Embedding of a Pseudo-residual Design into a Möbius Plane*

Agnes Hui Chan
Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
AND
D. K. Ray-Chaudhuri
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
Communicated by R. C. Bose

Received October 20, 1977

Let \mathfrak{A} be a class of subsets of a finite set X. Elements of $\mathfrak{\mathscr { M }}$ are called blocks. Let v, t and $\lambda_{i}, 0 \leqslant i \leqslant t$, be nonnegative integers, and K be a subset of nonnegative integers such that every member of K is at most v. A pair ($X, \mathfrak{\mu}$) is called a $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{t} ; K, v\right) t$-design if (1) $|X|=v$, (2) every i-subset of X is contained in exactly λ_{i} blocks, $0 \leqslant i \leqslant t$, and (3) for every block A in $\mathfrak{U},|A| \in K$. It is wellknown that if K consists of a singleton k, then $\lambda_{0}, \ldots, \lambda_{t-1}$ can be determined from v, t, k and λ_{i}. Hence, we shall denote a $\left(\lambda_{0}, \ldots, \lambda_{i} ;\{k\}, v\right) t$-design by $S_{A}(t, k, v)$, where $\lambda=\lambda_{t}$. A Möbius plane M is an $S_{1}\left(3, q+1, q^{2}+1\right)$, where q is a positive integer. Let A be a fixed block in M. If A is deleted from M together with the points contained in A, then we obtain a residual design M^{\prime} with parameters $\lambda_{0}=$ $q^{3}+q-1, \lambda_{1}=q^{2}+q, \lambda_{2}=q+1, \lambda_{3}=1, K=\{q+1, q, q-1\}$, and $v=q^{2}-1$. We define a design to be a pseudo-block-residual design of order q (abbreviated by $\operatorname{PBRD}(q))$ if it has these parameters. We consider the reconstruction problem of a Möbius plane from a given $\operatorname{PBRD}(q)$. Let B and B^{\prime} be two blocks in a residual design M^{\prime}. If B and B^{\prime} are tangent to each other at a point x, and there exists a block C of size $q+1$ such that C is tangent to B at x and is secant to B^{\prime}, then we say B is r-tangent to B^{\prime} at x. A $\operatorname{PBRD}(q)$ is said to satisfy the r-tangency condition if for every block B of size q, and any two points x and y not in B, there exists at most one block which is r-tangent to B and contains x and y. We show that any $\operatorname{PBRD}(q) D$ can be uniquely embedded into a Möbius plane if and only if D satisfies the r-tangency condition.

[^0]
1. Introduction

Let (X, \mathfrak{U}) be an ordered pair, where X is a finite set and \mathfrak{M} is a collection of subsets of X. Members of X are called points and elements of \mathfrak{U} are called blocks. Let \mathbb{N}_{0} denote the set of nonnegative integers, and $v, t \in \mathbb{N}_{0}$ such that $v \geqslant t \geqslant 0$; for every $i, t \geqslant i \geqslant 0$, let $\lambda_{i} \in \mathbb{N}_{0}$. Let K be a set of nonnegative integers such that every member of K is smaller than or equal to v. A structure $D=(X, \mathfrak{Q})$ is called a ($\left.\lambda_{0}, \lambda_{1}, \ldots, \lambda_{t} ; K, v\right)$ t-design, denoted by $S\left(\lambda_{0}, \ldots, \lambda_{t} ; K, v\right)$ if and only if (1) every i-subset of X is contained in exactly λ_{i} blocks, $0 \leqslant i \leqslant t$, (2) for every block A in $\mathfrak{U},|A| \in K$, and (3) $|X|=v$. If $|A|=k$, then A is called a k-valent block. In cases where Axiom (1) is only known to be satisfied by $i=t$, the design D will be denoted by $S_{\lambda}(t, K, v)$, where $\lambda=\lambda_{t}$. Further, if $\lambda=1$, we only use $S(t, K, v)$. For simplicity, if K consists of a singleton k, we write D as an $S_{\lambda}(t, k, v)$ instead of $S_{\lambda}(t,\{k\}, v)$. Since λ_{0} denotes the number of blocks contained in the design D, it is customary to write b in place of λ_{0}; also, r usually takes the place of λ_{1}.

Let A_{∞} be a fixed block in D. A block-residual design of D with respect to A_{∞} is a design $D^{\prime}=\left(X^{\prime}, \mathfrak{U}^{\prime}\right)$, where $X^{\prime}=X-\left\{\right.$ points contained in $\left.A_{\infty}\right\}$, and $\mathfrak{U}^{\prime}=\mathfrak{A}-\left\{A_{\infty}\right\}$. If D is an $S_{\lambda}(t, K, v)$, then D^{\prime} is an $S_{\lambda}\left(t, K^{\prime}, v-k\right)$ where k is the size of the deleted block A_{∞} and every member of K^{\prime} is not larger than the maximal member of K. A design with parameters equal to those of a block-residual design is called a pseudo-block-residual design.

Definition. Let D^{\prime} be a pseudo-block-residual design. D^{\prime} is said to be embeddable if and only if there exists a design D such that the residual design $D^{\prime \prime}$ obtained from D is isomorphic to D^{\prime}.

Hall and Connor [5] proved the embedding theorem for a pseudo-blockresidual design of an $S_{2}(2, k, v)$. Bose et al. [2] and Shrikhande and Singhi [6] extended the result to $S_{\lambda}(2, k, v)$ for $\lambda \geqslant 3$. In this paper, we prove an embedding theorem for a pseudo-block-residual design of a Möbius plane.

2. Motivation and Statement of Theorem

A Möbius plane M is an $S\left(3, q+1, q^{2}+1\right)$, where q is a positive integer. If M^{\prime} is a block-residual design obtained from M, then M^{\prime} is an $S\left(\lambda_{0}, \lambda_{1}\right.$, $\lambda_{2}, \lambda_{3} ; K, v$), where

$$
\begin{array}{lll}
\lambda_{0}=q^{3}+q-1, & \lambda_{1}=q^{2}+q, & \lambda_{2}=q+1 \tag{1}\\
\lambda_{3}=1, & K=\{q+1, q, q-1\}, & v=q^{2}-q
\end{array}
$$

Any 3-design with parameters as those given in (1) is called a pseudo-blockresidual design of order q, abbreviated by $\operatorname{PBRD}(q)$.

Let us first study properties possessed by a Möbius plane M. (For a detailed treatment of Möbius planes, Dembowski [4, Chap. 6] is an excellent reference.) A block B is said to be tangent to another block B^{\prime} at a point x if and only if $B \cap B^{\prime}=\{x\}$. They are said to be secant to one another if $\left|B \cap B^{\prime}\right| \geqslant 2$. Let B and B^{\prime} be two distinct blocks in M that are tangent to a block A at a point x. It can be seen easily that B and B^{\prime} are mutually tangent at x. A maximal set of blocks which are mutually tangent at a point x is called a pencil with carrier x. One can show that every pencil in M consists of q blocks. If the point x is deleted from M, then the blocks in a pencil with carrier x are pairwise disjoint. A set of pairwise disjoint blocks that partition the set of points in a design is called a parallel class of blocks. Clearly, a pencil in M with carrier x is a parallel class of blocks in $M-x$.

For every deleted point x in A_{∞} there exists a pencil \mathfrak{U}^{\prime} in M with x as the carrier, which contains A_{∞}. Clearly, $\mathfrak{H}^{\prime}-A_{\infty}$ forms a parallel class of blocks in M^{\prime}; moreover, each block in $\mathfrak{U}^{\prime}-A_{\infty}$ is q-valent. Conversely, given any parallel class of q-valent blocks in M^{\prime}, there corresponds a unique point deleted from A_{∞}. Thus, in order to embed a $\operatorname{PBRD}(q)$ into a Möbius plane M, first of all, we have to establish the $q+1$ parallel classes of q valent blocks in D.

When the parallel classes are established in D, we still have to find means to "complete" the $(q-1)$-valent blocks to $(q+1)$-valent blocks. Again, we are motivated by examining the $(q-1)$-valent blocks in M^{\prime}. Let B be any ($q-1$)-valent block in M^{\prime} and let x and y be the corresponding deleted points in A_{∞}. Consider the pencil \mathfrak{A}^{\prime} in M with carrier x; every block in the corresponding parallel class is tangent to B at a point. We define this type of tangency to be r-tangency. One can easily check that if B is r-tangent to B^{\prime} at a point z, then there exists a $(q+1)$-valent block A such that A is tangent to B at z but is secant to B^{\prime}. On the basis of this, we generalize the definition of r-tangency.

Definition. Let D be an $S_{\lambda}(t, K, v)$ with $K=\{k+1, k, k-1\}$. A block B in D is said to be r-tangent to another block B^{\prime} at a point x if and only if there exists a $(k+1)$-valent block A such that A is tangent to B at x and is secant to B^{\prime}.

We define a block B to be an r-transversal of a parallel class $\mathscr{\mu}$ if and only if B is r-tangent to every block in \mathfrak{H}. It is obvious then that any $(q-1)$ valent block in M^{\prime} is an r-transversal of exactly two parallel classes. Conversely, given any two parallel classes of q-valent blocks in M^{\prime}, there are q common r-transversals, namely, the blocks in M that contain the two corresponding deleted points. Hence if we can show that every ($q-1$)-valent block in a pseudo-block-residual design D^{\prime} is an r-transversal of exactly two parallel classes, then we can "complete" the ($q-1$)-valent blocks by
adjoining their corresponding parallel classes. Our Fundamental Lemma, stated in the next section, shows how these parallel classes and r-transversals lead to the embedding of an $S(v,\{k+1, k, k-1\}, 1)$ 3-design into an $S(v+k+1, k+1,1) 3$-design.

From the above discussions, we see that we have to set up the parallel classes in $\operatorname{PBRD}(q)$. To do so, we consider the set of blocks that are r tangent to a given q-valent block. We define a maximal set of blocks which are mutually r-tangent at x and contains at least four blocks to be an r-pencil with carrier x. We show that each r-pencil consists of one q-valent block and $q(q-1)$-valent blocks.

A PBRD is said to satisfy the Tangency Condition if given two distinct points x, y and a block A with $x \in A, y \notin A$, there exists at most one block containing y and tangent to A at x.

This condition is certainly satisfied by a block-residual design of a Möbius plane. If a $\operatorname{PBRD}(q)$ satisfies the Tangency Condition, then we can show that the r-tangents of B which contain a common point x are mutually r tangent. Furthermore, these r-tangents determine a unique r-pencil whose q valent block is either B itself or disjoint from B. From this, we obtain the $q+1$ parallel classes of q-valent blocks. We also show that every $(q-1)$ valent block that is r-tangent to a q-valent block B, is an r-transversal of the parallel class containing B. Thus, we are able to establish the main theorem as stated below.

Theorem. If D is a pseudo-block-residual design of order q and satisfies the Tangency Condition, then D is uniquely embedded into a Möbius plane of order q.

3. Fundamental Lemma

In this section we shall reconstruct a 3-design from a pseudo-blockresidual design by means of parallel classes and r-transversals. Let us first state the result as follows:

Lemma 1 (The Fundamental Lemma). Let D be an $S(3, K, v)$, where $K=\{k+1, k, k-1\}$. Suppose D satisfies the following conditions:
(A1) The collection of k-valent blocks can be partitioned into $k+1$ parallel classes.
(A2) Every $(k-1)$-valent block is the r-transversal of exactly two parallel classes and every two parallel classes have exactly k common ($k-1$)-valent r-transversals which are pairwise disjoint.
(A3) Given any two distinct points x and y and a parallel class \mathfrak{A},
either there exists exactly one block in \mathfrak{U} that contains x and y, or there exists exactly one $(k-1)$-valent block that contains x and y and is an r transversal of \mathfrak{A}. Then D can be uniquely embedded into an $S(3, k+1$, $v+k+1)$.

In proving the Fundamental Lemma, we reconstruct the $k+1$ "missing" points and adjoin them to the k-valent and ($k-1$)-valent blocks in D. Finally, we show that it is a 3 -design. Before we proceed, let us establish two simple lemmas.

Lemma 2. Let D be as defined in the Fundamental Lemma. Then, $v=k^{2}-k$.

Proof. Since every $(k-1)$-valent block in D is an r-transversal of a parallel class $\mathfrak{U}, \mathfrak{A}$ consists of $k-1 k$-valent blocks; hence, $v=k(k-1)$.

Lemma 3. If \mathfrak{U} and \mathfrak{A}^{\prime} are two distinct parallel classes in D and x is a point, then there exists a unique $(k-1)$-valent block that contains x and is a common r-transversal of \mathfrak{U} and \mathfrak{U}^{\prime}.

Proof. Since the k common r-transversals of \mathfrak{A} and \mathfrak{A}^{\prime} are pairwise disjoint, they partition the $k^{2}-k$ points in D. Hence, given any point x in D, there exists a unique common r-transversal of \mathfrak{A} and \mathfrak{U}^{\prime} that contains x.

Now we can proceed to prove the Fundamental Lemma.
Construction of "new points." Let $\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{k+1}$ be the $k+1$ parallel classes of k-valent blocks in D. Corresponding to every parallel class \mathfrak{U}_{i}, we define a "new" point $\mathfrak{U}_{i}^{\prime}, 1 \leqslant i \leqslant k+1$. Let \bar{X} be the set of points consisting of the points X in D and the $k+1$ new points $\mathfrak{U}_{1}^{\prime}, \ldots, \mathfrak{A}_{k+1}^{\prime}$.

Construction of "new blocks." Let A be a block in D.
(1) If A is a $(k+1)$-valent block, then we let A^{\prime} be A.
(2) If A is k-valent, then A is contained in a unique parallel class \mathfrak{M}_{i} for some $i, 1 \leqslant i \leqslant k+1$. We define A^{\prime} to be a block consisting of all points in A and the new point $\mathfrak{U}_{i}^{\prime}$.
(3) If A is $(k-1)$-valent, then there exist exactly two parallel classes \mathfrak{A}_{l} and $\mathfrak{n}_{j}, i \neq j, 1 \leqslant i, j \leqslant k+1$, such that A is a common r-transversal of both classes. We extend A to a block A^{\prime} consisting of all points in A, together with the two new points \mathscr{U}_{i}^{\prime} and \mathscr{U}_{j}^{\prime}. Finally, we let A_{∞} be a block consisting of the $k+1$ new points and

$$
\overline{\mathfrak{U}}=\left\{A_{\infty}\right\} \cup\left\{A^{\prime} \mid A \text { is a block in } D\right\}
$$

Construction of a 3-design. Let S be the incidence structure ($\bar{X}, \overline{\mathfrak{U}}$). We shall show that S is an $S(3, k+1, v+k+1)$.

From the constructions of new points and new blocks, it is clear that S has $v+k+1$ points and each block in S has $k+1$ points. We only have to show that $\lambda=1$. Let x, y and z be any three distinct points in X.

Case 1. $x, y, z \in X$. There exists a unique block A in D that contains x, y and z; then the extended block A^{\prime} in $\overline{\mathfrak{M}}$ is the unique block containing x, y and z.

Case 2. $x, y \in X$ and $z=\mathscr{U}_{i}^{\prime}$ for some $i, 1 \leqslant i \leqslant k+1$. Consider the two points x and y and the parallel class \mathfrak{H}_{i} in D. By Axiom (A3), either there exists a k-valent block A in \mathfrak{H}_{i} containing x and y, or there exists a $(k-1)$ valent block A that contains x and y and is an r-transversal of \mathfrak{A}_{i}. In either case the extended block A^{\prime} in $\overline{\mathfrak{A}}$ is the unique block containing x, y and z.

Case 3. $x \in X, y=\mathfrak{U}_{i}$ and $z=\mathfrak{U}_{j}$ with $1 \leqslant i<j \leqslant k+1$. Let us consider the point x and the two parallel classes \mathfrak{U}_{i} and \mathfrak{U}_{j} in D. By Lemma 3, there exists a unique $(k-1)$-valent block A containing x which is a common r transversal of \mathfrak{A}_{i} and \mathfrak{A}_{j}. Thus, A^{\prime} is the unique block in S that contains x, y and z.

Case 4. $x=\mathfrak{A}_{i}^{\prime}, y=\mathfrak{U}_{j}^{\prime}$ and $z=\mathfrak{U}_{m}^{\prime}$ with $1 \leqslant i<j<m \leqslant k+1$. The block A_{∞} is the unique block that contains x, y and z.

It is clear that if we delete the block A_{∞} from S, then the block-residual design S^{\prime} thus obtained is isomorphic to D. Moreover, since the $k+1$ new points and the extended blocks in S are uniquely determined, D is uniquely embeddable.

By virtue of this lemma, we see that if we can establish the parallel classes and the r-transversals that satisfy Axioms (A1)-(A3), then a $\operatorname{PBRD}(q)$ can be uniquely embedded into a Möbius plane.

4. The Three Classes of Blocks

Let $D=(X, \mathfrak{a})$ be any $\operatorname{PBRD}(q)$. For $k \in K=\{q+1, q, q-1\}$, we denote the set of k-valent blocks by $\mathfrak{U}(k)$. Clearly, \mathfrak{A} is partitioned into the three classes, $\mathfrak{H}(q+1), \mathfrak{H}(q)$ and $\mathfrak{H}(q-1)$. Throughout this section, we shall use A, B and C to denote members of $\mathfrak{U}(q+1), \mathfrak{U}(q)$ and $\mathfrak{A}(q-1)$, respectively; other letters will be used to denote blocks of various sizes. Let us first compute the order of $\mathscr{U}(k)$ for each k in K.

Lemma 4. Let D be a $\operatorname{PBR} D(q)$. For $k \in K$, let $b(k)$ denote the number of k-valent blocks contained in D. Then

$$
\begin{align*}
b(q+1) & =\frac{1}{2} q(q-1)(q-2) \\
b(q) & =(q+1)(q-1) \tag{2}\\
b(q-1) & =\frac{1}{2} q^{2}(q+1)
\end{align*}
$$

Proof. Total number of blocks in D

$$
\begin{equation*}
=q^{3}+q-1=b(q+1)+b(q)+b(q-1) \tag{3}
\end{equation*}
$$

Total number of triples (x, y, z) where x, y and z are distinct points in D

$$
\begin{equation*}
=\binom{q^{2}-q}{3}=\binom{q+1}{3} b(q+1)+\binom{q}{3} b(q)+\binom{q-1}{3} b(q-1) \tag{4}
\end{equation*}
$$

Next, let us count the number of ordered pairs (x, E) where x is a point incident with a block E in D. Fixing a point x, there exists λ_{1} choices of E and there are $q^{2}-q$ points in D. Hence the total number of ordered pairs equals $\left(q^{2}+q\right)\left(q^{2}-q\right)$. On the other hand, for a fixed k-valent block E, there are k choices of x. Hence

$$
\begin{equation*}
\left(q^{2}+q\right)\left(q^{2}-q\right)=(q+1) b(q+1)+q b(q)+(q-1) b(q-1) \tag{5}
\end{equation*}
$$

Using (3), (4) and (5), the parameters $b(q+1), b(q)$ and $b(q-1)$ are easily computed to be those given in (2).

Lemma 5. Let D be a $\operatorname{PBRD}(q)$. If for $k \in K, r(k)$ denotes the number of k-valent blocks containing a given point in D, then for every point x in D,

$$
\begin{align*}
r(q+1) & =\frac{1}{2}(q+1)(q-2) \\
r(q) & =q+1 \tag{6}\\
r(q-1) & =\frac{1}{2} q(q+1)
\end{align*}
$$

Proof. Let x be any point in D. Since x is contained in $q^{2}+q$ blocks, we have

$$
\begin{equation*}
r(q+1)+r(q)+r(q-1)=q^{2}+q . \tag{7}
\end{equation*}
$$

Next, let us count the number of triples (x, y, z) where y and z are points distinct from x and $y \neq z$. Then,

$$
\begin{equation*}
\binom{q}{2} r(q+1)+\binom{q-1}{2} r(q)+\binom{q-2}{2} r(q-1)=\binom{q^{2}-q-1}{2} . \tag{8}
\end{equation*}
$$

Lastly, we count the number of ordered pairs (y, E) where y is a point distinct from x and both x and y are incident with the block E. For every
point y distinct from x, there are $q+1$ blocks containing both x and y. Therefore,

$$
\begin{equation*}
q r(q+1)+(q-1) r(q)+(q-2) r(q-1)=\left(q^{2}-q-1\right)(q+1) \tag{9}
\end{equation*}
$$

Combining (7), (8) and (9), we get the parameters $r(q+1), r(q)$ and $r(q-1)$ given in (6).

From these two lemmas, we observe that for each k in $K,(X, \mathfrak{U}(k))$ is an $S_{r(k)}\left(1, k, q^{2}-q\right)$. Even though none of the three designs is a 2-design, for each k in $K, \lambda_{2}(k)$ takes only two values.

Lemma 6. Let D be a $\operatorname{PBRD}(q)$ and for each $k \in K$, let $\lambda_{2}(k)$ denote the number of k-valent blocks containing two given points in D.

If $q \equiv 1(\bmod 2)$, then $\lambda_{2}(q)=0$ or 2 and $\lambda_{2}(q+1)=\lambda_{2}(q-1)$.
If $q \equiv 0(\bmod 2)$, then $\lambda_{2}(q)=1$ or $q+1$ and $\lambda_{2}(q+1)=\lambda_{2}(q-1)$.
Proof. Let x and y be two distinct points in D. Since D is a 2-design,

$$
\begin{equation*}
\lambda_{2}(q+1)+\lambda_{2}(q)+\lambda_{2}(q-1)=\lambda_{2}=q+1 \tag{10}
\end{equation*}
$$

The blocks containing x and y partition the points of D distinct from x and y. Hence,

$$
\begin{equation*}
(q-1) \lambda_{2}(q+1)+(q-2) \lambda_{2}(q)+(q-3) \lambda_{2}(q-1)=q^{2}-q-2 \tag{11}
\end{equation*}
$$

From (10) and (11), we obtain

$$
\begin{equation*}
\lambda_{2}(q)+2 \lambda_{2}(q-1)=q+1 . \tag{12}
\end{equation*}
$$

From (10) and (12), we have

$$
\begin{equation*}
\lambda_{2}(q+1)=\lambda_{2}(q-1) . \tag{12a}
\end{equation*}
$$

Case 1. $q \equiv 1(\bmod 2)$. Since $q+1 \equiv 0(\bmod 2)$, from (12), we see that $\lambda_{2}(q) \equiv 0(\bmod 2)$.

Suppose $\lambda_{2}(q) \neq 0$. Then there exists a block $B \in \mathfrak{U}(q)$ such that B contains x and y. For each point y_{i} in $B, y_{i} \neq x$, the points x and y_{i} are contained in B and B is q-valent. Since $\lambda_{2}(q) \equiv 0(\bmod 2)$, there exists at least one other q-valent block containing x and y_{i}; let B_{i} be such a block. Clearly, for $i \neq j, B_{i} \neq B_{j}$ and there are $q-1$ such in B_{i} 's. But $r(q)=q+1$ implies that there exists another q-valent block B^{\prime} containing x. If B^{\prime} contains x and y, then $\lambda_{2}(q)=3$ and contradicts that $\lambda_{2}(q) \equiv 0(\bmod 2)$. Therefore, $\lambda_{2}(q)=2$ and B^{\prime} is not secant to B. In fact, B^{\prime} is the unique $q-$ valent block that is tangent to B at x.

Case 2. $q \equiv 0(\bmod 2)$. Since $q+1 \equiv 1(\bmod 2)$, from (12), we see that $\lambda_{2}(q) \equiv 1(\bmod 2)$.

Suppose $\lambda_{2}(q) \neq q+1$. Then (12) implies that $\lambda_{2}(q-1) \neq 0$ and by (12a) there exists a $(q+1)$-valent block A containing x and y. Let $B_{1}, \ldots, B_{A_{2}(q)}$ be the q-valent blocks containing x and y, and $B_{1}^{\prime}, \ldots, B_{n}^{\prime}$ be the other q-valent blocks containing x. For every point z in A, distinct from x and y, z is not contained in B_{i} for any $i, 1 \leqslant i \leqslant \lambda_{2}(q)$. Since $\lambda_{2}(q) \equiv 1(\bmod 2), z$ is contained in at least one $B_{i}^{\prime}, 1 \leqslant i \leqslant n$. But there are $q-1$ points in A that are distinct from x and y. Hence

$$
\begin{equation*}
n \geqslant q-1 \tag{13}
\end{equation*}
$$

Since $r(q)=q+1, \lambda_{2}(q)+n=q+1$, or equivalently,

$$
\begin{equation*}
n=q+1-\lambda_{2}(q) \tag{14}
\end{equation*}
$$

From (13) and (14), we have $\lambda_{2}(q) \leqslant 2$. But $\lambda_{2}(q) \equiv 1(\bmod 2)$; hence $\lambda_{2}(q)=1$.

Corollary 7. Let $B \in \mathfrak{\mu}(q)$ and x be a point in B.
If $q \equiv 1(\bmod 2)$, then there exists a unique q-valent block tangent to B at x.

If $q \equiv 0(\bmod 2)$, then there exists no q-valent block tangent to B at x.
Proof. Case 1. $q \equiv 1(\bmod 2)$. The result is clear from the previous proof.

Case 2. $q \equiv 0(\bmod 2)$. If for every point y in $B, y \neq x, B$ is the only q valent block containing x and y, then every other q-valent block containing x is tangent to B; furthermore, they are mutually tangent. This implies that there are q^{2} points in D contradicting that $v=q^{2}-q$. Hence, there exists a point y in B such that every q-valent block containing x contains x and y. Hence, there exists no q-valent block tangent to B at x.

We shall need these lemmas later. Meanwhile, let us divert our attentions to blocks that are tangent to each other in D.

5. Tangents

Let us recall that two blocks E and E^{\prime} in D are said to be tangent to each other if they intersect in exactly one point, and if they intersect in exactly two points, then they are secant to one another. Furthermore, if E and E^{\prime} are tangent at x and there exists a ($q+1$)-valent block A which is tangent to E at x and secant to E^{\prime}, then E is said to be r-tangent to E^{\prime} at x. In this section, we shall establish the existence of r-tangents in D.

Lemma 8. Let $i \in\{0,1,2\}$ and E be a fixed ($q+1-i)$-valent block in
D. If x is a point incident with E and y is a point not in E, then there exist exactly $i+1$ blocks which are tangent to E at x and contain y.

Proof. Let z be a point in E which is distinct from x. The three points x, y and z determine a unique block E^{\prime} in D, and E^{\prime} is clearly secant to E. Since there are $q-i$ distinct points in E that are different from x, there are $q-i$ blocks in D which contain x and y and are secant to E. This implies that all other bocks containing x and y are tangent to E at x. Since there are $q+1$ blocks containing x and y and $(q+1)-(q-i)=i+1$, the conclusion of the lemma follows.

Lemma 9. Let $i \in\{0,1,2\}$ and E be a fixed $(q+1-i)$-valent block in D. If x is a point incident with E, then there exist exactly $(i+1) q-1$ blocks which are tangent to E at x.

Proof. For every point y in E, different from x, the points x and y are contained in q blocks other than E. Hence, there are $q(q-1)$ blocks which contain x and are secant to E. But every block incident with x other than E is either a secant or a tangent of E, and since there are $q^{2}+q-1$ blocks incident with x other than E, the number of blocks tangent to E at x is $q^{2}+q-1-q(q-i)$, or $q(i+1)-1$.

Lemma 10. If A is a $(q+1)$-valent block and x is a point in A, then the $q-1$ tangents of A at x are mutually tangent to each other at x.

Proof. Let E and E^{\prime} be two distinct tangents of A at x, and suppose E and E^{\prime} intersect at two distinct points x and y. Since y is a point not in A, by Lemma 8, there exists a unique block containing y which is tangent to A at x. But both E and E^{\prime} contain y and are tangent to A at x. Hence, E and E^{\prime} are mutually tangent at x.

By virtue of this lemma, we see that the tangents of A at x together with A constitute a pencil in D with carrier x.

Proposition 11. If \mathfrak{U} is a pencil with carrier x such that \mathfrak{A} contains a $(q+1)$-valent block A, then \mathfrak{A} contains q blocks and \mathfrak{A} partitions the points in D that are distinct from x.

Proof. Let A be a $(q+1)$-valent block in \mathfrak{N}. For every point y distinct from x, there exists a unique block E in \mathfrak{A} such that E contains y and E is tangent to A at x. Hence, \mathfrak{U} partitions the points that are distinct from x. It is clear from the previous lemma that \mathfrak{U} contains q blocks.

From the above, we see that a $(q+1)$-valent block A cannot be r-tangent to any other block E. The converse is also valid.

Lemma 12. Let E be a block in D. If A and A^{\prime} are two distinct $(q+1)$ -
valent blocks that are tangent to E at a point x, then A and A^{\prime} are mutually tangent at x.

Proof. Suppose A is not tangent to A^{\prime} at x. Let x and y be the two points of intersection of A and A^{\prime}. For every point z in A^{\prime} such that $z \neq x$ and $z \neq y$, there exists a unique block tangent to A at x which contains z. Hence, there are $q-1$ blocks that are tangent to A at x and are secant to A^{\prime}. But there are only $q-1$ tangents of A at x of which E is one. This contradicts that E is tangent to A^{\prime} at x. Hence, A and A^{\prime} are mutually tangent.

From this, we observe that if A is a $(q+1)$-valent block and A is not r tangent to E, then E is not r-tangent to A. We shall establish this property for every block E in D. That is, we want to show that the relation, " r tangency," is a symmetric relation.

Lemma 13. Let $q \geqslant 4$ and let E be a block in D such that E is not $(q+1)$-valent. If x is a point in E, then there exists at least one $(q+1)$ valent block A tangent to E at x.

Proof. Let $|E|=q+1-i$, where $i \in\{1,2\}$. For $k \in K$, let $t_{i}(k)$ denote the number of k-valent blocks tangent to E at x. By Lemma 9 , there are $(i+1) q-1$ blocks tangent to E at x. Hence

$$
\begin{equation*}
t_{i}(q+1)+t_{i}(q)+t_{i}(q-1)=(i+1) q-1 \tag{15}
\end{equation*}
$$

Next, we count the number of ordered pairs $\left(y, E^{\prime}\right)$ such that $y \in E^{\prime}, y \notin E$ and E^{\prime} is tangent to E at x. For each point y not in E, there are $i+1$ blocks containing y and tangent to E at x. Since there are $v-(q+1-i)$ such points y, we have

$$
\begin{align*}
& q t_{i}(q+1)+(q-1) t_{l}(q)+(q-2) t_{i}(q-1) \\
& \quad=(i+1)\left(q^{2}-2 q-1+i\right) \tag{16}
\end{align*}
$$

Combining (15) and (16), we obtain

$$
\begin{equation*}
2 t_{i}(q+1)+t_{i}(q)=i^{2}+q-3 \tag{17}
\end{equation*}
$$

Case 1. $|E|=q$ (i.e., $i=1$). By Corollary 7, there exists either none or exactly one q-valent block tangent to E at x, depending on whether q is even or odd. Hence, $t_{i}(q) \leqslant 1$. From (17), we obtain the inequality,

$$
2 t_{l}(q+1) \geqslant q-3
$$

For $q \geqslant 4, t_{1}(q+1)>0$. Hence, there exists at least one $(q+1)$-valent block tangent to E at x.

Case 2. $|E|=q-1$ (i.e., $i=2$). Suppose there exists no $(q+1)$-valent
block tangent to E at x; then $t_{2}(q+1)=0$ and from (17), $t_{2}(q)=q+1$. Hence, every q-valent block that contains x is tangent to E; this implies that for every point y in E distinct from x, the points x and y are not contained in any q-valent block. We show that this cannot be the case.

If $q \equiv 0(\bmod 2)$, then by Lemma 6 there exists at least one q-valent block containing x and y. Hence, we arrive at a contradiction.

If $q \equiv 1(\bmod 2)$, then by Lemma 5 for each y in E distinct from x exactly half of the $q+1$ blocks that contain x and y are ($q-1$)-valent; thus there are $\frac{1}{2}(q+1)(q-2)(q-1)$-valent blocks containing x and secant to E. Since there are $\frac{1}{2}(q+1) q(q-1)$-valent blocks containing x, there are $q(q-1)$ valent blocks tangent to E at x. But if $t_{2}(q+1)=0$ and $t_{2}(q)=q+1$, then by Eq. (17), $t_{2}(q-1)=2 q-2$. Hence, $q=2 q-2$ or $q=2$. This contradicts that $q \equiv 1(\bmod 2)$. Consequently, $t_{2}(q+1) \neq 0$, and there exists at least one $(q+1)$-valent block tangent to E at x.

Lemma 14. Let E and E^{\prime} be two distinct blocks in D. If E is r-tangent to E^{\prime} at x, then E^{\prime} is r-tangent to E at x.

Proof. If E is r-tangent to E^{\prime} at x, then there exists a ($q+1$)-valent block A that is tangent to E at x and is secant to E^{\prime}. Suppose E^{\prime} is not r-tangent to E at x; then for every $(q+1)$-valent block A^{\prime} that is tangent to E^{\prime} at x, A^{\prime} is also tangent to E. Consider the two $(q+1)$-valent blocks A and A^{\prime}. Since both A and A^{\prime} are tangent to E at x, A is tangent to A^{\prime} at x. But E^{\prime} is also tangent to A^{\prime} at x; hence by Lemma $10, E^{\prime}$ is tangent to A at x. This contradicts that A is secant to E^{\prime}. Therefore, E^{\prime} is r-tangent to E at x.

Thus we see that r-tangency is a symmetric relation. Let us define two distinct blocks E and E^{\prime} to be M-tangent at x if and only if E is tangent to E^{\prime} but is not r-tangent to E^{\prime} at x. A pencil with carrier x is called an M pencil if the blocks in the pencil are mutually M-tangent.

Lemma 15. If E is M-tangent to E^{\prime} at x and E^{\prime} is M-tangent to $E^{\prime \prime}$ at x, then E is M-tangent to $E^{\prime \prime}$ at x.

Proof. Let A be a $(q+1)$-valent block in D such that A is tangent to E at x. Since E is not r-tangent to E^{\prime}, A is tangent to E^{\prime} at x. But E^{\prime} is M tangent to $E^{\prime \prime}$ at x; hence A is also tangent to $E^{\prime \prime}$ at x. Consequently, E is not r-tangent to $E^{\prime \prime}$ at x, or equivalent, E is M-tangent to $E^{\prime \prime}$ at x.

From this lemma, we observe that any pencil that contains a $(q+1)$ valent block is an M-pencil. Next, we shall study blocks that are tangent to a given q-valent block B.

Lemma 16. Let B be a fixed q-valent block in D and x be a point incident with B. If A is $a(q+1)$-valent block tangent to B at x, then there exist exactly q blocks which are tangent to B at x and are secant to A.

Proof. For $i=1,2$, let
$T_{i}=\{E \mid E$ is a block in D tangent to B at $x, E \neq A$ and $|E \cap A|=i\}$.
The two sets T_{1} and T_{2} partition the set of tangents of B other than A at x. By Lemma 9,

$$
\begin{equation*}
\left|T_{1}\right|+\left|T_{2}\right|=2 q-2 \tag{18}
\end{equation*}
$$

Next, we count the number of ordered pairs (y, E) where E is tangent to B at $x, E \neq A$ and $y \in E \cap A$. If y is distinct from x, then by Lemma 9 , there exist two blocks containing y and tangent to B at x, of which one is A. Hence, there exists a unique choice of E. If $y=x$, then by Lemma 9, there are $2 q-2$ choices of E. Since there are q points in A that are distinct from x, the number of ordered pairs (y, E) is $q+2 q-2$. On the other hand, if E is tangent to B at x and $|E \cap A|=i, i=1,2$, then there are i choices of y. Thus,

$$
\begin{equation*}
\left|T_{1}\right|+2\left|T_{2}\right|=q+2 q-2 \tag{19}
\end{equation*}
$$

Using (18) and (19), we obtain $\left|T_{2}\right|=q$. Therefore, there are q blocks tangent to B at x and secant to A.

It should be noted that B is r-tangent to these q blocks at x. Next, we show that they are mutually tangent at x.

Lemma 17. Let B be a q-valent block and A be a $(q+1)$-valent block tangent to B at a point x. If E and E^{\prime} are two distinct blocks tangent to B at x and secant to A, then E and E^{\prime} are mutually tangent at x.

Proof. Suppose E and E^{\prime} intersect each other at two points x and y. If $y \in A$, then E, E^{\prime} and A are three blocks containing y and tangent to B at x. This contradicts the fact that there exist only two such tangents (by Lemma 8). Thus, the point y is not contained in A.

Since $y \notin A$ and A is $(q+1)$-valent, by Lemma 8, there exists a unique block $E^{\prime \prime}$ containing y and tangent to A at x. But both $E^{\prime \prime}$ and B are tangent to A at x, by Lemma $8, E^{\prime \prime}$ and B are mutually tangent at x. Hence, E, E^{\prime} and $E^{\prime \prime}$ are three blocks tangent to B at x and containing y. This contradicts that there are only two such blocks.

Therefore, E and E^{\prime} cannot intersect at two points and hence, they are mutually tangent at x.

Lemma 18. Let A and B be $(q+1)$-valent and q-valent blocks, respectively, such that A is tangent to B at x. If C is tangent to B at x and secant to A, then C is $a(q-1)$-valent block.

Proof. Let C_{1}, \ldots, C_{q} be the q blocks that are tangent to B at x and secant
to A. Since for $1 \leqslant i<j \leqslant q, C_{i}$ and C_{J} are mutually tangent at x and each C_{i} has at least $q-2$ points other than x, we have

$$
q(q-2) \leqslant \sum_{i=1}^{q}\left(\left|C_{i}\right|-1\right) \leqslant q^{2}-q-|B| .
$$

But B is q-valent; hence $\sum_{i=1}^{q}\left(\left|C_{i}\right|-1\right)=q(q-2)$. Consequently, each C_{i} is a ($q-1$)-valent block.

From the proof, we also observe that the blocks C_{1}, \ldots, C_{q} and B partition the points distinct from x. In fact, we shall show that they form an r-pencil in D with carrier x.

Lemma 19. Let B, C_{1}, \ldots, C_{q} be as defined in the previous lemma and x be their common point. Let $T=\left\{B, C_{1}, \ldots, C_{q}\right\}$. If E and E^{\prime} are two distinct blocks in T and A is $a(q+1)$-valent block tangent to E at x, then A is secant to E^{\prime}.

Proof. Consider a point y in A distinct from x. Since the blocks in T partition the points distinct from x, there exists a unique block E_{y} in T such that E_{y} contains x and y. Thus, there are q blocks in T that are secant to A.

But T consists of $q+1$ blocks; hence there exists a unique block in T that is tangent to A at x, and E is such a block. Thus, $\left|A \cap E^{\prime}\right|=2$ and the conclusion of the lemma follows.

Proposition 20. Let B be a q-valent block in D and x be a point in B. The pair (x, B) determines a unique r-pencil in D with carrier x, denoted by $\mathfrak{P}(x, B)$. Furthermore, the r-pencil $\mathfrak{P}(x, B)$ consists of $q+1$ blocks and they partition the points distinct from x. We shall call B the carrier block of $\mathfrak{P}(x, B)$.

Proof. Let $T=\left\{B, C_{1}, \ldots, C_{q}\right\}$ be defined as above. For every block in T, there exists a $(q+1)$-valent block tangent to E at x. Hence, by the previous lemma E is r-tangent to every other block in T. Thus, they form an r-pencil at x.

Next, we count the number of points contained in T. Since the $q(q-1)$ valent blocks and the q-valent block B in T are mutually tangent at x, we have $q(q-2)+q=q^{2}-q$ points in T. Thus, the blocks in T partition the points distinct from x.

Since for every $(q+1)$-valent block A that is tangent to B at x, A is secant to C_{i} in $T, 1 \leqslant i \leqslant q$, and by Lemma $16, C_{1}, \ldots, C_{q}$ are the only blocks that are r-tangent to B at x. Thus, $\mathfrak{P}(x, B)$ is the unique r-pencil with carrier x and carrier block B.

Corollary 21. Let B be a q-valent block in $D . B$ is r-tangent to exactly $q^{2}(q-1)$-valent blocks in D.

Corollary 22. Let B be a q-valent block in D. If x is a point not in B, then B is r-tangent to exactly q blocks in D that contain x. Furthermore, these q blocks are ($q-1$)-valent.

Proof. Let y be a point in $B . \mathfrak{P}(y, B)$ partitions the points distinct from y; hence there exists a unique block C_{y} containing x that is r-tangent to B at y. Since there are q points in B, there are q blocks containing x that are r tangent to B. Clearly, these are the only r-tangents of B that contain x.

Eventually, we would like to show that these $q(q-1)$-valent blocks that are r-tangent to B and contain x determine an r-pencil in D with carrier x. Let us first conclude our discussions on q-valent blocks in the following theorem.

Theorem 23. Let B be a q-valent block. If x is a point in B, then there exist exactly one r-pencil and one M-pencil with carrier x that contain B.

Proof. Since B is q-valent, by Lemma 9 there are $2 q-1$ blocks which are tangent to B at x. By Proposition 20, q of these tangents together with B form an r-pencil $\mathfrak{P}(x, B)$ with carrier x. Among the remaining $q-1$ tangents of B, there is a $(q+1)$-valent block A. Since every tangent of B at x is not r tangent to A at x, these $q-2$ tangents of B together with A and B form an M-pencil with carrier x.

Finally, we shall study the tangents of a $(q-1)$-valent block C at a point x.

Lemma 24. Let C be $a(q-1)$-valent block in D and x be a point in C. If $g(C, x)$ denotes the number of 2-valent blocks r-tangent to C at x, then ave $g(\cdot, x)=2$.

Proof. We count the number of ordered pairs (B, C) where B and C are q-valent and ($q-1$)-valent blocks, respectively, and B is r-tangent to C at x. For every q-valent block B containing x, there are q choices of C. Since there are $q+1 q$-valent blocks containing x, there are $q(q+1)$ ordered pairs (B, C). On the other hand, if C is a $(q-1)$-valent block containing x, then there are $g(C, x)$ choices of B. Hence, $\sum_{c} g(C, x)=q(q+1)$. But there are $\frac{1}{2} q(q+1)(q-1)$-valent blocks containing x; thus ave $g(\cdot, x)=2$.

Proposition 25. Let C be a $(q-1)$-valent block in D. If x is a point in C, then there exist exactly two q-valent blocks that are r-tangent to C at x.

Proof. We shall show that there exist at most two q-valent blocks that are r-tangent to C at x, then using the previous lemma, we obtain the conclusion of the proposition.

Let us recall that for $k \in K, t_{2}(k)$ denotes the number of k-valent blocks tangent to C at x. From (17) we have

$$
\begin{equation*}
2 t_{2}(q+1)+t_{2}(q)=q+1 \tag{20}
\end{equation*}
$$

For $k \in K$, let $t^{\prime}(k)$ denote the number of k-valent blocks M-tangent to C at x. From Lemma 12, $t^{\prime}(q+1)=t_{2}(q+1)$. Let A be a $(q+1)$-valent block M-tangent to C at x, and let \mathfrak{P} denote the M-pencil with carrier x that contains A. C is a block in \mathfrak{P}. Since for every block E in $\mathfrak{P}, E \neq C, E$ is M tangent to C at x and they are the only M-tangents of C at x.

$$
\begin{equation*}
t_{2}(q+1)+t^{\prime}(q)+t^{\prime}(q-1)+1=|\mathfrak{P}|=q \tag{21}
\end{equation*}
$$

On the other hand, the blocks in \mathfrak{P} partition the points that are distinct from x; we have

$$
\begin{equation*}
q t_{2}(q+1)+(q-1) t^{\prime}(q)+(q-2)\left(t^{\prime}(q)+1\right)+1=q^{2}-q \tag{22}
\end{equation*}
$$

Using (21) and (22), we obtain

$$
\begin{equation*}
2 t_{2}(q+1)+t^{\prime}(q)=q-1 \tag{23}
\end{equation*}
$$

Combining (20) and (23), we get

$$
t_{2}(q)-t^{\prime}(q)=2
$$

Thus, there exists at most two q-valent blocks r-tangent to C at x and the proof is complete.

Proposition 26. Let C be a $(q-1)$-valent block in D. If x is a point in C, then C is contained in exactly one M-pencil with carrier x. Furthermore, there are at least two r-pencils with carrier x that contain C.

Proof. From the proof of the previous lemma, if A is a $(q+1)$-valent block tangent to C at x, then the M-pencil with carrier x that contains A is the unique M-pencil with carrier x that contains C.

Since there are exactly two q-valent blocks r-tangent to C at x and each of these two blocks determines a unique r-pencil with carrier x, C is contained in at least two r-pencils.

We shall show that C is contained in exactly two r-pencils with carrier x.

Lemma 27. Let $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(x, B^{\prime}\right)$ be two distinct r-pencils with carrier x and carrier block B and B^{\prime}, respectively. If $c\left(B, B^{\prime}\right)$ denotes the number of common blocks in $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(x, B^{\prime}\right)$, then ave $c(\cdot, \cdot)=1$, where average runs over all pairs of distinct q-valent blocks containing x.

Proof. Let us count the number of triples ($\left.\mathfrak{P}(x, B), \mathfrak{P}\left(x, B^{\prime}\right), C\right)$ where $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(x, B^{\prime}\right)$ are distinct r-pencils with carrier x and C is a common block in $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(x, B^{\prime}\right)$. For every $(q-1)$-valent block C that contains x, there are exactly two q-valent blocks B and B^{\prime} that contain x and are r-tangent to C. Hence, there are exactly two r-pencils with carrier x that contain a q-valent block and C. Thus, there are two choices for the pair ($\mathfrak{P}(x, B), \mathfrak{P}\left(x, B^{\prime}\right)$). But there are $\frac{1}{2}(q+1) q$ choices of C that contain x, so the total number of triples is $(q+1) q$. On the other hand, for every distinct pair $\left(\mathfrak{P}(x, B), \mathfrak{P}\left(x, B^{\prime}\right)\right)$, there are $c\left(B, B^{\prime}\right)$ choices of C. Hence,

$$
\sum c\left(B, B^{\prime}\right)=q(q+1)
$$

where the summation runs over all pairs $\left(\mathfrak{P}(x, B), \mathfrak{P}\left(x, B^{\prime}\right)\right)$. But for every q valent block B containing x, there corresponds a unique r-pencil $\mathfrak{P}(x, B)$; hence there are $(q+1) q$ distinct pairs $\left(\mathfrak{P}(x, B), \mathfrak{P}\left(x, B^{\prime}\right)\right)$. Thus,

$$
(q+1) q \text { ave } c(\cdot, \cdot)=q(q+1)
$$

or equivalently, ave $c(\cdot, \cdot)=1$.
Lemma 28. If $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(y, B^{\prime}\right)$ are two distinct r-pencils with carriers x and y, and carrier blocks B and B^{\prime}, respectively, then $\mid \mathfrak{P}(x, B) \cap$ $\mathfrak{P}\left(y, B^{\prime}\right) \mid \leqslant 1$. In particular, if $x=y$, then $\left|\mathfrak{P}(x, B) \cap \mathfrak{P}\left(x, B^{\prime}\right)\right|=1$.

Proof. Case 1. $\quad x \neq y$ and $B=B^{\prime}$. Clearly $\mathfrak{P}(x, B) \cap \mathfrak{P}\left(y, B^{\prime}\right)=B$.
Case 2. $x \neq y$ and $B \neq B^{\prime}$. Suppose $\mid \mathfrak{P}(x, B) \cap \mathfrak{P}\left(y, B^{\prime}\right) \geqslant 2$ and let C, C^{\prime} be two common r-tangents of B and B^{\prime} at x and y, respectively. Since by Proposition 20, the blocks in $\mathfrak{P}(x, B)$ partition the points distinct from x, there exists a unique block E in $\mathfrak{P}(x, B)$ that contains y. But this contradicts that both C and C^{\prime} contain y. Hence, $\left|\mathfrak{P}(x, B) \cap \mathfrak{P}\left(y, B^{\prime}\right)\right| \leqslant 1$.

Case 3. $x=y$ and $B \neq B^{\prime}$. For every point z in $B^{\prime}, z \neq x$, there exists a unique block in $\mathfrak{P}(x, B)$ that contains z. Since there are $q-1$ points in B^{\prime} that are distinct from x, there are $q-1$ blocks in $\mathfrak{P}(x, B)$ that are secant to B^{\prime}. But $\mathfrak{P}(x, B)$ consists of $q+1$ blocks; hence there are two blocks in $\mathfrak{P}(x, B)$ that are tangent to B^{\prime} at x. If both these blocks are M-tangent to B^{\prime}, then they are contained in the M-pencil with carrier x that contains B^{\prime}; hence they are mutually M-tangent to each other. This contradicts that they are both in $\mathfrak{P}(x, B)$. Thus, there exists at least one block in $\mathfrak{P}(x, B)$ that is r tangent to B^{\prime} at x. By the previous lemma, we obtain that there exists exactly one, that is, $\left|\mathfrak{P}(x, B) \cap \mathfrak{P}\left(x, B^{\prime}\right)\right|=1$.

Lemma 29. Let C be a $(q-1)$-valent block and x be a point in C. Let $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(x, B^{\prime}\right)$ be the two r-pencils with carrier x and carrier blocks B
and B^{\prime} that contain C. If C^{\prime} is a $(q-1)$-valent block that is r-tangent at x, then C^{\prime} is contained in exactly one of the two r-pencils $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(x, B^{\prime}\right)$.

Proof. Since each of the two r-pencils consists of $q+1$ blocks and C is a common block in $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(x, B^{\prime}\right)$, there are $2 q$ blocks that are r tangent to C at x and are contained in $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(x, B^{\prime}\right)$. By Lemma 9 , there are $3 q-1$ tangents of C at x of which $q-1$ are contained in the unique M-pencil with carrier x that contains C. Thus, there are only $2 q$ blocks that are r-tangent to C at x, and they are contained in either $\mathfrak{P}(x, B)$ or $\mathfrak{P}\left(x, B^{\prime}\right)$. Clearly, an r-tangent C^{\prime} of C cannot be contained in both $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(x, B^{\prime}\right)$; otherwise C and C^{\prime} are two common blocks of the r pencils and this contradicts the previous lemma.

Lemma 30. Let C and C^{\prime} be two distinct ($q-1$)-valent blocks. If C is r tangent to C^{\prime} at x, then there exists a unique block which is r-tangent to C^{\prime} and M-tangent to C at x.

Proof. Let \mathfrak{P} denote the M-pencil with carrier x that contains C. For every point y in $C^{\prime}, y \neq x$, there exists a unique block E in \mathfrak{P} such that E contains x and y. Hence, there are $q-2$ blocks in \mathfrak{P} that are M-tangent to C but are secant to C^{\prime}. But \mathfrak{P} consists of q blocks of which one is C; hence there exists a unique block $E M$-tangent to C at x which is tangent to C^{\prime}. Clearly, E is not M-tangent to C^{\prime} at x; otherwise, $C^{\prime} \in \mathfrak{P}$; this contradicts that C is r-tangent to C^{\prime}. Hence E is r-tangent to C^{\prime} at x.

Lemma 31. Let C and C^{\prime} be two distinct $(q-1)$-valent blocks containing x. If C is r-tangent to C^{\prime} at x, then there exist exactly q blocks r tangent to both C and C^{\prime} at x.

Proof. Let $\mathfrak{P}(x, B)$ be an r-pencil with carrier x and carrier block B that contains both C and C^{\prime}. Since $\mathfrak{P}(x, B)$ contains $q+1$ blocks, there are at least $q-1$ blocks that are r-tangent to both C and C^{\prime}.

Let $\mathfrak{P}\left(x, B^{\prime}\right)$ be the other r-pencil containing C. If E is a block r-tangent to C at x and $E \notin \mathfrak{P}(x, B)$, then $E \in \mathfrak{P}\left(x, B^{\prime}\right)$. We shall show that there exists exactly one block E in $\mathfrak{P}\left(x, B^{\prime}\right)$ such that E is r-tangent to both C and C^{\prime} at x.

For every point y in $C^{\prime}, y \neq x$, there exists a unique block E in $\mathfrak{P}\left(x, B^{\prime}\right)$ such that E contains x and y. Hence, there are $q-1 r$-tangents of C at x that are secant to C^{\prime}. But $\mathfrak{P}\left(x, B^{\prime}\right)$ contains $q+1$ blocks, of which one is C; hence there are two blocks in $\mathfrak{P}\left(x, B^{\prime}\right)$ that are tangent to C^{\prime} at x. By the previous lemma, one of these two blocks is M-tangent to C^{\prime} at x. Therefore,

Consequently, there are exactly q blocks r-tangent to both C and C^{\prime} at x.

Proposition 32. Let C be a $(q-1)$-valent block. If x is a point in C, then C is contained in exactly two r-pencils with carrier x. Moreover, every r pencil in D contains a unique q-valent carrier block.

Proof. Suppose \mathfrak{P} is another r-pencil containing C such that \mathfrak{P} is distinct from $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(x, B^{\prime}\right)$. Let C^{\prime} be a block in \mathfrak{P} and in $\mathfrak{P}(x, B)$. Since $\mathfrak{P} \neq \mathfrak{P}(x B)$, there exists a block $C^{\prime \prime}$ in \mathfrak{P} such that $C^{\prime \prime} \notin \mathfrak{P}\left(x, B^{\prime}\right)$. By the previous lemma, $C^{\prime \prime}$ is the only other block in \mathfrak{P}. Thus $|\mathfrak{P}|=3$. But by the definition of an r-pencil, $|\mathfrak{P}| \geqslant 4$; hence $\mathfrak{P}(x, B)$ and $\mathfrak{P}\left(x, B^{\prime \prime}\right)$ are the only two r-pencils with carrier x that contain C.

Proposition 33. Let E_{1}, E_{2}, E_{3} be mutually tangent at a point x such that they are not contained in any M-pencil or any r-pencil with carrier x. If \mathfrak{P} is a maximal set of mutually tangent blocks containing x such that \mathfrak{P} contains E_{1}, E_{2} and E_{3}, then \mathfrak{P} contains at most four blocks.

Proof. Since E_{1}, E_{2} and E_{3} are not contained in any M-pencil or any r pencil, either they are mutually r-tangent and are contained in two distinct r pencils at x, or E_{1} is M-tangent to E_{2}.

Case 1. E_{1}, E_{2} and E_{3} are mutually r-tangent. From the previous proposition, there exists no other block that is r-tangent to all E_{i} 's at x. Let E be a block in $\mathfrak{P}, E \neq E_{i}, i=1,2,3$. Without loss of generality, E is M tangent to E_{1} at x, then E is not M-tangent to E_{2} and E_{3}. Otherwise, E_{1} and E_{2} are mutually M-tangent and this contradicts our assumption. Hence, E_{1} is r-tangent to E_{2} at x. By Lemma $30, E$ is the unique block that is M-tangent to E_{1} and r-tangent to E_{2} at x. Thus $|\mathfrak{P}| \leqslant 4$.

Case 2. E_{1} is M-tangent to E_{2}. By Lemma 15, E_{3} is r-tangent to both E_{1} and E_{2} at x. Moreover, E_{1}, E_{3} and E_{2}, E_{3} are contained in distinct r-pencils at x. Let $E \in \mathfrak{P}, E \neq E_{i}, i=1,2,3$.

Subcase 2.1. E is r-tangent to $E_{i}, i=1,2,3$. Since the pairs $\left(E_{1}, E_{3}\right)$ and $\left(E_{2}, E_{3}\right)$ are in distinct r-pencils at x, either E, E_{1}, E_{3} or E, E_{2}, E_{3} are three mutually r-tangent blocks at x that are contained in distinct r-pencils. By Case $1,|\mathfrak{P}| \leqslant 4$.

Subcase 2.2. E is M-tangent to E_{t} for some $i, 1 \leqslant i \leqslant 3$. Suppose E is M-tangent to E_{1} at x; then E is not M-tangent to E_{3}; otherwise, E_{1} and E_{3} are mutually M-tangent at x. But then E_{2} and E are two blocks that are M tangent to E_{1} and r-tangent to E_{3}; this contradicts that there exists such a unique block. Hence, E is r-tangent to E_{1} at x. Similarly, E is r-tangent to E_{2} at x. Thus, E is M-tangent to E_{3} at x.

Suppose $E^{\prime} \in \mathfrak{P}, E^{\prime} \neq E, E_{i}, i=1,2,3$. Using the same arguments as above, E^{\prime} is r-tangent to both E_{1} and E_{2} at x. If E^{\prime} is also r-tangent to E_{3}, then by Subcase $2.1,|\mathfrak{P}| \leqslant 4$. This contradicts that $E^{\prime} \neq E$. Hence, E^{\prime} is M -
tangent to E_{3} at x. But then E and E^{\prime} are two distinct blocks that are M tangent to E_{3} and r-tangent to E_{1} at x. This contradicts that there exists only one such block. Hence E^{\prime} does not exist, and $|\mathfrak{P}| \leqslant 4$.

6. Parallel Classes

In this section, we shall establish the parallel classes of q-valent blocks by looking at the r-pencils in D. First let us state

The Tangency Condimion. Let B be a q-valent block. If x and y are two distinct points not in B, then there exists at most one block containing x and y which is r-tangent to B.

Let D be a $\operatorname{PBRD}(q)$ such that D satisfies the Tangency Condition. Let B be a q-valent block in D and let x be a point in B. By Corollary 22, there are $q(q-1)$-valent blocks that contain x and are r-tangent to B. We shall show that the Tangency Condition implies that these q blocks are mutually r tangent at x.

Lemma 34. Let B be a q-valent block in D. If x is a point not in B, then the q blocks that contain x and are r-tangent to B are mutually tangent to each other.

Proof. Suppose C and C^{\prime} are two r-tangents of B that contain x and intersect at two points x and y. Clearly, x and y are two distinct points not in B. But this contradicts the Tangency Condition. Hence, C and C^{\prime} are mutually tanigent.

Proposition 35. Let $q \geqslant 5$ and B be a q-valent block in D. If x is a point not in B, then the q blocks containing x and r-tangent to B are mutually r-tangent to each other.

Proof. Let C_{1}, \ldots, C_{q} be the ($q-1$)-valent blocks r-tangent to B which contain x. If C_{1}, \ldots, C_{q} are mutually M-tangent, then there exists a $(q+1)$ valent block A containing x which is tangent to C_{1}, \ldots, C_{q}. But this contradicts that every M-pencil contains only q blocks. Suppose C_{1} is M tangent to C and C_{1} is r-tangent to C_{3}; then by Proposition 33, a maximal set \mathfrak{P} of mutually tangent blocks that contain C_{1}, C_{2} and C_{3} contains at most four blocks. But $q \geqslant 5$; hence, C_{1}, \ldots, C_{q} are mutually r-tangent at x.

Corollary 36. The blocks C_{1}, \ldots, C_{q} determine a unique r-pencil $\mathfrak{P}\left(x, B^{\prime}\right)$ with carrier x.

Proof. By Proposition 33, C_{1}, \ldots, C_{q} are contained in the same r-pencil $\mathfrak{P}\left(x, B^{\prime}\right)$ with carrier x.

Proposition 37. Let $q \geqslant 5$ and B be a q-valent block in D. Let x be a point not in B. If $\mathfrak{P}\left(x, B^{\prime}\right)$ is the r-pencil with carrier x such that each ($q-1$)-valent block in $\mathfrak{P}\left(x, B^{\prime}\right)$ is r-tangent to B, then B^{\prime} is disjoint from B.

Proof. Since there are $q(q-1)$-valent blocks in $\mathfrak{P}\left(x, B^{\prime}\right)$, for each point y in B, there exists a unique $(q-1)$-valent block r-tangent to B at y. The blocks in $\mathfrak{P}\left(x, B^{\prime}\right)$ partition the points distinct from x; hence, B and B^{\prime} are disjoint.

Corollary 38. Every r-tangent of B is an r-tangent of B^{\prime}, and vice versa.

Proof. For every point x in B^{\prime} there exist q ($q-1$)-valent blocks r tangent to B which contain x. These q blocks, together with B^{\prime}, form an r pencil $\mathfrak{P}\left(x, B^{\prime}\right)$. Hence, they are also r-tangents of B^{\prime}. Since there are q points in B^{\prime}, there are q^{2} blocks that are r-tangents of both B and B^{\prime}. But by Corollary $21, B$ has only $q^{2} r$-tangents. Thus, every r-tangent of B is an r tangent of B^{\prime}.

Next, we shall construct the parallel classes.

Definition. Let B and B^{\prime} be two q-valent blocks in $D . B$ is said to be parallel to B^{\prime} if and only if either $B=B^{\prime}$, or B is disjoint from B^{\prime} and every r-tangent of B is an r-tangent of B^{\prime} and vice versa. We shall denote them by $B / / B^{\prime}$.

Proposition 39. If $B / / B^{\prime}$ and $B^{\prime} / / B^{\prime \prime}$, then $B / / B^{\prime \prime}$.
Proof. Suppose $x \in B \cap B^{\prime \prime}$. Consider the $q(q-1)$-valent blocks that contain x and are r-tangent to B^{\prime}; these q blocks determine a unique r-pencil $\mathfrak{P}(x, B)$ with carrier x. Hence, $B=B^{\prime \prime}$.

Suppose $B \neq B^{\prime \prime}$, then every r-tangent of B is an r-tangent of B^{\prime}, which, in turn, is an r-tangent of $B^{\prime \prime}$. Thus every r-tangent of B is an r-tangent of $B^{\prime \prime}$ and $B \cap B^{\prime \prime}=\varnothing$, so $B / / B^{\prime \prime}$.

Proposition 40. Each q-valent block B is contained in a parallel class $\mathfrak{P}(B)$, and $\mathfrak{P}(B)$ consists of $q-1$ blocks.

Proof. Let us count the number of ordered pairs (x, B^{\prime}) such that $x \in B^{\prime}$ and $B / / B^{\prime}$. For every point x in D, there are $q(q-1)$-valent blocks r-tangent to B and containing x. They determine a unique q-valent block B^{\prime} parallel to
B. Hence, there are $q^{2}-q$ pairs. On the other hand, for every block parallel to B, there are q choices of x; hence,

$$
q \cdot(\text { number of blocks parallel to } B)=q^{2}-q
$$

or

$$
\text { number of blocks parallel to } B=q-1 \text {. }
$$

Since parallelism is a transitive relation, these $q-1$ blocks are mutually parallel to each other. Furthermore, they partition the points in D; hence, they form a parallel class of $\mathfrak{P}(B)$.

Corollary 41. There are $q+1$ parallel classes in D.
Proof. Since each parallel class contains $q-1$ blocks and there are $q^{2}-1 q$-valent blocks in D, there are $q+1$ parallel classes in D.

7. Proof of the Main Theorem for $q \geqslant 5$

From the previous section, we have found the $q+1$ parallel classes in D. Next we have to establish the r-transversals of these parallel classes.

Lemma 42. Let C be $a(q-1)$-valent block in $D . C$ is an r-transversal of exactly two parallel classes in D.

Proof. Let x be a fixed point in C. There exist two q-valent blocks B and B^{\prime} containing x and r-tangent to C. Clearly, B and B^{\prime} are in different parallel classes $\mathfrak{P}(B)$ and $\mathfrak{P}\left(B^{\prime}\right)$. Since C is an r-tangent of B, C is an r-tangent of every block in $\mathfrak{P}(B)$, that is, C is an r-transversal of $\mathfrak{P}(B)$. Similarly, C is an r-transversal of $\mathfrak{P}\left(B^{\prime}\right)$. Clearly, $\mathfrak{P}(B)$ and $\mathfrak{P}\left(B^{\prime}\right)$ are the only two parallel classes for which C is an r-transversal.

Next, we show that there are q common r-transversals for every two distinct parallel classes.

Lemma 43. Every two distinct parallel classes have exactly q common r transversals and they are disjoint.

Proof. Let $\mathfrak{P}(B)$ and $\mathfrak{P}\left(B^{\prime}\right)$ be two distinct parallel classes. We first show that any two common r-transversals of $\mathfrak{P}(B)$ and $\mathfrak{P}\left(B^{\prime}\right)$ are disjoint. Suppose C and C^{\prime} are two common r-transversals such that $x \in C \cap C^{\prime}$. Let B and B^{\prime} be the q-valent blocks in $\mathfrak{P}(B)$ and $\mathfrak{P}\left(B^{\prime}\right)$, respectively, such that B and B^{\prime} contain x. Since C and C^{\prime} are both r-tangents of B and B^{\prime} at x, $\left|\mathfrak{P}(x, B) \cap \mathfrak{P}\left(x, B^{\prime}\right)\right| \geqslant 2$. This contradicts Lemma 28 that there exists a
unique block r-tangent to both B and B^{\prime} at x. Thus, the common r transversals of $\mathfrak{P}(B)$ and $\mathfrak{P}\left(B^{\prime}\right)$ are pairwise disjoint.

Let us count the number of triples $\left(C, \mathfrak{P}(B), \mathfrak{P}\left(B^{\prime}\right)\right)$ where C is a common r-transversal of $\mathfrak{P}(B)$ and $\mathfrak{P}\left(B^{\prime}\right)$. For every $(q-1)$-valent block C in D, there exist exactly two parallel classes of which C is an r-transversal. Since there are $\frac{1}{2} q^{2}(q+1)(q-1)$-valent blocks,

$$
\begin{aligned}
& \sum \text { number of common } r \text {-transversals of } \mathfrak{P}(B) \text { and } \mathfrak{P}\left(B^{\prime}\right) \\
& \quad=\frac{1}{2} q^{2}(q+1) \cdot 2 \cdot 1=q^{2}(q+1)
\end{aligned}
$$

where the sum runs over all pairs $\left(\mathfrak{P}(B), \mathfrak{P}\left(B^{\prime}\right)\right)$. But there are $q+1$ distinct parallel classes; hence
average number of common r-transversals of two distinct parallel classes $=\left(q^{2}(q+1)\right) /(q+1) q=q$.

Since the common r-transversals are pairwise disjoint and there are $q^{2}-q$ points in D, there are at most q common r-transversals of $\mathfrak{P}(B)$ and $\mathfrak{P}\left(B^{\prime}\right)$. Thus, every two distinct parallel classes have exactly q common r transversals.

Thus far we see that D is a $\operatorname{PBRD}(q)$ that satisfies axioms (A1) and (A2) in the Fundamental Lemma. Next, we shall establish axiom (A3).

Lemma 44. Let x and y be two distinct points in D. If $\mathfrak{P}(B)$ is a parallel
 y, or there exists exactly one r-transversal of $\mathfrak{P}(B)$ containing x and y.

Proof. Let B be the block in $\mathfrak{P}(B)$ containing x. If $y \in B$, then we are done. If $y \notin B$, then there exists a unique block C containing y and r-tangent to B at x. Since C is an r-tangent of B, C is clearly an r-transversal of $\mathfrak{P}(B)$. The proof is thus complete.

From the lemmas, we see that D satisfies axioms (A1)-(A3) in the Fundamental Lemma; hence D is embeddable into a Möbius plane. Thus we conclude,

Theorem 45. Let $q \geqslant 5$. If D is a $\operatorname{PBRD}(q)$ that satisfies the Tangency Condition, then D is uniquely embeddable into a Möbius plane of order q.

8. Proof of the Theorem

The block-residual design of a Möbius plane obviously satisfies the Tangency Condition. Let D be a $\operatorname{PBRD}(q)$ that satisfies the r-tangency
condition. If $q \geqslant 5$, then by Theorem $45, D$ is uniquely embeddable. Next, we consider $q=1,2,3$ and 4 .

For $q=1$, the design $\operatorname{PBRD}(q)$ is a null design and is trivially embeddable.

For $q=2$, PBRD(2) consists of two points and nine blocks. Let the points be $\{1,2\}$. Since $\operatorname{PBRD}(2)$ is a 1 -design and by Lemma 5 , there are no 3 valent blocks, three 2 -valent blocks and six 1 -valent blocks. The blocks of PBRD(2) are,

$$
\begin{array}{llll}
12, & 1, & 2, \\
12, & 1, & 2, \\
12, & 1, & 2 .
\end{array}
$$

To complete this design to a Möbius plane of order 2, we adjoin the new points $\{3,4,5\}$ to the blocks and form

1	2	3,	1	3	4,	2	3
1	2	4,	1	3	5,	2	3
1	5						
1	2	5,	1	4	5,	2	4
3	4	5.					

Hence, PBRD (2) can be uniquely embedded into a Möbius plane.
For $q=3$, there are six points in $\operatorname{PBRD}(3)$. Let them be $\{1,2,3,4,5,6\}$. Using Lemma 4 and the fact that it is a 2 -design, one can check that the blocks of PBRD(3) are isomorphic to the following:
$\left.\begin{array}{llllllllllllllll}12 & 2 & 3 & 4 & & 1 & 3 & 5 & 2 & 3 & 5 & & 1 & 2 & & 2\end{array}\right)$

If we define

$$
\begin{aligned}
& \mathfrak{A}_{1}=\left\{\begin{array}{llllll}
1 & 3 & 5, & 2 & 4 & 6
\end{array}\right\}, \\
& \mathfrak{U}_{2}=\left\{\begin{array}{lllllll}
1 & 3 & 6, & 2 & 4 & 5
\end{array}\right\}, \\
& \mathfrak{U}_{3}=\left\{\begin{array}{lllllll}
1 & 4 & 5, & 2 & 3 & 6
\end{array}\right\}, \\
& \mathfrak{U}_{4}=\left\{\begin{array}{lllllll}
1 & 4 & 6, & 2 & 3 & 5
\end{array}\right\}
\end{aligned}
$$

then they are the four parallel classes of 3 -valent blocks. It can be easily checked that every 2 -valent block is an r-transversal of exactly two parallel classes, and they satisfy axioms (A1)-(A3) in the Fundamental Lemma. Hence, it is uniquely embeddable into the Möbius plane.

For $q=4$, there are 12 points in $\operatorname{PBRD}(4)$. Let them be $\{1,2, \ldots, 11,12\}$. Using Lemmas 4,5 and 6 , one can see that the blocks of $\operatorname{PBRD}(4)$ are isomorphic to the following:

1	3	5	1011	1	3	6	712	1	4	6	8			
1	4	7	911	1	5	8	912	2	3	5	7			
2	3	8	1012	2	4	5		2	4	6	9			
2	6	7	1011	3	6	8	911	4	5	7	10			
1	2	9	10	3	4	5	6	7	8	9	10			
1	2	11	12	3	4	9	10	5	6	7	8			
1	2	5	6	3	4	7	8	9	0	11	12			
1	2	7	8	3	4	11	12	5	6	9	10			
1	2	3	4	5	6	11	12	7	8	9	10			
1	3	8		1	3	9		1	4	5		1		
1	5	7		1	6	9		1	6	11		1		
1	8	11		1	10	12		2	3	6		2		11
2	4	7		2	4	10		2	5	10		2		12
2	6	8		2	7	12		2	8	9		2		11
3	5	8		3	5	12		3	6	10		3		
3	7	11		3	9	12		4	5	9		4		7
4	6	11		4	8	9		4	8	12				
5	7	11		5	8	10		5	9	11				9
6	8	12		6	10	12		7	9	12			1	11

If we define

$$
\begin{aligned}
& \mathfrak{A}_{1}=\left\{\begin{array}{llllllllllll}
1 & 2 & 9 & 10, & 3 & 4 & 5 & 6, & 7 & 8 & 11 & 12
\end{array}\right\}, \\
& \left.\mathfrak{A}_{2}=\begin{array}{llllllllllll}
1 & 2 & 11 & 12, & 3 & 4 & 9 & 10, & 5 & 6 & 7 & 8
\end{array}\right\} \text {, } \\
& \mathfrak{U}_{3}=\left\{\begin{array}{lllllllllllll}
1 & 2 & 5 & 6, & 3 & 4 & 7 & 8, & 9 & 10 & 11 & 12
\end{array}\right\} \text {, } \\
& \mathfrak{U}_{4}=\left\{\begin{array}{llllllllllll}
1 & 2 & 7 & 8, & 3 & 4 & 11 & 12, & 5 & 6 & 9 & 10
\end{array}\right\} \text {, } \\
& \mathscr{U}_{5}=\left\{\begin{array}{llllllllllll}
1 & 2 & 3 & 4, & 5 & 6 & 11 & 12, & 7 & 8 & 9 & 10
\end{array}\right\}
\end{aligned}
$$

then they are the five parallel classes of 4 -valent blocks. It can be easily checked that the above blocks satisfy axioms (A1)-(A3) in the Fundamental Lemma. Hence, it is uniquely embeddable into the Möbius Plane.

References

1. R. C. Bose, "Graphs and Designs," C.I.M.E. Advanced Summer Institute, 1972.
2. R. C. Bose, S. S. Shrikhande, and N. M. Singhi, Edge regular multigraphs and partial geometric designs, unpublished manuscript.
3. A. H. Chan, "Reconstruction Problems on Graphs and Designs," Ph.D. thesis, The Ohio State University, 1975.
4. P. Dembowski, "Finite Geometries." Springer-Verlag, New York/Berlin, 1968.
5. M. Hall and W. S. Connor, An embedding theorem for balanced incomplete block designs, Canad. J. Math. 6 (1953), 35-41.
6. S. S. Shrikhande and N. M. Singhi, Embedding of quasi-residual designs with $\lambda=3$, Utilitas Math., in press.

[^0]: * This research was supported in part by ONR Contract N00014-67-A-0232-0016 and NSF Grant MPS75-08231.

