.

3. FUNDAMENTAL LEMMA

In this section we shall reconstruct a 3-design from a pseudo-blockresidual design by means of parallel classes and r-transversals. Let us first state the result as follows:

LEMMA 1 (The Fundamental Lemma). Let D be an S(3, K, v), where $K = \{k + 1, k, k - 1\}$. Suppose D satisfies the following conditions:

(A1) The collection of k-valent blocks can be partitioned into k + 1 parallel classes.

(A2) Every (k-1)-valent block is the r-transversal of exactly two parallel classes and every two parallel classes have exactly k common (k-1)-valent r-transversals which are pairwise disjoint.

(A3) Given any two distinct points x and y and a parallel class \mathfrak{A} ,

either there exists exactly one block in \mathfrak{A} that contains x and y, or there exists exactly one (k-1)-valent block that contains x and y and is an r-transversal of \mathfrak{A} . Then D can be uniquely embedded into an S(3, k+1, v+k+1).

In proving the Fundamental Lemma, we reconstruct the k + 1 "missing" points and adjoin them to the k-valent and (k-1)-valent blocks in D. Finally, we show that it is a 3-design. Before we proceed, let us establish two simple lemmas.

LEMMA 2. Let D be as defined in the Fundamental Lemma. Then, $v = k^2 - k$.

Proof. Since every (k-1)-valent block in D is an r-transversal of a parallel class \mathfrak{A} , \mathfrak{A} consists of k-1 k-valent blocks; hence, v = k(k-1).

LEMMA 3. If \mathfrak{A} and \mathfrak{A}' are two distinct parallel classes in D and x is a point, then there exists a unique (k-1)-valent block that contains x and is a common r-transversal of \mathfrak{A} and \mathfrak{A}' .

Proof. Since the k common r-transversals of \mathfrak{A} and \mathfrak{A}' are pairwise disjoint, they partition the $k^2 - k$ points in D. Hence, given any point x in D, there exists a unique common r-transversal of \mathfrak{A} and \mathfrak{A}' that contains x.

Now we can proceed to prove the Fundamental Lemma.

Construction of "new points." Let $\mathfrak{A}_1,...,\mathfrak{A}_{k+1}$ be the k+1 parallel classes of k-valent blocks in D. Corresponding to every parallel class \mathfrak{A}_i , we define a "new" point \mathfrak{A}'_i , $1 \leq i \leq k+1$. Let \overline{X} be the set of points consisting of the points X in D and the k+1 new points $\mathfrak{A}'_1,...,\mathfrak{A}'_{k+1}$.

Construction of "new blocks." Let A be a block in D.

(1) If A is a (k + 1)-valent block, then we let A' be A.

(2) If A is k-valent, then A is contained in a unique parallel class \mathfrak{A}_i for some $i, 1 \leq i \leq k+1$. We define A' to be a block consisting of all points in A and the new point \mathfrak{A}'_i .

(3) If A is (k-1)-valent, then there exist exactly two parallel classes \mathfrak{A}_i and \mathfrak{A}_j , $i \neq j$, $1 \leq i, j \leq k+1$, such that A is a common *r*-transversal of both classes. We extend A to a block A' consisting of all points in A, together with the two new points \mathfrak{A}'_i and \mathfrak{A}'_j . Finally, we let A_{∞} be a block consisting of the k+1 new points and

$$\overline{\mathfrak{A}} = \{A_{\infty}\} \cup \{A' \mid A \text{ is a block in } D\}.$$

Construction of a 3-design. Let S be the incidence structure $(\overline{X}, \overline{\mathfrak{A}})$. We shall show that S is an S(3, k + 1, v + k + 1).

From the constructions of new points and new blocks, it is clear that S has v + k + 1 points and each block in S has k + 1 points. We only have to show that $\lambda = 1$. Let x, y and z be any three distinct points in X.

Case 1. $x, y, z \in X$. There exists a unique block A in D that contains x, y and z; then the extended block A' in $\overline{\mathfrak{A}}$ is the unique block containing x, y and z.

Case 2. $x, y \in X$ and $z = \mathfrak{A}'_i$ for some $i, 1 \leq i \leq k + 1$. Consider the two points x and y and the parallel class \mathfrak{A}_i in D. By Axiom (A3), either there exists a k-valent block A in \mathfrak{A}_i containing x and y, or there exists a (k-1)-valent block A that contains x and y and is an r-transversal of \mathfrak{A}_i . In either case the extended block A' in $\overline{\mathfrak{A}}$ is the unique block containing x, y and z.

Case 3. $x \in X$, $y = \mathfrak{A}_i$ and $z = \mathfrak{A}_j$ with $1 \leq i < j \leq k + 1$. Let us consider the point x and the two parallel classes \mathfrak{A}_i and \mathfrak{A}_j in D. By Lemma 3, there exists a unique (k-1)-valent block A containing x which is a common rtransversal of \mathfrak{A}_i and \mathfrak{A}_j . Thus, A' is the unique block in S that contains x, y and z.

Case 4. $x = \mathfrak{A}'_i$, $y = \mathfrak{A}'_j$ and $z = \mathfrak{A}'_m$ with $1 \le i < j < m \le k+1$. The block A_{∞} is the unique block that contains x, y and z.

It is clear that if we delete the block A_{∞} from S, then the block-residual design S' thus obtained is isomorphic to D. Moreover, since the k + 1 new points and the extended blocks in S are uniquely determined, D is uniquely embeddable.

By virtue of this lemma, we see that if we can establish the parallel classes and the *r*-transversals that satisfy Axioms (A1)–(A3), then a PBRD(q) can be uniquely embedded into a Möbius plane.

4. THE THREE CLASSES OF BLOCKS

Let $D = (X, \mathfrak{A})$ be any PBRD(q). For $k \in K = \{q + 1, q, q - 1\}$, we denote the set of k-valent blocks by $\mathfrak{A}(k)$. Clearly, \mathfrak{A} is partitioned into the three classes, $\mathfrak{A}(q+1)$, $\mathfrak{A}(q)$ and $\mathfrak{A}(q-1)$. Throughout this section, we shall use A, B and C to denote members of $\mathfrak{A}(q+1)$, $\mathfrak{A}(q)$ and $\mathfrak{A}(q-1)$, respectively; other letters will be used to denote blocks of various sizes. Let us first compute the order of $\mathfrak{A}(k)$ for each k in K.

LEMMA 4. Let D be a PBRD(q). For $k \in K$, let b(k) denote the number of k-valent blocks contained in D. Then

EMBEDDING OF A PBRD

$$b(q+1) = \frac{1}{2}q(q-1)(q-2),$$

$$b(q) = (q+1)(q-1),$$

$$b(q-1) = \frac{1}{2}q^{2}(q+1).$$
(2)

Proof. Total number of blocks in D

$$=q^{3}+q-1=b(q+1)+b(q)+b(q-1).$$
 (3)

Total number of triples (x, y, z) where x, y and z are distinct points in D

$$= \begin{pmatrix} q^2 - q \\ 3 \end{pmatrix} = \begin{pmatrix} q+1 \\ 3 \end{pmatrix} b(q+1) + \begin{pmatrix} q \\ 3 \end{pmatrix} b(q) + \begin{pmatrix} q-1 \\ 3 \end{pmatrix} b(q-1).$$
(4)

Next, let us count the number of ordered pairs (x, E) where x is a point incident with a block E in D. Fixing a point x, there exists λ_1 choices of E and there are $q^2 - q$ points in D. Hence the total number of ordered pairs equals $(q^2 + q)(q^2 - q)$. On the other hand, for a fixed k-valent block E, there are k choices of x. Hence

$$(q^{2}+q)(q^{2}-q) = (q+1) b(q+1) + qb(q) + (q-1) b(q-1).$$
 (5)

Using (3), (4) and (5), the parameters b(q + 1), b(q) and b(q - 1) are easily computed to be those given in (2).

LEMMA 5. Let D be a PBRD(q). If for $k \in K$, r(k) denotes the number of k-valent blocks containing a given point in D, then for every point x in D,

$$r(q+1) = \frac{1}{2}(q+1)(q-2),$$

$$r(q) = q+1,$$

$$r(q-1) = \frac{1}{2}q(q+1).$$
(6)

Proof. Let x be any point in D. Since x is contained in $q^2 + q$ blocks, we have

$$r(q+1) + r(q) + r(q-1) = q^{2} + q.$$
(7)

Next, let us count the number of triples (x, y, z) where y and z are points distinct from x and $y \neq z$. Then,

$$\binom{q}{2}r(q+1) + \binom{q-1}{2}r(q) + \binom{q-2}{2}r(q-1) = \binom{q^2-q-1}{2}.$$
 (8)

Lastly, we count the number of ordered pairs (y, E) where y is a point distinct from x and both x and y are incident with the block E. For every

point y distinct from x, there are q + 1 blocks containing both x and y. Therefore,

$$qr(q+1) + (q-1)r(q) + (q-2)r(q-1) = (q^2 - q - 1)(q+1).$$
(9)

Combining (7), (8) and (9), we get the parameters r(q + 1), r(q) and r(q - 1) given in (6).

From these two lemmas, we observe that for each k in K, $(X, \mathfrak{A}(k))$ is an $S_{r(k)}(1, k, q^2 - q)$. Even though none of the three designs is a 2-design, for each k in K, $\lambda_2(k)$ takes only two values.

LEMMA 6. Let D be a PBRD(q) and for each $k \in K$, let $\lambda_2(k)$ denote the number of k-valent blocks containing two given points in D.

If $q \equiv 1 \pmod{2}$, then $\lambda_2(q) = 0$ or 2 and $\lambda_2(q+1) = \lambda_2(q-1)$.

If $q \equiv 0 \pmod{2}$, then $\lambda_2(q) = 1$ or q + 1 and $\lambda_2(q + 1) = \lambda_2(q - 1)$.

Proof. Let x and y be two distinct points in D. Since D is a 2-design,

$$\lambda_2(q+1) + \lambda_2(q) + \lambda_2(q-1) = \lambda_2 = q+1.$$
 (10)

The blocks containing x and y partition the points of D distinct from x and y. Hence,

$$(q-1)\lambda_2(q+1) + (q-2)\lambda_2(q) + (q-3)\lambda_2(q-1) = q^2 - q - 2.$$
(11)

From (10) and (11), we obtain

$$\lambda_2(q) + 2\lambda_2(q-1) = q+1.$$
 (12)

From (10) and (12), we have

$$\lambda_2(q+1) = \lambda_2(q-1). \tag{12a}$$

Case 1. $q \equiv 1 \pmod{2}$. Since $q + 1 \equiv 0 \pmod{2}$, from (12), we see that $\lambda_2(q) \equiv 0 \pmod{2}$.

Suppose $\lambda_2(q) \neq 0$. Then there exists a block $B \in \mathfrak{A}(q)$ such that B contains x and y. For each point y_i in B, $y_i \neq x$, the points x and y_i are contained in B and B is q-valent. Since $\lambda_2(q) \equiv 0 \pmod{2}$, there exists at least one other q-valent block containing x and y_i ; let B_i be such a block. Clearly, for $i \neq j$, $B_i \neq B_j$ and there are q-1 such in B_i 's. But r(q) = q + 1 implies that there exists another q-valent block B' containing x. If B' contains x and y, then $\lambda_2(q) = 3$ and contradicts that $\lambda_2(q) \equiv 0 \pmod{2}$. Therefore, $\lambda_2(q) = 2$ and B' is not secant to B. In fact, B' is the unique q-valent block that is tangent to B at x.

Case 2. $q \equiv 0 \pmod{2}$. Since $q + 1 \equiv 1 \pmod{2}$, from (12), we see that $\lambda_2(q) \equiv 1 \pmod{2}$.

Suppose $\lambda_2(q) \neq q + 1$. Then (12) implies that $\lambda_2(q-1) \neq 0$ and by (12a) there exists a (q+1)-valent block A containing x and y. Let $B_1, \dots, B_{\lambda_2(q)}$ be the q-valent blocks containing x and y, and B'_1, \dots, B'_n be the other q-valent blocks containing x. For every point z in A, distinct from x and y, z is not contained in B_i for any i, $1 \leq i \leq \lambda_2(q)$. Since $\lambda_2(q) \equiv 1 \pmod{2}$, z is contained in at least one B'_i , $1 \leq i \leq n$. But there are q-1 points in A that are distinct from x and y. Hence

$$n \geqslant q - 1. \tag{13}$$

Since r(q) = q + 1, $\lambda_2(q) + n = q + 1$, or equivalently,

$$n = q + 1 - \lambda_2(q). \tag{14}$$

From (13) and (14), we have $\lambda_2(q) \leq 2$. But $\lambda_2(q) \equiv 1 \pmod{2}$; hence $\lambda_2(q) = 1$.

COROLLARY 7. Let $B \in \mathfrak{A}(q)$ and x be a point in B.

If $q \equiv 1 \pmod{2}$, then there exists a unique q-valent block tangent to B at x.

If $q \equiv 0 \pmod{2}$, then there exists no q-valent block tangent to B at x.

Proof. Case 1. $q \equiv 1 \pmod{2}$. The result is clear from the previous proof.

Case 2. $q \equiv 0 \pmod{2}$. If for every point y in B, $y \neq x$, B is the only q-valent block containing x and y, then every other q-valent block containing x is tangent to B; furthermore, they are mutually tangent. This implies that there are q^2 points in D contradicting that $v = q^2 - q$. Hence, there exists a point y in B such that every q-valent block containing x contains x and y. Hence, there exists no q-valent block tangent to B at x.

We shall need these lemmas later. Meanwhile, let us divert our attentions to blocks that are tangent to each other in D.

5. TANGENTS

Let us recall that two blocks E and E' in D are said to be *tangent* to each other if they intersect in exactly one point, and if they intersect in exactly two points, then they are *secant* to one another. Furthermore, if E and E' are tangent at x and there exists a (q + 1)-valent block A which is tangent to E at x and secant to E', then E is said to be *r*-tangent to E' at x. In this section, we shall establish the existence of *r*-tangents in D.

LEMMA 8. Let $i \in \{0, 1, 2\}$ and E be a fixed (q + 1 - i)-valent block in

D. If x is a point incident with E and y is a point not in E, then there exist exactly i + 1 blocks which are tangent to E at x and contain y.

Proof. Let z be a point in E which is distinct from x. The three points x, y and z determine a unique block E' in D, and E' is clearly secant to E. Since there are q - i distinct points in E that are different from x, there are q - i blocks in D which contain x and y and are secant to E. This implies that all other bocks containing x and y are tangent to E at x. Since there are q + 1 blocks containing x and y and (q + 1) - (q - i) = i + 1, the conclusion of the lemma follows.

LEMMA 9. Let $i \in \{0, 1, 2\}$ and E be a fixed (q + 1 - i)-valent block in D. If x is a point incident with E, then there exist exactly (i + 1)q - 1 blocks which are tangent to E at x.

Proof. For every point y in E, different from x, the points x and y are contained in q blocks other than E. Hence, there are q(q-1) blocks which contain x and are secant to E. But every block incident with x other than E is either a secant or a tangent of E, and since there are $q^2 + q - 1$ blocks incident with x other than E, the number of blocks tangent to E at x is $q^2 + q - 1 - q(q - i)$, or q(i + 1) - 1.

LEMMA 10. If A is a (q + 1)-valent block and x is a point in A, then the q-1 tangents of A at x are mutually tangent to each other at x.

Proof. Let E and E' be two distinct tangents of A at x, and suppose E and E' intersect at two distinct points x and y. Since y is a point not in A, by Lemma 8, there exists a unique block containing y which is tangent to A at x. But both E and E' contain y and are tangent to A at x. Hence, E and E' are mutually tangent at x.

By virtue of this lemma, we see that the tangents of A at x together with A constitute a pencil in D with carrier x.

PROPOSITION 11. If \mathfrak{A} is a pencil with carrier x such that \mathfrak{A} contains a (q+1)-valent block A, then \mathfrak{A} contains q blocks and \mathfrak{A} partitions the points in D that are distinct from x.

Proof. Let A be a (q + 1)-valent block in \mathfrak{A} . For every point y distinct from x, there exists a unique block E in \mathfrak{A} such that E contains y and E is tangent to A at x. Hence, \mathfrak{A} partitions the points that are distinct from x. It is clear from the previous lemma that \mathfrak{A} contains q blocks.

From the above, we see that a (q + 1)-valent block A cannot be r-tangent to any other block E. The converse is also valid.

LEMMA 12. Let E be a block in D. If A and A' are two distinct (q + 1)-

valent blocks that are tangent to E at a point x, then A and A' are mutually tangent at x.

Proof. Suppose A is not tangent to A' at x. Let x and y be the two points of intersection of A and A'. For every point z in A' such that $z \neq x$ and $z \neq y$, there exists a unique block tangent to A at x which contains z. Hence, there are q-1 blocks that are tangent to A at x and are secant to A'. But there are only q-1 tangents of A at x of which E is one. This contradicts that E is tangent to A' at x. Hence, A and A' are mutually tangent.

From this, we observe that if A is a (q + 1)-valent block and A is not r-tangent to E, then E is not r-tangent to A. We shall establish this property for every block E in D. That is, we want to show that the relation, "r-tangency," is a symmetric relation.

LEMMA 13. Let $q \ge 4$ and let E be a block in D such that E is not (q+1)-valent. If x is a point in E, then there exists at least one (q+1)-valent block A tangent to E at x.

Proof. Let |E| = q + 1 - i, where $i \in \{1, 2\}$. For $k \in K$, let $t_i(k)$ denote the number of k-valent blocks tangent to E at x. By Lemma 9, there are (i + 1)q - 1 blocks tangent to E at x. Hence

$$t_i(q+1) + t_i(q) + t_i(q-1) = (i+1)q - 1.$$
(15)

Next, we count the number of ordered pairs (y, E') such that $y \in E'$, $y \notin E$ and E' is tangent to E at x. For each point y not in E, there are i + 1 blocks containing y and tangent to E at x. Since there are v - (q + 1 - i) such points y, we have

$$qt_i(q+1) + (q-1)t_i(q) + (q-2)t_i(q-1)$$

= (i+1)(q² - 2q - 1 + i). (16)

Combining (15) and (16), we obtain

$$2t_i(q+1) + t_i(q) = i^2 + q - 3.$$
⁽¹⁷⁾

Case 1. |E| = q (i.e., i = 1). By Corollary 7, there exists either none or exactly one q-valent block tangent to E at x, depending on whether q is even or odd. Hence, $t_i(q) \leq 1$. From (17), we obtain the inequality,

$$2t_i(q+1) \ge q-3.$$

For $q \ge 4$, $t_1(q+1) > 0$. Hence, there exists at least one (q+1)-valent block tangent to E at x.

Case 2. |E| = q - 1 (i.e., i = 2). Suppose there exists no (q + 1)-valent

block tangent to E at x; then $t_2(q+1) = 0$ and from (17), $t_2(q) = q + 1$. Hence, every q-valent block that contains x is tangent to E; this implies that for every point y in E distinct from x, the points x and y are not contained in any q-valent block. We show that this cannot be the case.

If $q \equiv 0 \pmod{2}$, then by Lemma 6 there exists at least one q-valent block containing x and y. Hence, we arrive at a contradiction.

If $q \equiv 1 \pmod{2}$, then by Lemma 5 for each y in E distinct from x exactly half of the q + 1 blocks that contain x and y are (q - 1)-valent; thus there are $\frac{1}{2}(q + 1)(q - 2) (q - 1)$ -valent blocks containing x and secant to E. Since there are $\frac{1}{2}(q + 1)q (q - 1)$ -valent blocks containing x, there are q (q - 1)valent blocks tangent to E at x. But if $t_2(q + 1) = 0$ and $t_2(q) = q + 1$, then by Eq. (17), $t_2(q - 1) = 2q - 2$. Hence, q = 2q - 2 or q = 2. This contradicts that $q \equiv 1 \pmod{2}$. Consequently, $t_2(q + 1) \neq 0$, and there exists at least one (q + 1)-valent block tangent to E at x.

LEMMA 14. Let E and E' be two distinct blocks in D. If E is r-tangent to E' at x, then E' is r-tangent to E at x.

Proof. If E is r-tangent to E' at x, then there exists a (q + 1)-valent block A that is tangent to E at x and is secant to E'. Suppose E' is not r-tangent to E at x; then for every (q + 1)-valent block A' that is tangent to E' at x, A' is also tangent to E. Consider the two (q + 1)-valent blocks A and A'. Since both A and A' are tangent to E at x, A is tangent to A' at x. But E' is also tangent to A' at x; hence by Lemma 10, E' is tangent to A at x. This contradicts that A is secant to E'. Therefore, E' is r-tangent to E at x.

Thus we see that r-tangency is a symmetric relation. Let us define two distinct blocks E and E' to be *M*-tangent at x if and only if E is tangent to E' but is not r-tangent to E' at x. A pencil with carrier x is called an *M*-pencil if the blocks in the pencil are mutually *M*-tangent.

LEMMA 15. If E is M-tangent to E' at x and E' is M-tangent to E'' at x, then E is M-tangent to E'' at x.

Proof. Let A be a (q + 1)-valent block in D such that A is tangent to E at x. Since E is not r-tangent to E', A is tangent to E' at x. But E' is M-tangent to E'' at x; hence A is also tangent to E'' at x. Consequently, E is not r-tangent to E'' at x, or equivalent, E is M-tangent to E'' at x.

From this lemma, we observe that any pencil that contains a (q + 1)-valent block is an *M*-pencil. Next, we shall study blocks that are tangent to a given *q*-valent block *B*.

LEMMA 16. Let B be a fixed q-valent block in D and x be a point incident with B. If A is a (q + 1)-valent block tangent to B at x, then there exist exactly q blocks which are tangent to B at x and are secant to A.

Proof. For i = 1, 2, let

 $T_i = \{E \mid E \text{ is a block in } D \text{ tangent to } B \text{ at } x, E \neq A \text{ and } |E \cap A| = i\}.$

The two sets T_1 and T_2 partition the set of tangents of B other than A at x. By Lemma 9,

$$|T_1| + |T_2| = 2q - 2. (18)$$

Next, we count the number of ordered pairs (y, E) where E is tangent to B at x, $E \neq A$ and $y \in E \cap A$. If y is distinct from x, then by Lemma 9, there exist two blocks containing y and tangent to B at x, of which one is A. Hence, there exists a unique choice of E. If y = x, then by Lemma 9, there are 2q - 2 choices of E. Since there are q points in A that are distinct from x, the number of ordered pairs (y, E) is q + 2q - 2. On the other hand, if E is tangent to B at x and $|E \cap A| = i$, i = 1, 2, then there are i choices of y. Thus,

$$|T_1| + 2|T_2| = q + 2q - 2.$$
⁽¹⁹⁾

Using (18) and (19), we obtain $|T_2| = q$. Therefore, there are q blocks tangent to B at x and secant to A.

It should be noted that B is r-tangent to these q blocks at x. Next, we show that they are mutually tangent at x.

LEMMA 17. Let B be a q-valent block and A be a (q + 1)-valent block tangent to B at a point x. If E and E' are two distinct blocks tangent to B at x and secant to A, then E and E' are mutually tangent at x.

Proof. Suppose E and E' intersect each other at two points x and y. If $y \in A$, then E, E' and A are three blocks containing y and tangent to B at x. This contradicts the fact that there exist only two such tangents (by Lemma 8). Thus, the point y is not contained in A.

Since $y \notin A$ and A is (q + 1)-valent, by Lemma 8, there exists a unique block E'' containing y and tangent to A at x. But both E'' and B are tangent to A at x, by Lemma 8, E'' and B are mutually tangent at x. Hence, E, E' and E'' are three blocks tangent to B at x and containing y. This contradicts that there are only two such blocks.

Therefore, E and E' cannot intersect at two points and hence, they are mutually tangent at x.

LEMMA 18. Let A and B be (q + 1)-valent and q-valent blocks, respectively, such that A is tangent to B at x. If C is tangent to B at x and secant to A, then C is a (q - 1)-valent block.

Proof. Let $C_1, ..., C_q$ be the q blocks that are tangent to B at x and secant

to A. Since for $1 \le i < j \le q$, C_i and C_j are mutually tangent at x and each C_i has at least q - 2 points other than x, we have

$$q(q-2) \leq \sum_{i=1}^{q} (|C_i|-1) \leq q^2 - q - |B|.$$

But B is q-valent; hence $\sum_{i=1}^{q} (|C_i| - 1) = q(q-2)$. Consequently, each C_i is a (q-1)-valent block.

From the proof, we also observe that the blocks $C_1, ..., C_q$ and B partition the points distinct from x. In fact, we shall show that they form an r-pencil in D with carrier x.

LEMMA 19. Let $B, C_1, ..., C_q$ be as defined in the previous lemma and x be their common point. Let $T = \{B, C_1, ..., C_q\}$. If E and E' are two distinct blocks in T and A is a (q + 1)-valent block tangent to E at x, then A is secant to E'.

Proof. Consider a point y in A distinct from x. Since the blocks in T partition the points distinct from x, there exists a unique block E_y in T such that E_y contains x and y. Thus, there are q blocks in T that are secant to A.

But T consists of q + 1 blocks; hence there exists a unique block in T that is tangent to A at x, and E is such a block. Thus, $|A \cap E'| = 2$ and the conclusion of the lemma follows.

PROPOSITION 20. Let B be a q-valent block in D and x be a point in B. The pair (x, B) determines a unique r-pencil in D with carrier x, denoted by $\mathfrak{P}(x, B)$. Furthermore, the r-pencil $\mathfrak{P}(x, B)$ consists of q + 1 blocks and they partition the points distinct from x. We shall call B the carrier block of $\mathfrak{P}(x, B)$.

Proof. Let $T = \{B, C_1, ..., C_q\}$ be defined as above. For every block in T, there exists a (q + 1)-valent block tangent to E at x. Hence, by the previous lemma E is r-tangent to every other block in T. Thus, they form an r-pencil at x.

Next, we count the number of points contained in T. Since the q (q-1)-valent blocks and the q-valent block B in T are mutually tangent at x, we have $q(q-2) + q = q^2 - q$ points in T. Thus, the blocks in T partition the points distinct from x.

Since for every (q + 1)-valent block A that is tangent to B at x, A is secant to C_i in T, $1 \le i \le q$, and by Lemma 16, $C_1, ..., C_q$ are the only blocks that are r-tangent to B at x. Thus, $\mathfrak{P}(x, B)$ is the unique r-pencil with carrier x and carrier block B.

COROLLARY 21. Let B be a q-valent block in D. B is r-tangent to exactly $q^2 (q-1)$ -valent blocks in D.

COROLLARY 22. Let B be a q-valent block in D. If x is a point not in B, then B is r-tangent to exactly q blocks in D that contain x. Furthermore, these q blocks are (q-1)-valent.

Proof. Let y be a point in B. $\mathfrak{P}(y, B)$ partitions the points distinct from y; hence there exists a unique block C_y containing x that is r-tangent to B at y. Since there are q points in B, there are q blocks containing x that are r-tangent to B. Clearly, these are the only r-tangents of B that contain x.

Eventually, we would like to show that these q (q-1)-valent blocks that are *r*-tangent to *B* and contain *x* determine an *r*-pencil in *D* with carrier *x*. Let us first conclude our discussions on *q*-valent blocks in the following theorem.

THEOREM 23. Let B be a q-valent block. If x is a point in B, then there exist exactly one r-pencil and one M-pencil with carrier x that contain B.

Proof. Since B is q-valent, by Lemma 9 there are 2q - 1 blocks which are tangent to B at x. By Proposition 20, q of these tangents together with B form an r-pencil $\mathfrak{P}(x, B)$ with carrier x. Among the remaining q - 1 tangents of B, there is a (q + 1)-valent block A. Since every tangent of B at x is not r-tangent to A at x, these q - 2 tangents of B together with A and B form an M-pencil with carrier x.

Finally, we shall study the tangents of a (q-1)-valent block C at a point x.

LEMMA 24. Let C be a (q-1)-valent block in D and x be a point in C. If g(C, x) denotes the number of 2-valent blocks r-tangent to C at x, then ave $g(\cdot, x) = 2$.

Proof. We count the number of ordered pairs (B, C) where B and C are q-valent and (q-1)-valent blocks, respectively, and B is r-tangent to C at x. For every q-valent block B containing x, there are q choices of C. Since there are q+1 q-valent blocks containing x, there are q(q+1) ordered pairs (B, C). On the other hand, if C is a (q-1)-valent block containing x, then there are g(C, x) choices of B. Hence, $\sum_C g(C, x) = q(q+1)$. But there are $\frac{1}{2}q(q+1)$ (q-1)-valent blocks containing x; thus ave $g(\cdot, x) = 2$.

PROPOSITION 25. Let C be a (q-1)-valent block in D. If x is a point in C, then there exist exactly two q-valent blocks that are r-tangent to C at x.

Proof. We shall show that there exist at most two q-valent blocks that are r-tangent to C at x, then using the previous lemma, we obtain the conclusion of the proposition.

Let us recall that for $k \in K$, $t_2(k)$ denotes the number of k-valent blocks tangent to C at x. From (17) we have

$$2t_2(q+1) + t_2(q) = q+1.$$
⁽²⁰⁾

For $k \in K$, let t'(k) denote the number of k-valent blocks M-tangent to C at x. From Lemma 12, $t'(q+1) = t_2(q+1)$. Let A be a (q+1)-valent block M-tangent to C at x, and let \mathfrak{P} denote the M-pencil with carrier x that contains A. C is a block in \mathfrak{P} . Since for every block E in \mathfrak{P} , $E \neq C$, E is M-tangent to C at x and they are the only M-tangents of C at x.

$$t_2(q+1) + t'(q) + t'(q-1) + 1 = |\mathfrak{P}| = q.$$
⁽²¹⁾

On the other hand, the blocks in \mathfrak{P} partition the points that are distinct from x; we have

$$qt_2(q+1) + (q-1)t'(q) + (q-2)(t'(q)+1) + 1 = q^2 - q.$$
(22)

Using (21) and (22), we obtain

$$2t_2(q+1) + t'(q) = q - 1.$$
⁽²³⁾

Combining (20) and (23), we get

$$t_2(q) - t'(q) = 2.$$

Thus, there exists at most two q-valent blocks r-tangent to C at x and the proof is complete.

PROPOSITION 26. Let C be a (q-1)-valent block in D. If x is a point in C, then C is contained in exactly one M-pencil with carrier x. Furthermore, there are at least two r-pencils with carrier x that contain C.

Proof. From the proof of the previous lemma, if A is a (q + 1)-valent block tangent to C at x, then the M-pencil with carrier x that contains A is the unique M-pencil with carrier x that contains C.

Since there are exactly two q-valent blocks r-tangent to C at x and each of these two blocks determines a unique r-pencil with carrier x, C is contained in at least two r-pencils.

We shall show that C is contained in exactly two *r*-pencils with carrier x.

LEMMA 27. Let $\mathfrak{P}(x, B)$ and $\mathfrak{P}(x, B')$ be two distinct r-pencils with carrier x and carrier block B and B', respectively. If c(B, B') denotes the number of common blocks in $\mathfrak{P}(x, B)$ and $\mathfrak{P}(x, B')$, then ave $c(\cdot, \cdot) = 1$, where average runs over all pairs of distinct q-valent blocks containing x.

Proof. Let us count the number of triples $(\mathfrak{P}(x, B), \mathfrak{P}(x, B'), C)$ where $\mathfrak{P}(x, B)$ and $\mathfrak{P}(x, B')$ are distinct *r*-pencils with carrier x and C is a common block in $\mathfrak{P}(x, B)$ and $\mathfrak{P}(x, B')$. For every (q-1)-valent block C that contains x, there are exactly two q-valent blocks B and B' that contain x and are r-tangent to C. Hence, there are exactly two r-pencils with carrier x that contain a q-valent block and C. Thus, there are two choices for the pair $(\mathfrak{P}(x, B), \mathfrak{P}(x, B'))$. But there are $\frac{1}{2}(q+1)q$ choices of C that contain x, so the total number of triples is (q+1)q. On the other hand, for every distinct pair $(\mathfrak{P}(x, B), \mathfrak{P}(x, B'))$, there are c(B, B') choices of C. Hence,

$$\sum c(B,B')=q(q+1),$$

where the summation runs over all pairs $(\mathfrak{P}(x, B), \mathfrak{P}(x, B'))$. But for every q-valent block B containing x, there corresponds a unique r-pencil $\mathfrak{P}(x, B)$; hence there are (q + 1)q distinct pairs $(\mathfrak{P}(x, B), \mathfrak{P}(x, B'))$. Thus,

$$(q+1)q$$
 ave $c(\cdot, \cdot) = q(q+1)$,

or equivalently, ave $c(\cdot, \cdot) = 1$.

LEMMA 28. If $\mathfrak{P}(x, B)$ and $\mathfrak{P}(y, B')$ are two distinct r-pencils with carriers x and y, and carrier blocks B and B', respectively, then $|\mathfrak{P}(x, B) \cap \mathfrak{P}(y, B')| \leq 1$. In particular, if x = y, then $|\mathfrak{P}(x, B) \cap \mathfrak{P}(x, B')| = 1$.

Proof. Case 1. $x \neq y$ and B = B'. Clearly $\mathfrak{P}(x, B) \cap \mathfrak{P}(y, B') = B$.

Case 2. $x \neq y$ and $B \neq B'$. Suppose $|\mathfrak{P}(x, B) \cap \mathfrak{P}(y, B')| \ge 2$ and let C, C' be two common *r*-tangents of B and B' at x and y, respectively. Since by Proposition 20, the blocks in $\mathfrak{P}(x, B)$ partition the points distinct from x, there exists a unique block E in $\mathfrak{P}(x, B)$ that contains y. But this contradicts that both C and C' contain y. Hence, $|\mathfrak{P}(x, B) \cap \mathfrak{P}(y, B')| \le 1$.

Case 3. x = y and $B \neq B'$. For every point z in B', $z \neq x$, there exists a unique block in $\mathfrak{P}(x, B)$ that contains z. Since there are q - 1 points in B' that are distinct from x, there are q - 1 blocks in $\mathfrak{P}(x, B)$ that are secant to B'. But $\mathfrak{P}(x, B)$ consists of q + 1 blocks; hence there are two blocks in $\mathfrak{P}(x, B)$ that are tangent to B' at x. If both these blocks are M-tangent to B', then they are contained in the M-pencil with carrier x that contains B'; hence they are mutually M-tangent to each other. This contradicts that they are both in $\mathfrak{P}(x, B)$. Thus, there exists at least one block in $\mathfrak{P}(x, B)$ that is rtangent to B' at x. By the previous lemma, we obtain that there exists exactly one, that is, $|\mathfrak{P}(x, B) \cap \mathfrak{P}(x, B')| = 1$.

LEMMA 29. Let C be a (q-1)-valent block and x be a point in C. Let $\mathfrak{P}(x, B)$ and $\mathfrak{P}(x, B')$ be the two r-pencils with carrier x and carrier blocks B

and B' that contain C. If C' is a (q-1)-valent block that is r-tangent at x, then C' is contained in exactly one of the two r-pencils $\mathfrak{P}(x, B)$ and $\mathfrak{P}(x, B')$.

Proof. Since each of the two r-pencils consists of q + 1 blocks and C is a common block in $\mathfrak{P}(x, B)$ and $\mathfrak{P}(x, B')$; there are 2q blocks that are r-tangent to C at x and are contained in $\mathfrak{P}(x, B)$ and $\mathfrak{P}(x, B')$. By Lemma 9, there are 3q - 1 tangents of C at x of which q - 1 are contained in the unique M-pencil with carrier x that contains C. Thus, there are only 2q blocks that are r-tangent to C at x, and they are contained in either $\mathfrak{P}(x, B)$ or $\mathfrak{P}(x, B')$. Clearly, an r-tangent C' of C cannot be contained in both $\mathfrak{P}(x, B)$ and $\mathfrak{P}(x, B')$; otherwise C and C' are two common blocks of the r-pencils and this contradicts the previous lemma.

LEMMA 30. Let C and C' be two distinct (q-1)-valent blocks. If C is r-tangent to C' at x, then there exists a unique block which is r-tangent to C' and M-tangent to C at x.

Proof. Let \mathfrak{P} denote the *M*-pencil with carrier x that contains C. For every point y in C', $y \neq x$, there exists a unique block E in \mathfrak{P} such that E contains x and y. Hence, there are q-2 blocks in \mathfrak{P} that are *M*-tangent to C but are secant to C'. But \mathfrak{P} consists of q blocks of which one is C; hence there exists a unique block E *M*-tangent to C at x which is tangent to C'. Clearly, E is not *M*-tangent to C' at x; otherwise, $C' \in \mathfrak{P}$; this contradicts that C is r-tangent to C'. Hence E is r-tangent to C' at x.

LEMMA 31. Let C and C' be two distinct (q-1)-valent blocks containing x. If C is r-tangent to C' at x, then there exist exactly q blocks r-tangent to both C and C' at x.

Proof. Let $\mathfrak{P}(x, B)$ be an *r*-pencil with carrier x and carrier block B that contains both C and C'. Since $\mathfrak{P}(x, B)$ contains q + 1 blocks, there are at least q - 1 blocks that are *r*-tangent to both C and C'.

Let $\mathfrak{P}(x, B')$ be the other *r*-pencil containing *C*. If *E* is a block *r*-tangent to *C* at *x* and $E \notin \mathfrak{P}(x, B)$, then $E \in \mathfrak{P}(x, B')$. We shall show that there exists exactly one block *E* in $\mathfrak{P}(x, B')$ such that *E* is *r*-tangent to both *C* and *C'* at *x*.

For every point y in C', $y \neq x$, there exists a unique block E in $\mathfrak{P}(x, B')$ such that E contains x and y. Hence, there are q - 1 r-tangents of C at x that are secant to C'. But $\mathfrak{P}(x, B')$ contains q + 1 blocks, of which one is C; hence there are two blocks in $\mathfrak{P}(x, B')$ that are tangent to C' at x. By the previous lemma, one of these two blocks is *M*-tangent to C' at x. Therefore, there exists a unique block E in $\mathfrak{P}(x, B')$ such that E is r-tangent to C' at x.

Consequently, there are exactly q blocks r-tangent to both C and C' at x.

PROPOSITION 32. Let C be a (q-1)-valent block. If x is a point in C, then C is contained in exactly two r-pencils with carrier x. Moreover, every r-pencil in D contains a unique q-valent carrier block.

Proof. Suppose \mathfrak{P} is another *r*-pencil containing *C* such that \mathfrak{P} is distinct from $\mathfrak{P}(x, B)$ and $\mathfrak{P}(x, B')$. Let *C'* be a block in \mathfrak{P} and in $\mathfrak{P}(x, B)$. Since $\mathfrak{P} \neq \mathfrak{P}(x B)$, there exists a block *C''* in \mathfrak{P} such that $C'' \notin \mathfrak{P}(x, B')$. By the previous lemma, *C''* is the only other block in \mathfrak{P} . Thus $|\mathfrak{P}| = 3$. But by the definition of an *r*-pencil, $|\mathfrak{P}| \ge 4$; hence $\mathfrak{P}(x, B)$ and $\mathfrak{P}(x, B'')$ are the only two *r*-pencils with carrier *x* that contain *C*.

PROPOSITION 33. Let E_1, E_2, E_3 be mutually tangent at a point x such that they are not contained in any M-pencil or any r-pencil with carrier x. If \mathfrak{P} is a maximal set of mutually tangent blocks containing x such that \mathfrak{P} contains E_1, E_2 and E_3 , then \mathfrak{P} contains at most four blocks.

Proof. Since E_1 , E_2 and E_3 are not contained in any *M*-pencil or any *r*-pencil, either they are mutually *r*-tangent and are contained in two distinct *r*-pencils at x, or E_1 is *M*-tangent to E_2 .

Case 1. E_1 , E_2 and E_3 are mutually *r*-tangent. From the previous proposition, there exists no other block that is *r*-tangent to all E_i 's at *x*. Let *E* be a block in \mathfrak{P} , $E \neq E_i$, i = 1, 2, 3. Without loss of generality, *E* is *M*-tangent to E_1 at *x*, then *E* is not *M*-tangent to E_2 and E_3 . Otherwise, E_1 and E_2 are mutually *M*-tangent and this contradicts our assumption. Hence, E_1 is *r*-tangent to E_2 at *x*. By Lemma 30, *E* is the unique block that is *M*-tangent to E_1 and *r*-tangent to E_2 at *x*. Thus $|\mathfrak{P}| \leq 4$.

Case 2. E_1 is M-tangent to E_2 . By Lemma 15, E_3 is r-tangent to both E_1 and E_2 at x. Moreover, E_1 , E_3 and E_2 , E_3 are contained in distinct r-pencils at x. Let $E \in \mathfrak{P}$, $E \neq E_i$, i = 1, 2, 3.

Subcase 2.1. E is r-tangent to E_i , i = 1, 2, 3. Since the pairs (E_1, E_3) and (E_2, E_3) are in distinct r-pencils at x, either E, E_1 , E_3 or E, E_2 , E_3 are three mutually r-tangent blocks at x that are contained in distinct r-pencils. By Case 1, $|\mathfrak{P}| \leq 4$.

Subcase 2.2. E is M-tangent to E_i for some $i, 1 \le i \le 3$. Suppose E is M-tangent to E_1 at x; then E is not M-tangent to E_3 ; otherwise, E_1 and E_3 are mutually M-tangent at x. But then E_2 and E are two blocks that are M-tangent to E_1 and r-tangent to E_3 ; this contradicts that there exists such a unique block. Hence, E is r-tangent to E_1 at x. Similarly, E is r-tangent to E_2 at x. Thus, E is M-tangent to E_3 at x.

Suppose $E' \in \mathfrak{P}$, $E' \neq E$, E_i , i = 1, 2, 3. Using the same arguments as above, E' is *r*-tangent to both E_1 and E_2 at *x*. If E' is also *r*-tangent to E_3 , then by Subcase 2.1, $|\mathfrak{P}| \leq 4$. This contradicts that $E' \neq E$. Hence, E' is *M*-

CHAN AND RAY-CHAUDHURI

tangent to E_3 at x. But then E and E' are two distinct blocks that are Mtangent to E_3 and r-tangent to E_1 at x. This contradicts that there exists only one such block. Hence E' does not exist, and $|\mathfrak{P}| \leq 4$.

6. PARALLEL CLASSES

In this section, we shall establish the parallel classes of q-valent blocks by looking at the *r*-pencils in *D*. First let us state

THE TANGENCY CONDITION. Let B be a q-valent block. If x and y are two distinct points not in B, then there exists at most one block containing x and y which is r-tangent to B.

Let D be a PBRD(q) such that D satisfies the Tangency Condition. Let B be a q-valent block in D and let x be a point in B. By Corollary 22, there are q (q-1)-valent blocks that contain x and are r-tangent to B. We shall show that the Tangency Condition implies that these q blocks are mutually r-tangent at x.

LEMMA 34. Let B be a q-valent block in D. If x is a point not in B, then the q blocks that contain x and are r-tangent to B are mutually tangent to each other.

Proof. Suppose C and C' are two r-tangents of B that contain x and intersect at two points x and y. Clearly, x and y are two distinct points not in B. But this contradicts the Tangency Condition. Hence, C and C' are mutually tangent.

PROPOSITION 35. Let $q \ge 5$ and B be a q-valent block in D. If x is a point not in B, then the q blocks containing x and r-tangent to B are mutually r-tangent to each other.

Proof. Let $C_1,..., C_q$ be the (q-1)-valent blocks *r*-tangent to *B* which contain *x*. If $C_1,..., C_q$ are mutually *M*-tangent, then there exists a (q + 1)-valent block *A* containing *x* which is tangent to $C_1,..., C_q$. But this contradicts that every *M*-pencil contains only *q* blocks. Suppose C_1 is *M*-tangent to *C* and C_1 is *r*-tangent to C_3 ; then by Proposition 33, a maximal set \mathfrak{P} of mutually tangent blocks that contain C_1, C_2 and C_3 contains at most four blocks. But $q \ge 5$; hence, $C_1,..., C_q$ are mutually *r*-tangent at *x*.

COROLLARY 36. The blocks $C_1, ..., C_q$ determine a unique r-pencil $\mathfrak{P}(x, B')$ with carrier x.

Proof. By Proposition 33, $C_1, ..., C_q$ are contained in the same r-pencil $\mathfrak{P}(x, B')$ with carrier x.

PROPOSITION 37. Let $q \ge 5$ and B be a q-valent block in D. Let x be a point not in B. If $\mathfrak{P}(x, B')$ is the r-pencil with carrier x such that each (q-1)-valent block in $\mathfrak{P}(x, B')$ is r-tangent to B, then B' is disjoint from B.

Proof. Since there are q (q-1)-valent blocks in $\mathfrak{P}(x, B')$, for each point y in B, there exists a unique (q-1)-valent block r-tangent to B at y. The blocks in $\mathfrak{P}(x, B')$ partition the points distinct from x; hence, B and B' are disjoint.

COROLLARY 38. Every r-tangent of B is an r-tangent of B', and vice versa.

Proof. For every point x in B' there exist q(q-1)-valent blocks rtangent to B which contain x. These q blocks, together with B', form an rpencil $\mathfrak{P}(x, B')$. Hence, they are also r-tangents of B'. Since there are q points in B', there are q^2 blocks that are r-tangents of both B and B'. But by Corollary 21, B has only q^2 r-tangents. Thus, every r-tangent of B is an rtangent of B'.

Next, we shall construct the parallel classes.

DEFINITION. Let B and B' be two q-valent blocks in D. B is said to be parallel to B' if and only if either B = B', or B is disjoint from B' and every r-tangent of B is an r-tangent of B' and vice versa. We shall denote them by $B/\!/B'$.

PROPOSITION 39. If B/|B' and B'/|B'', then B/|B''.

Proof. Suppose $x \in B \cap B''$. Consider the q (q-1)-valent blocks that contain x and are r-tangent to B'; these q blocks determine a unique r-pencil $\mathfrak{P}(x, B)$ with carrier x. Hence, B = B''.

Suppose $B \neq B''$, then every *r*-tangent of *B* is an *r*-tangent of *B'*, which, in turn, is an *r*-tangent of *B''*. Thus every *r*-tangent of *B* is an *r*-tangent of *B''* and $B \cap B'' = \emptyset$, so $B/\!/B''$.

PROPOSITION 40. Each q-valent block B is contained in a parallel class $\mathfrak{P}(B)$, and $\mathfrak{P}(B)$ consists of q-1 blocks.

Proof. Let us count the number of ordered pairs (x, B') such that $x \in B'$ and $B/\!/B'$. For every point x in D, there are q (q-1)-valent blocks r-tangent to B and containing x. They determine a unique q-valent block B' parallel to

B. Hence, there are $q^2 - q$ pairs. On the other hand, for every block parallel to B, there are q choices of x; hence,

$$q \cdot (\text{number of blocks parallel to } B) = q^2 - q,$$

or

number of blocks parallel to
$$B = q - 1$$

Since parallelism is a transitive relation, these q-1 blocks are mutually parallel to each other. Furthermore, they partition the points in D; hence, they form a parallel class of $\mathfrak{P}(B)$.

COROLLARY 41. There are q + 1 parallel classes in D.

Proof. Since each parallel class contains q-1 blocks and there are q^2-1 q-valent blocks in D, there are q+1 parallel classes in D.

7. Proof of the Main Theorem for $q \ge 5$

From the previous section, we have found the q + 1 parallel classes in D. Next we have to establish the r-transversals of these parallel classes.

LEMMA 42. Let C be a (q-1)-valent block in D. C is an r-transversal of exactly two parallel classes in D.

Proof. Let x be a fixed point in C. There exist two q-valent blocks B and B' containing x and r-tangent to C. Clearly, B and B' are in different parallel classes $\mathfrak{P}(B)$ and $\mathfrak{P}(B')$. Since C is an r-tangent of B, C is an r-tangent of every block in $\mathfrak{P}(B)$, that is, C is an r-transversal of $\mathfrak{P}(B)$. Similarly, C is an r-transversal of $\mathfrak{P}(B)$. Clearly, $\mathfrak{P}(B)$ and $\mathfrak{P}(B')$ are the only two parallel classes for which C is an r-transversal.

Next, we show that there are q common r-transversals for every two distinct parallel classes.

LEMMA 43. Every two distinct parallel classes have exactly q common rtransversals and they are disjoint.

Proof. Let $\mathfrak{P}(B)$ and $\mathfrak{P}(B')$ be two distinct parallel classes. We first show that any two common *r*-transversals of $\mathfrak{P}(B)$ and $\mathfrak{P}(B')$ are disjoint. Suppose C and C' are two common *r*-transversals such that $x \in C \cap C'$. Let B and B' be the q-valent blocks in $\mathfrak{P}(B)$ and $\mathfrak{P}(B')$, respectively, such that B and B' contain x. Since C and C' are both r-tangents of B and B' at x, $|\mathfrak{P}(x, B) \cap \mathfrak{P}(x, B')| \ge 2$. This contradicts Lemma 28 that there exists a

94

unique block r-tangent to both B and B' at x. Thus, the common r-transversals of $\mathfrak{P}(B)$ and $\mathfrak{P}(B')$ are pairwise disjoint.

Let us count the number of triples $(C, \mathfrak{P}(B), \mathfrak{P}(B'))$ where C is a common *r*-transversal of $\mathfrak{P}(B)$ and $\mathfrak{P}(B')$. For every (q-1)-valent block C in D, there exist exactly two parallel classes of which C is an *r*-transversal. Since there are $\frac{1}{2}q^2(q+1)$ (q-1)-valent blocks,

 \sum number of common *r*-transversals of $\mathfrak{P}(B)$ and $\mathfrak{P}(B')$

$$=\frac{1}{2}q^{2}(q+1)\cdot 2\cdot 1=q^{2}(q+1),$$

where the sum runs over all pairs $(\mathfrak{P}(B), \mathfrak{P}(B'))$. But there are q + 1 distinct parallel classes; hence

average number of common *r*-transversals of two distinct parallel classes = $(q^2(q+1))/(q+1)q = q$.

Since the common *r*-transversals are pairwise disjoint and there are $q^2 - q$ points in *D*, there are at most *q* common *r*-transversals of $\mathfrak{P}(B)$ and $\mathfrak{P}(B')$. Thus, every two distinct parallel classes have exactly *q* common *r*-transversals.

Thus far we see that D is a PBRD(q) that satisfies axioms (A1) and (A2) in the Fundamental Lemma. Next, we shall establish axiom (A3).

LEMMA 44. Let x and y be two distinct points in D. If $\mathfrak{P}(B)$ is a parallel class in D, then either there exists a q-valent block in $\mathfrak{P}(B)$ containing x and y, or there exists exactly one r-transversal of $\mathfrak{P}(B)$ containing x and y.

Proof. Let B be the block in $\mathfrak{P}(B)$ containing x. If $y \in B$, then we are done. If $y \notin B$, then there exists a unique block C containing y and r-tangent to B at x. Since C is an r-tangent of B, C is clearly an r-transversal of $\mathfrak{P}(B)$. The proof is thus complete.

From the lemmas, we see that D satisfies axioms (A1)–(A3) in the Fundamental Lemma; hence D is embeddable into a Möbius plane. Thus we conclude,

THEOREM 45. Let $q \ge 5$. If D is a PBRD(q) that satisfies the Tangency Condition, then D is uniquely embeddable into a Möbius plane of order q.

8. PROOF OF THE THEOREM

The block-residual design of a Möbius plane obviously satisfies the Tangency Condition. Let D be a PBRD(q) that satisfies the r-tangency

condition. If $q \ge 5$, then by Theorem 45, D is uniquely embeddable. Next, we consider q = 1, 2, 3 and 4.

For q = 1, the design PBRD(q) is a null design and is trivially embeddable.

For q = 2, PBRD(2) consists of two points and nine blocks. Let the points be $\{1, 2\}$. Since PBRD(2) is a 1-design and by Lemma 5, there are no 3-valent blocks, three 2-valent blocks and six 1-valent blocks. The blocks of PBRD(2) are,

1	2,	1,	2,
1	2,	1,	2,
1	2,	1,	2.

To complete this design to a Möbius plane of order 2, we adjoin the new points $\{3, 4, 5\}$ to the blocks and form

1	2	3,	1	3	4,	2	3	4,
1	2	4,	1	3	5,	2	3	5,
1	2	5,	1	4	5,	2	4	5,
3	4	5.						

Hence, PBRD(2) can be uniquely embedded into a Möbius plane.

For q = 3, there are six points in PBRD(3). Let them be $\{1, 2, 3, 4, 5, 6\}$. Using Lemma 4 and the fact that it is a 2-design, one can check that the blocks of PBRD(3) are isomorphic to the following:

1 2 3 4	1 3 5	235	12	23	35
1 2 5 6	136	236	12	24	36
3 4 5 6	145	2 4 5	13	2 5	45
	146	246	14	26	46
			15	34	56
			16	34	56.

If we define

$\mathfrak{A}_1 = \{1$	3	5,	2	4	6},
$\mathfrak{A}_2 = \{1$	3	6,	2	4	5},
$\mathfrak{A}_3 = \{1$	4	5,	2	3	6},
$\mathfrak{A}_4 = \{1$	4	6,	2	3	5}

then they are the four parallel classes of 3-valent blocks. It can be easily checked that every 2-valent block is an *r*-transversal of exactly two parallel classes, and they satisfy axioms (A1)-(A3) in the Fundamental Lemma. Hence, it is uniquely embeddable into the Möbius plane.

96

For q = 4, there are 12 points in PBRD(4). Let them be $\{1, 2, ..., 11, 12\}$. Using Lemmas 4, 5 and 6, one can see that the blocks of PBRD(4) are isomorphic to the following:

1	3	5	10	11	1	3	6	7	12	1	4	6	8	10			
1	4	7	9	11	1	5	8	9	12	2	3	5	7	9			
2	3	8	10	12	2	4	5	8	11	2	4	6	9	12			
2	6	7	10	11	3	6	8	9	11	4	5	7	10	12			
1	2	9	10		3	4	5	6		7	8	9	10				
1	2	11	12		3	4	9	10		5	6	7	8				
1	2	5	6		3	4	7	8		9	10	11	12				
1	2	7	8		3	4	11	12		5	6	9	10				
1	2	3	4		5	6	11	12		7	8	9	10				
1	3	8			1	3	9			1	4	5			1	4	12
1	5	7			1	6	9			1	6	11			1	7	10
1	8	11			1	10	12			2	3	6			2	3	11
2	4	7			2	4	10			2	5	10			2	5	12
2	6	8			2	7	12			2	8	9			2	9	11
3	5	8			3	5	12			3	6	10			3	7	10
3	7	11			3	9	12			4	5	9			4	6	7
4	6	11			4	8	9			4	8	12			4	10	11
5	7	11			5	8	10			5	9	11			6	7	9
6	8	12			6	10	12			7	9	12			8	10	11.

If we define

$\mathfrak{A}_1 = \{1$	2	9	10,	3	4	5	6,	7	8	11	12},
$\mathfrak{A}_2 = \{1$	2	11	12,	3	4	9	10,	5	6	7	8},
$\mathfrak{A}_3 = \{1$	2	5	6,	3	4	7	8,	9	10	11	12},
$\mathfrak{A}_{4}=\{1$	2	7	8,	3	4	11	12,	5	6	9	10},
$\mathfrak{A}_5 = \{1$	2	3	4,	5	6	11	12,	7	8	9	10}

then they are the five parallel classes of 4-valent blocks. It can be easily checked that the above blocks satisfy axioms (A1)-(A3) in the Fundamental Lemma. Hence, it is uniquely embeddable into the Möbius Plane.

References

- 1. R. C. BOSE, "Graphs and Designs," C.I.M.E. Advanced Summer Institute, 1972.
- 2. R. C. BOSE, S. S. SHRIKHANDE, AND N. M. SINGHI, Edge regular multigraphs and partial geometric designs, unpublished manuscript.

- 3. A. H. CHAN, "Reconstruction Problems on Graphs and Designs," Ph.D. thesis, The Ohio State University, 1975.
- 4. P. DEMBOWSKI, "Finite Geometries," Springer-Verlag, New York/Berlin, 1968.
- 5. M. HALL AND W. S. CONNOR, An embedding theorem for balanced incomplete block designs, Canad. J. Math. 6 (1953), 35-41.
- 6. S. S. SHRIKHANDE AND N. M. SINGHI, Embedding of quasi-residual designs with $\lambda = 3$, Utilitas Math., in press.