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It is well known that many famous pooling designs are constructed
from mathematical structures by the “containment matrix” method.
In this paper, we propose another method and obtain a family of
pooling designs with surprisingly high degree of error correction
based on a finite set. Given the numbers of items and pools, the
error-tolerant property of our designs is much better than that of
Macula’s designs when the size of the set is large enough.

© 2011 Elsevier Inc. All rights reserved.

Pooling design is a mathematical tool to reduce the number of tests in DNA library screening
[2–4]. A pooling design is usually represented by a binary matrix with columns indexed with items
and rows indexed with pools. A cell (i, j) contains a 1-entry if and only if the ith pool contains the
jth item. Biological experiments are notorious for producing erroneous outcomes. Therefore, it would
be wise for pooling designs to allow some outcomes to be affected by errors. A binary matrix M is
called se-disjunct if given any s + 1 columns of M with one designated, there are e + 1 rows with a 1
in the designated column and 0 in each of the other s columns. An s0-disjunct matrix is also called
s-disjunct. An se-disjunct matrix is called fully se-disjunct if it is not se1

1 -disjunct whenever s1 > s or
e1 > e. An se-disjunct matrix is �e/2�-error-correcting (see [5]).

For positive integers k � n, let [n] = {1,2, . . . ,n} and
( [n]

k

)
be the set of all k-subsets of [n].

Macula [10,11] proposed a novel way of constructing disjunct matrices by the containment relation
of subsets in a finite set.

Definition 1. (See [10].) For positive integers 1 � d < k < n, let M(d,k,n) be the binary matrix with
rows indexed with

( [n]
d

)
and columns indexed with

( [n]
k

)
such that M(A, B) = 1 if and only if A ⊆ B .

D’yachkov et al. [6] discussed the error-correcting property of M(d,k,n).
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Theorem 1. (See [6].) For positive integers 1 � d < k < n and s � d, M(d,k,n) is fully se1 -disjunct, where
e1 = ( k−s

d−s

) − 1.

Ngo and Du [13] constructed disjunct matrices by the containment relation of subspaces in a finite
vector space. D’yachkov et al. [5] discussed the error-tolerant property of Ngo and Du’s construction.
Huang and Weng [9] introduced the comprehensive concept of pooling spaces, which is a signifi-
cant addition to the general theory. Recently, many pooling designs have been constructed using the
“containment matrix” method, see e.g. [1,7,8].

Next we shall introduce our construction.

Definition 2. Given integers 1 � d < k < n and 0 � i � d. Let M(i;d,k,n) be the binary matrix
with rows indexed with

( [n]
d

)
and columns indexed with

( [n]
k

)
such that M(A, B) = 1 if and only

if |A ∩ B| = i.

Note that M(i;d,k,n) and M(d,k,n) have the same size, and M(i;d,k,n) is an
( n

d

) × ( n
k

)
matrix

with row weight
(

d
i

)( n−d
k−i

)
and column weight

(
k
i

)( n−k
d−i

)
. Since M(d;d,k,n) = M(d,k,n), our con-

struction is a generalization of Macula’s matrix.
Let B ∈ ( [n]

k

)
and C = [n] \ B . Then, for any D ∈ ( [n]

d

)
, |D ∩ B| = i if and only if |D ∩ C | = d − i.

Therefore, M(i;d,k,n) = M(d − i;d,n − k,n) when n > k + d − i. Since i � �d/2� if and only if d − i �
�(d + 1)/2�, we always assume that i � �(d + 1)/2� in this case.

Theorem 2. Let 1 � s � i, �(d + 1)/2� � i � d < k and n − k − s(k + d − 2i) � d − i. Then

(i) M(i;d,k,n) is an se2 -disjunct matrix, where e2 = ( k−s
i−s

)( n−k−s(k+d−2i)
d−i

) − 1;

(ii) For a given k, if i < d, then limn→∞ e2+1
e1+1 = ∞.

Proof. (i) Let B0, B1, . . . , Bs ∈ ( [n]
k

)
be any s+1 distinct columns of M(i;d,k,n). Then, for each j ∈ [s],

there exists an x j such that x j ∈ B0 \ B j . Suppose X0 = {x j | 1 � j � s}. Then X0 ⊆ B0, and X0 � B j

for each j ∈ [s]. Note that the number of i-subsets of B0 containing X0 is
( k−|X0|

i−|X0|
) = ( k−|X0|

k−i

)
. Since

( k−|X0|
k−i

)
is decreasing for 1 � |X0| � s and gets its minimum at |X0| = s, the number of i-subsets of

B0 containing X0 is at least
( k−s

k−i

)
.

Let A0 be an i-subset of B0 containing X0. Then |A0 ∩ B j | < i for each j ∈ [s]. Let D ∈ ( [n]
d

)

satisfying |D ∩ B0| = i. If there exists j ∈ [s] such that |D ∩ B j | = i, then |B0 ∩ B j | � |D ∩ B0 ∩ B j | �
2i − d. Suppose |B0 ∩ B j | � 2i − d for each j ∈ [s]. Since |⋃0� j�s B j | � k + s(k + d − 2i), the number
of d-subsets D of [n] containing A0 satisfying |D ∩ B0| = i and |D ∩ B j | 	= i for each j ∈ [s] is at least( n−k−s(k+d−2i)

d−i

)
. Then the number of d-subsets D containing X0 in

( [n]
d

)
satisfying |D ∩ B0| = i and

|D ∩ B j | 	= i for each j ∈ [s] is at least
( k−s

i−s

)( n−k−s(k+d−2i)
d−i

)
. Therefore, (i) holds.

(ii) is straightforward by (i) and Theorem 1. �
Example 1. M(5,7,50) is fully 114,29 and 35-disjunct, but M(3;5,7,50) is 19989,22324 and 3299-
disjunct; M(4,5,13) is fully 13 and 22-disjunct, but M(3;4,5,13) is 129 and 25-disjunct.

Concluding remarks

(i) For given integers d < k the following limit holds: limn→∞
(n

d
)

(n
k
) = 0. This shows that the test-to-

item of M(i;d,k,n) is small enough when n is large enough. By Theorem 2, our pooling designs are
better than Macula’s designs when n is large enough.

(ii) It seems to be interesting to compute e such that M(i;d,k,n) is fully se-disjunct.
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(iii) In [12], Nan and the first author discussed the similar construction of se-disjunct matrices in
a finite vector space, but the number e is not well expressed. By the method of this paper, e may be
larger. We will study this problem in a separate paper.

(iv) For positive integers 1 � d < k < n, let I be a nonempty proper subset of {0,1, . . . ,d}, and let
M(I;d,k,n) be the binary matrix with rows indexed with

( [n]
d

)
and columns indexed with

( [n]
k

)
such

that M(A, B) = 1 if and only if |A ∩ B| ∈ I . How about the error-tolerant property of M(I;d,k,n)?
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