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Abstract

We prove that the induced map G0(A) → G0(Â ) by completion is injective ifA is an
excellent noetherian local ring that satisfies one of the following three conditions: (i)A is
henselian; (ii)A is a local ring at the homogeneous maximal ideal of a homogeneous ring
over a field; (iii)A has at most isolated singularity.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this paper, we discuss the injectivity of the map G0(A) → G0(Â ) induced
by completionA → Â. The problem is closely related to the theory ofRoberts
ringsas follows.
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For a schemeX that is of finite type over a regular schemeS, we have an
isomorphism ofQ-vector spaces

τX/S : G0(X)Q → A∗(X)Q

by the singular Riemann–Roch theorem (Fulton [2, Chapters 18 and 20]), where
G0(X) (respectively A∗(X)) denotes the Grothendieck group of coherentOX-
modules (respectively Chow group ofX). This is the natural generalization of
the Grothendieck–Riemann–Roch theorem to singular schemes. Usually the map
τX/S depends not only onX but also onS (see Section 6).

Let T be a regular local ring and letA be a homomorphic image ofT . Since
A is of finite type overT , we have an isomorphism ofQ-vector spaces

τSpecA/SpecT : G0(SpecA)Q → A∗(SpecA)Q

by the singular Riemann–Roch theorem as above. We denoteτSpecA/SpecT ,
G0(SpecA), and A∗(SpecA) simply byτA/T , G0(A), and A∗(A), respectively.

The construction of the mapτA/T depends not only onA but also onT .
However, ifA is a complete local ring orA is essentially of finite type over either a
field or the ring of integers, it is proved in [7] that the mapτA/T is independent of
the choice ofT . Furthermore, no example is known where the mapτA/T actually
depends on the choice ofT . It seems natural to consider the following conjecture.

Conjecture 1.1. Let A be a local ring that is a homomorphic image of a regular
local ringT . Then, the Riemann–Roch mapτA/T as above is independent of the
choice ofT .

In 1985, P. Roberts [14] proved that the vanishing theorem holds for a local
ring A that satisfiesτA/T ([A]) ∈ AdimA(A)Q, where we say that the vanishing

theorem holds forA if
∑

i (−1)i�A(TorAi (M,N)) = 0 is satisfied for two finitely
generatedA-modulesM and N that satisfy the following three conditions:
(1) both of them have finite projective dimension, (2) dimM + dimN < dimA,
(3) M ⊗A N is of finite length. (This result contains an affirmative answer to a
conjecture proposed by Serre [16]. The conjecture was independently solved by
Roberts [14], Gillet and Soulé [3].)

Inspired by the result of Roberts, the second author defined the notion of
Roberts rings as below and studied them in [7,8].

Definition 1.2. A local ringA is said to be aRoberts ringif there is a regular local
ring T such thatA is a homomorphic image ofT andτA/T ([A]) ∈ AdimA(A)Q is
satisfied.

By the result of Roberts [14], we know that Roberts rings satisfy the vanishing
theorem.
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The category of Roberts rings contains complete intersections, quotient
singularities, and Galois extensions of regular local rings. Normal Roberts rings
areQ-Gorenstein. There are examples of Gorenstein normal non-Roberts rings.
If A is a Roberts ring, then so is the completionÂ. (See [7] or Remark 6.1.) Here,
we want to ask the following question:

Question 1.3. Let A be a local ring that is a homomorphic image of a regular
local ring. Assume that the completion̂A is a Roberts ring. Then, isA a Roberts
ring, too?

There is a deep connection between Conjecture 1.1 and Question 1.3. As we
shall see in Proposition 6.2 in Section 6, Question 1.3 is true for anyA if and only
if Question 1.4 as below is true for anyA. Furthermore, if Question 1.4 is true for
a local ringA, then Conjecture 1.1 is true for the local ringA (see Section 6 (I)).

Question 1.4. LetA be a local ring that is a homomorphic image of a regular local
ring. Then, is the map G0(A)Q

f∗−→ G0(Â )Q (induced by the flat mapA
f−→ Â )

injective?

In Sections 3, 4 and 5, we shall prove the following theorem that is the main
theorem of the paper.

Theorem 1.5. Let A be a homomorphic image of an excellent regular local
ring. If A satisfies one of the following three conditions, then the natural map
G0(A)

f∗−→ G0(Â ) is injective:

(i) A is a henselian local ring;
(ii) A = SM , where S = ⊕

n�0Sn is a noetherian positively graded ring
over a henselian local ring(S0,m0), andM = m0S0 + S+ (whereS+ =⊕

n>0Sn);
(iii) A has at most an isolated singularity.

The three assertions in Theorem 1.5 will be proved in completely different
ways. In the proof of Claim 4.3 in [7], the injectivity was announced in case (i)
as above without a proof. We shall give a precise proof to Theorem 1.5 in case (i)
in Section 3. In the proof, Popescu–Ogoma’s approximation theorem [11,12] is
used. We remark that rings in (i) are contained in those in (ii). In case (ii), we use
a method similar to “deformation to normal cones” in Chapter 5 of Fulton [2].
In case (iii), we use the localization sequence inK-theory due to Thomason
and Trobaugh [18], that is a generalization of the exact sequences constructed
by Quillen [13] or Levine [9].

We shall give some applications of Theorem 1.5 in Section 6. As we shall see
in Proposition 6.5, Question 1.4 is equivalent to the statement that the induced
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map G0(A)Q
g∗−→ G0(B)Q is injective for any flat local homomorphismA g−→ B

such that its extension of the residue class fields is finitely generated. IfA
g−→B is

a flat local homomorphism such thatA contains a field of characteristic 0, then the
induced map G0(A)Q

g∗−→ G0(B)Q is injective if Question 1.4 is true. The authors
have no example of a flat local homomorphismA → B such that the induced map
G0(A)→ G0(B) is not injective.

The next section is devoted to preliminaries.

2. Preliminaries

Throughout the article, a local ring is always assumed to be a homomorphic
image of a regular local ring. Remark that such rings are universally catenary.

First of all, let us define the Grothendieck group and the Chow group of
a ringA.

Definition 2.1. For a ringA, let G0(A) be theGrothendieck groupof finitely
generatedA-modules, i.e.,

G0(A)=

⊕
M: a finitely generatedA-module

Z · [M]

〈[M] − [L] − [N] | 0 →L →M →N → 0 is exact〉 .
Let Ai (A) be theith Chow groupof A, i.e.,

Ai (A)=

⊕
P∈SpecA,dimA/P=i

Z · [SpecA/P ]

〈div(Q,x) |Q ∈ SpecA, dimA/Q = i + 1, x ∈ A\Q〉 ,

where

div(Q,x)=
∑

P∈MinA A/(Q,x)

�AP (AP /(Q,x)AP )[SpecA/P ],

where�AP ( ) denotes the length as anAP -module. TheChow groupof A is
defined to be A∗(A)= ⊕dimA

i=0 Ai (A).
For an abelian groupM, MQ denotesM ⊗Z Q.

Definition 2.2. (1) Letg :A→ B be a flat ring homomorphism. Then, we have the
induced homomorphismg∗ : G0(A)→ G0(B) defined byg∗([M])= [M ⊗A B].

(2) Let (A,m) be a local ring and̂A denotes the completion ofA in them-adic
topology. For eachi, the natural mapA f−→ Â induces the map Ai (A)

f∗−→ Ai (Â )

defined by

f∗
([SpecA/P ]) =

∑
p

�Âp

(
Âp/P Âp

)[
SpeĉA/p

]
,
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where the sum is taken over all minimal prime idealsp of Â/P Â as anÂ-module.
Here, remark that̂A/PÂ = Â/P is equi-dimensional sinceA is universally
catenary (Matsumura [10, Theorem 31.7]). See Remark 6.4 for induced maps by
general flat local homomorphisms.

Remark 2.3. Assume thatA is ad-dimensional excellent normal local ring. Then
Â is also normal and the natural map Cl(A)→ Cl(Â ) is injective, where Cl(A) is
the divisor class group ofA.

On the other hand, it is well known that Ad−1(A) coincides with Cl(A). Thus,
we know thatf∗ : Ad−1(A) → Ad−1(Â ) is injective if A is an excellent normal
ring of dimensiond .

Then, we have the following proposition.

Proposition 2.4. Let A be a local ring. Then, the following conditions are
equivalent:

1. G0(A)Q
f∗−→ G0(Â )Q is injective.

2. Ai (A)Q
f∗−→ Ai (Â )Q is injective for alli.

Proof. Take a regular local ringT such thatA is a homomorphic image ofT .
Then, by the singular Riemann–Roch theorem, we have isomorphisms ofQ-
vector spacesτA/T : G0(A)Q → A∗(A)Q and τ

Â/T̂
: G0(Â )Q → A∗(Â )Q such

that the following diagram is commutative [7, Lemma 4.1(c)]:

G0(A)Q

f∗

τA/T A∗(A)Q
f∗

G0(Â )Q

τ
Â/T̂

A∗(Â )Q

(2.5)

Here f∗ : A∗(A)Q → A∗(Â )Q is the direct sum of{f∗ : Ai (A)Q → Ai (Â )Q |
i = 0,1, . . . ,dimA}. Therefore we know immediately that two conditions in the
proposition are equivalent.✷

By the proposition, Question 1.4 is a natural generalization of the injectivity
of divisor class groups (Remark 2.3) in a sense. In Proposition 6.2, we shall know
that Question 1.4 is true if and only if AdimA−1(A)Q → AdimA−1(Â )Q is injective
for any reduced equi-dimensional local ringA.

3. The proof of Theorem 1.5 in the case of (i)

We shall prove the injectivity of G0(A)
f∗−→ G0(Â ) in the case whereA is

a henselian local ring in the section.
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By the assumption, there is an excellent regular local ringT such thatA is
a homomorphic image ofT . ReplacingT with its henselization, we may assume
that T is an excellent henselian regular local ring. SetA = T/I for an idealI
of T .

Before proving the theorem, we need some preliminaries.
The key point of the proof is to apply the following Popescu–Ogoma’s

approximation theorem [11,12].

Theorem 3.1. Let s and t be positive integers. Let(R,n) be an excellent
henselian local ring. Consider the polynomial ringR[X1, . . . ,Xt ] with variables
X1, . . . ,Xt . Letf1, . . . , fs be polynomials inR[X1, . . . ,Xt ]. If there are elements
a1, . . . , at of then-adic completion̂R that satisfy

f1(a1, . . . , at ) = · · · = fs(a1, . . . , at) = 0 in R̂,

then there exist elementsb1, . . . , bt of R that satisfy

f1(b1, . . . , bt ) = · · · = fs(b1, . . . , bt) = 0 in R.

If a1, . . . , at satisfy f1(a1, . . . , at ) = · · · = fs(a1, . . . , at ) = 0, we say that
a1, . . . , at is asolutionof the polynomial equationsf1 = · · · = fs = 0.

The following lemma will play an essential role in the proof of Theorem 1.5 in
the case of (i).

Lemma 3.2. LetT be a regular local ring and̂T denotes its completion. Let

0 −→ T̂ rn
(anij )−−−→ T̂ rn−1

(an−1,ij )−−−−−→ · · · (a2ij )−−−→ T̂ r1
(a1ij )−−−→ T̂ r0 (3.3)

be an exact sequence of freêT -modules, where(akij ) is an rk−1 × rk matrix
with entries in T̂ . Then there exist variables{Akij | k, i, j } corresponding to
{akij | k, i, j }, some variablesY1, . . . , Yt , and polynomials

f1, . . . , fs ∈ T
[{Akij | k, i, j }, Y1, . . . , Yt

]
which satisfy the following two conditions:

(a) There are elementsy1, . . . , yt of T̂ such that{akij | k, i, j }, y1, . . . , yt is a so-
lution off1 = · · · = fs = 0.

(b) Let {bkij | k, i, j }, z1, . . . , zt be elements inT . If {bkij | k, i, j }, z1, . . . , zt is
a solution off1 = · · · = fs = 0, then the sequence ofT -linear maps

0 −→ T rn (bnij )−−−→ T rn−1
(bn−1,i,j )−−−−−→ · · · (b2ij )−−−→ T r1

(b1ij )−−−→ T r0

is exact.
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Proof. Since the sequence (3.3) is a chain complex,{akij | k, i, j } is a solution of
the polynomial equations

rk−1∑
q=1

Ak−1,i,qAkqj = 0 (∀k, i, j).

If a system of elements{bkij | k, i, j } in T is a solution of the equations as above,
then the sequence

0−→ T rn
(bnij )−−−→ T rn−1

(bn−1,i,j )−−−−−→ · · · (b2ij )−−−→ T r1
(b1ij )−−−→ T r0 (3.4)

is a chain complex ofT -linear maps. We shall argue when it is exact.
Put

ek = rk − rk+1 + rk+2 − · · ·
for eachk > 0, where we considerrm = 0 if m> n. Remark that eachek is a non-
negative integer fork = 1, . . . , n since the sequence (3.3) is exact. Thanks to a
theorem of Buchsbaum–Eisenbud [1], the complex (3.4) is exact if and only if the
following two conditions are satisfied:

1. The rank of the matrix(bkij ) is equal toek for k = 1, . . . , n.
2. The grade of the idealIek ((bkij )) of T is at leastk for k = 1, . . . , n, where

Iek ((bkij )) denotes the ideal generated by all theek × ek minors of the matrix
(bkij ). Here, we think that the grade ofI0((bkij )) is infinity.

It is easy to see that there are polynomials such that, if{bkij | k, i, j } is
a solution of the polynomial equations, then the rank of the matrix(bkij ) is at
mostek for eachk.

Therefore we have only to find polynomials to keep grade high. Remark that
the grade of an ideal coincides with the height of it, becauseT is a regular local
ring. Then, by [5, Lemma 3.7], we can find polynomials with coefficients inT

which preserve height of ideals.✷
Now we start to prove Theorem 1.5(i).
Assume thatα ∈ G0(A) satisfiesf∗(α) = 0. We want to showα = 0. There are

finitely generatedA-modulesM andN such thatα = [M] − [N]. By definition,
f∗(α) = [M ⊗A Â] − [N ⊗A Â]. Therefore,[M ⊗A Â] = [N ⊗A Â] is satisfied in
G0(Â ). Under the situation, we want to prove[M] = [N] in G0(A).

The category of finitely generated̂A-modules must contain some short exact
sequences which give the relation[M ⊗A Â] = [N ⊗A Â] in G0(Â ). For example,
if there are short exact sequences

0→ M ⊗A Â →L1 → L2 → 0,

0→ L2 → L1 → N ⊗A Â → 0 (3.5)
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of finitely generated̂A-modules, then[
M ⊗A Â

] = [L1] − [L2] = [
N ⊗A Â

]
in G0(Â )

is satisfied.
For the simplicity, we assume that there exist short exact sequences as in (3.5).

(The general case would be proved in completely the same way.)
Let F. andG. be finiteT -free resolutions ofM andN , respectively. Since there

are short exact sequences as in (3.5), we have exact sequences of chain complexes
of freeT̂ -modules

0 → F ⊗T T̂ → P̂.→ R̂.→ 0,

0 → Ŝ. → Q̂ → G ⊗T T̂ → 0, (3.6)

where botĥP. andQ̂. are finiteT̂ -free resolutions ofL1, and botĥR. andŜ. are
finite T̂ -free resolutions ofL2. In particular,

P̂., Q̂., R̂., and̂S. are finite free resolutions. (3.7)

Furthermore, there exist exact sequences of chain complexes of freeT̂ -modules

0 → T̂.→ P̂.→ Q̂.→ Û.→ 0,

0 → V̂.→ R̂.→ Ŝ.→ Ŵ → 0 (3.8)

such that

T̂., Û., V̂., andŴ. are bounded split exact sequences. (3.9)

Using Lemma 3.2, we know that there is a set of polynomial equations with
coefficients inT that preserves conditions (3.6)–(3.9). SinceH0(̂P.), H0(Q̂.),
H0(R̂.), andH0(̂S.) areÂ = T̂ /I T̂ -modules,

H0(̂P.),H0(Q̂.),H0(R̂.), andH0(̂S). are annihilated byI. (3.10)

It is easy to see that there is a set of polynomial equations with coefficients inT

that preserves the condition (3.10).
The polynomial equations which we found as above has a solution inT̂ . Then,

applying Popescu–Ogoma’s approximation theorem (see Theorem 3.1), the set of
polynomial equations has a solution inT , becauseT is an excellent henselian
local ring. Then we have exact sequences of finiteT -free resolutions

0 → F.→ P.→ R.→ 0,

0 → S. → Q.→ G.→ 0,

0 → T. → P.→ Q.→ U.→ 0,

0 → V.→ R.→ S.→ W. → 0, (3.11)

such that
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• T., U., V., andW. are split exact,
• H0(P.), H0(Q.), H0(R.), andH0(S.) are annihilated byI , and
• P., Q., R., andS., are finiteT -free resolutions ofH0(P.), H0(Q.), H0(R.),

andH0(S.), respectively.

Then, by the first two exact sequences in (3.11), we have exact sequences of
A-modules as

0→ M → H0(P.)→H0(R.)→ 0,

0→ H0(S.)→ H0(Q.)→N → 0.

Furthermore, by the last two exact sequences in (3.11), we know thatH0(P.) (re-
spectivelyH0(R.)) is isomorphic toH0(Q.) (respectivelyH0(S.)) as aT -module.
Since modules are annihilated byI , they are isomorphisms asA-modules. Hence,
we have

[M] = [
H0(P.)

] − [
H0(R.)

] = [
H0(Q.)

] − [
H0(S.)

] = [N] in G0(A).

We have completed the proof of Theorem 1.5(i).

4. The proof of Theorem 1.5 in the case of (ii)

We shall prove Theorem 1.5 in the case of (ii) in this section.
PutA = SM , whereS = ⊕

n�0Sn is a noetherian positively graded ring over
a henselian local ring(S0,m0), andM =m0S0 + S+.

PutB = ∏
n�0Sn. It is theS+A-adic completion ofA. Here,B is flat overA

and Â = B̂ is satisfied. Letg :A → B denote the natural map. SinceA is an
excellent local ring, so isB by Rotthaus [15, Theorem 3]. Furthermore, since
S0 is a henselian local ring, so isB. SinceB is an excellent henselian local
ring, G0(B) → G0(B̂) = G0(Â ) is injective by (i) in Theorem 1.5. Therefore,
in order to show the injectivity of G0(A) → G0(Â ), we have only to prove that
G0(A)→ G0(B) is injective.

Put

Fi =
{(⊕

n�i Sn
)
A if i � 0

A if i < 0.

Then,F = {Fi}i∈Z is a filtration of ideals ofA, that is, it satisfies the following
three conditions: (1)Fi ⊇ Fi+1 for any i ∈ Z; (2) F0 = A; (3) FiFj ⊆ Fi+j for
anyi, j ∈ Z. Similarly put

F̂i =
{∏

n�i Sn if i � 0,
B if i < 0.

Then,F̂ = {F̂i}i∈Z is a filtration of ideals ofB. Remark that̂Fi coincides with
FiB = Fi ⊗A B for eachi. Put
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R(F) =
⊕
i∈Z

Fit
i ⊆A

[
t, t−1],

G(F )=R(F)/t−1R(F) =
⊕
i�0

Fi/Fi+1,

R(F̂ )=
⊕
i∈Z

F̂i t
i ⊆ B

[
t, t−1],

G(F̂ )=R(F̂ )/t−1R(F̂ ) =
⊕
i�0

F̂i/F̂i+1,

wheret is an indeterminate. Remark thatR(F) ⊗A B = R(F̂ ), G(F) ⊗A B =
G(F̂ ), andS =G(F) =G(F̂ ).

Flat homomorphismsA α−→A[t, t−1] andR(F)
β−→ R(F)[(t−1)−1] =A[t, t−1]

induce the maps G0(A)
α∗−→ G0(A[t, t−1]) and G0(R(F ))

β∗−→ G0(A[t, t−1]), re-
spectively (see Definition 2.2). Since the natural projectionR(F)

γ−→ G(F) is

finite, we have the induced map G0(G(F))
γ ∗−→ G0(R(F )) defined byγ ∗([M])=

[M] for each finitely generatedG(F)-moduleM. Thus we have the following
diagram:

G0(A)

α∗

G0
(
G(F)

) γ ∗
G0

(
R(F)

) β∗ G0
(
A

[
t, t−1

])
0

It is known that the horizontal sequence in the above diagram is exact. We refer the
basic facts on algebraicK-theory to Quillen [13] or Srinivas [17]. (The horizontal
exact sequence is called thelocalization sequenceinduced by a localization of
a category.)

On the other hand, we have a mapγ∗ : G0(R(F )) → G0(G(F)) satisfying
γ∗([N]) = [N/t−1N]− [0 :N t−1] for each finitely generatedR(F)-moduleN . It
is easy to seeγ∗γ ∗ = 0. Hence, we obtain the induced mapγ∗ : G0(A[t, t−1])→
G0(G(F)) that satisfiesγ∗β∗ = γ∗ because of the exactness of the localization
sequence. It is easy to see that, for an idealI of A,

γ∗α∗
([A/I ]) =

[⊕
i�0

Fi

Fi ∩ I + Fi+1

]
(4.1)

is satisfied.
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Similarly we have the diagram

G0(B)

α̂∗

G0
(
G

(
F̂

)) γ̂ ∗
G0

(
R

(
F̂

))
γ̂∗

β̂∗ G0
(
B

[
t, t−1

])
0

G0
(
G

(
F̂

))
and the induced map̂γ∗ : G0(B[t, t−1])→ G0(G(F̂ )).

Let h :S → A be the localization. Putg1 = 1 ⊗ g :A[t, t−1] → A[t, t−1]⊗A

B = B[t, t−1] andg2 = 1⊗ g :G(F)→ G(F)⊗A B =G(F̂ ). Remark thatg2 is
an isomorphism.

Then we have the following commutative diagram:

G0(S)
h∗ G0(A)

g∗

α∗ G0
(
A

[
t, t−1

])
g1∗

γ∗ G0
(
G(F)

)
g2∗

G0(B)
α̂∗ G0

(
B

[
t, t−1

]) γ̂∗ G0
(
G(F̂ )

) = G0(S).

We denote byϕ : G0(S) → G0(S) the composite map as above.
We need to show the following claim.

Claim 4.2. ϕ is the identity map.

We shall finish the proof of Theorem 1.5(ii).
Is is easy to see thath∗ is surjective sinceh is a localization. Then, by the

claim, we know thath∗ is an isomorphism andg∗ : G0(A)→ G0(B) is injective.

Proof of Claim 4.2. It is easily verified that G0(S) is generated by{[S/P ] ∣∣ P is a homogeneous prime ideal ofS
}
.

Therefore, we have only to showϕ([S/P ]) = [S/P ] for any homogeneous prime
idealP of S. PutP = ⊕

i�0Pi . Then we have

ϕ
([S/P ]) = γ∗α∗h∗

([S/P ]) = γ∗α∗
([A/PA])

=
[⊕
i�0

Fi

Fi ∩ PA+ Fi+1

]
=

[⊕
i�0

Si/Pi

]
= [S/P ].

(The third equality is obtained by the equality (4.1) as above.)✷
We have completed the proof in the case (ii).
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5. The proof of Theorem 1.5 in the case of (iii)

We shall prove Theorem 1.5 in the case of (iii) in the section.
It is enough to show the following claim.

Claim 5.1. Let A be a noetherian local ring and letI be an ideal ofA. Let
B be theI -adic completion ofA. Assume that bothSpecA\(SpecA/I) and
SpecB\(SpecB/IB) are regular schemes. Then, the induced mapG0(A) →
G0(B) is injective.

Remark that, ifA is an excellent local ring of isolated singularity, thenÂ is also
isolated singularity. Therefore, applying the claim, G0(A)→ G0(Â ) is proved to
be injective in the case.

Now we start to prove Claim 5.1.
We putX = SpecA, Y = SpecA/I , U = X\Y , X̂ = SpecB, Ŷ = SpecB/IB,

Û = X̂\Ŷ . Then the natural map̂Y → Y is an isomorphism and we have the
following fibre squares:

Ŷ X̂ Û

Y X U.

If U is empty, the assertion is obvious. Suppose thatU is not empty.
We have the following commutative diagram:

G1(X)
p

G1(U)

r

G0(Y )

s

G0(X)

t

G0(U)

u

0

G1
(
X̂

) q
G1

(
Û

)
G0

(
Ŷ

)
G0

(
X̂

)
G0

(
Û

)
0.

Here, for a schemeW , Gi (W) denotes theith K-group of the exact category
of coherentOW -modules. Horizontal sequences are exact (see Quillen [13] or
Srinivas [17]). Vertical maps are induced by flat morphisms.

We denote byC (respectivelyĈ) the cokernel ofp (respectivelyq). Let
v :C → Ĉ be the induced map byr. In order to prove the injectivity of
t : G0(X) → G0(X̂), we have only to show the following:

• u : G0(U) → G0(Û) is injective,
• v :C → Ĉ is surjective.

(Recall thats : G0(Y ) → G0(Ŷ ) is an isomorphism.)
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On the other hand, thanks to Thomason and Trobaugh [18], we have the
localization sequence inK-theory; that is, we have the following commutative
diagram:

K1(X)
p′

K1(U)

r ′
K0(X onY )

s ′
K0(X)

t ′

α K0(U)

u′
K−1(X onY )

w′

K1
(
X̂

) q ′
K1

(
Û

)
K0

(
X̂ on Ŷ

)
K0

(
X̂

) β
K0

(
Û

)
K−1

(
X̂ on Ŷ

)
.

Here, for a schemeW , Ki (W) denotes theith K-group of the exact category
of locally freeOW -modules of finite rank. We denote by Ki (X on Y ) the ith
K-group of the derived category of perfectOX-complexes with support inY .
By Thomason and Trobaugh [18], horizontal sequences in the above diagram are
exact.

Let W be a scheme. By definition, we have the natural mapξW : Ki (W) →
Gi (W) for eachi � 0. Furthermore,ξW is an isomorphism for eachi � 0 if W is
a regular scheme (Quillen [13, p. 27]).

We have the following commutative diagram:

K0(U)

u′

ξU G0(U)

u

K0
(
Û

) ξÛ G0
(
Û

)
.

Since both ofU andÛ are regular schemes, both ofξU andξÛ are isomorphisms.
Thus,u is injective if and only if so isu′.

On the other hand, sincêX → X is a flat map withY = Ŷ , we know that
the natural map Ki (X onY ) → Ki (X̂ on Ŷ ) is an isomorphism for eachi ∈ Z

by Theorem 7.1 in Thomason and Trobaugh [18]. In particular,s′ andw′ are
isomorphisms. Furthermore, sinceA andB are local rings, we have K0(X) =
K0(X̂)= Z andt ′ is an isomorphism. Since neitherU nor Û is empty, bothα and
β are injective. Therefore,u′ is injective.

Sinceα andβ are injective, the cokernel ofp′ (respectivelyq ′) coincides with
K0(X onY ) (respectively K0(X̂ on Ŷ )). Sinces′ is an isomorphism, we have

K1
(
Û

) = Im(q ′)+ Im(r ′), (5.2)

where Im( ) denotes the image of the given map. On the other hand, we have the
following commutative diagram:

K1(U)

r ′ ξU

K1
(
X̂

)
ξX̂

q ′
K1

(
Û

)
ξÛ

G1(U)

r

G1
(
X̂

) q
G1

(
Û

)
.
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SinceÛ is a regular scheme,ξÛ is an isomorphism. By (5.2), we immediately
obtain

G1
(
Û

) = Im(q)+ Im(r).

Therefore, the mapv :C → Ĉ is surjective. We have completed the proof of
Theorem 1.5.

Remark 5.3. If a local ring satisfies one of (i)–(iii) in Theorem 1.5, we know, by
Proposition 2.4, that Ai (A)Q

f∗−→ Ai (Â )Q is injective for alli.
If a local ring satisfies either (i) or (ii) in Theorem 1.5, we can prove that

Ai (A)
f∗−→ Ai (Â ) is injective for alli using the same method as in the proof of

Theorem 1.5.

6. Applications

We shall give applications of Theorem 1.5 in the section.
Recall that local rings are assumed to be homomorphic images of regular local

rings throughout the paper. Therefore, remark that they are universally catenary.

(I) Let X be a scheme of finite type over a regular schemeS. Then, the singular
Riernann–Roch theorem says that there exists an isomorphism ofQ-vector spaces

τX/S : G0(X)Q −→ A∗(X)Q

satisfying several good properties (Fulton [2, Chapter 18]). Remark that the
construction of the mapτX/S depends not only onX but also onS.

In fact, there are examples that the mapτX/S actually depends on the choice of

a regular base schemeS. Let k be an arbitrary field. PutX = P1
k andS = Speck.

Then, we haveτX/X(OX) = [X] by the construction ofτX/X . On the other hand,
by Hirzebruch–Riemann–Roch theorem, we obtainτX/S(OX)= [X]+χ(OX)[t],
wheret is a rational point ofX. It is well known thatχ(OX) = 1 and[t] �= 0 in
A∗(P1

k)Q.
Let T be a regular local ring and letA be a homomorphic image ofT . Then,

by the singular Riemann–Roch theorem as above, we have an isomorphism of
Q-vector spaces

τA/T : G0(A)Q −→ A∗(A)Q
determined by both ofA andT .

It seems to be natural to consider Conjecture 1.1. In fact, for many important
local rings, the conjecture is true. (Conjecture 1.1 is affirmatively solved in [7] if
A is a complete local ring orA is essentially of finite type over either a field or
the ring of integers.)
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Look at the diagram (2.5). The bottom of the diagram (2.5) is independent of
the choice of̂T sinceÂ is complete. Therefore, if vertical maps in the diagram
(2.5) are injective,τA/T is independent of the choice ofT . Hence,if Question1.4
is true for a local ringA, then Conjecture1.1 is true for the local ringA.

In particular, Conjecture 1.1 is true for a local ringA that satisfies one of the
three conditions in Theorem 1.5.

(II) Let A andT be rings as above and putd = dimA. Set

τA/T
([A]) = τd + τd−1 + · · · + τ0

(
τi ∈ Ai (A)Q

)
.

Theseτi ’s satisfy interesting properties as follows (see [8, Proposition 3.1]):

(a) If A is a Cohen–Macaulay ring, then

τA/T
([ωA]) = τd − τd−1 + τd−2 − · · · + (−1)iτd−i + · · ·

is satisfied, whereωA denotes the canonical module ofA.
(b) If A is a Gorenstein ring, then we haveτd−i = 0 for each oddi.
(c) If A is a complete intersection, then we haveτi = 0 for i < d .
(d) We haveτd �= 0, sinceτd is equal to[SpecA]d , where

[SpecA]d =
∑

P∈SpecA
dimA/P=d

�AP (AP )[SpecA/P ] ∈ Ad(A)Q.

(e) Assume thatA is normal. Let cl(ωA) ∈ Cl(A) be the isomorphism class
containingωA. Then, we haveτd−1 = cl(ωA)/2 in Ad−1(A)Q = Cl(A)Q.

We define the notion ofRoberts ringsas in Definition 1.2.
The category of Roberts rings contains complete intersections (see (c) as

above), quotient singularities and Galois extensions of regular local rings. There
are examples of Gorenstein non-Roberts rings. (It is proved in [6] that

k[xij | i = 1, . . . ,m, j = 1, . . . , n]({xij })
It (xij )

is a Roberts ring if and only if it is a complete intersection. Therefore, if
m = n > 2, the ring is a Gorenstein ring that is not a Roberts ring.) In 1985,
Roberts [14] proved that the vanishing property of intersection multiplicity is
satisfied for Roberts rings. We refer the reader to basic facts and examples of
Roberts rings to [7,8].

Remark 6.1. By the diagram (2.5), we immediately obtain that, ifA is a Roberts
ring, then so is the completion̂A. (By the commutativity of the diagram (2.5), we
haveτ

Â/T̂
([Â]) = f∗(τA/T ([A])). Remark that the map A∗(A)Q

f∗−→ A∗(Â )Q in

the diagram (2.5) is graded.)
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On the other hand, assume thatÂ is a Roberts ring. As in (I), the Riemann–
Roch mapτ

Â/S
is independent of a regular local ringS. Hence, we may assume

τ
Â/T̂

([Â]) ∈ AdimA(Â )Q. Therefore, if f∗ is injective, thenA is a Roberts

ring, too. In a sense, the converse is also true as we shall see in the following
proposition.

We give some equivalent conditions to Question 1.4.

Proposition 6.2. All local rings are assumed to be homomorphic images of
excellent regular local rings. Then, the following conditions are equivalent:

(1) The induced mapG0(A)Q → G0(Â )Q is injective for any local ringA, that
is, Question1.4 is true.

(2) The induced mapAdimA−1(A)Q → AdimÂ−1(Â )Q is injective for any
reduced equi-dimensional local ringA.

(3) For any local ring A, A is a Roberts ring if so isÂ. (That is to say,
Question1.3 is true.)

Proof. We have already seen in Proposition 2.4 and Remark 6.1 that the
condition (1) implies both of (2) and (3).

We first prove (2)�⇒ (1). LethA denote the henselization ofA. SincehA → Â

induces the injection G0(hA)Q → G0(Â )Q by Theorem 1.5(i), it is sufficient to
show the injectivity ofg∗ : G0(A)Q → G0(

hA)Q. It is equivalent to the injectivity
of g∗ : A∗(A)Q → A∗(hA)Q since the diagram

G0(A)Q

g∗

τA/T A∗(A)Q
g∗

G0
(
hA

)
Q

τhA/hT A∗
(
hA

)
Q

is commutative by [7, Lemma 4.1(c)]. LetP1, . . . ,Ps , be prime ideals ofA of
coheightl, and letn1, . . . , nr be integers such thatg∗(

∑
i ni[SpecA/Pi]) = 0,

where
∑

i ni[SpecA/Pi] denotes the image of
∑

i ni [SpecA/Pi ] in Al (A)Q. We
want to prove

∑
i ni[SpecA/Pi] = 0 in Al (A)Q. We may assumel < dimA.

There are prime idealsQ1, . . . ,Qt of hA of coheightl + 1, elementsaj ∈ hA\Qj

for j = 1, . . . , t , and integersb �= 0, b1, . . . , bt such that

b
∑
i

ni
[
SpechA/Pi

hA
] =

∑
j

bj div(Qj , aj ).

On the other hand, dimA/(Qj ∩ A) = l + 1 holds for eachj , since any fibre
of a henselization has dimension 0. SetI = (Q1 ∩ A) ∩ · · · ∩ (Qt ∩ A) and
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g′ :A/I → hA/IhA. We may assume thatI is contained in all ofPi ’s. Then we
haveg′∗(

∑
i ni[SpecA/Pi])= 0. Since the diagram

Al (A)Q
g∗ Al

(
hA

)
Q

Al (A/I)Q
g′∗ Al

(
hA/IhA

)
Q

is commutative, we have only to show thatg′∗ is injective. Here, vertical maps
of the diagram are induced by proper morphisms SpecA/I → SpecA and
SpechA/IhA → SpechA. Remark thathA/IhA coincides with the henselization of
A/I . ReplacingA/I with A, it is sufficient to show that, for a reduced equi-
dimensional local ringA, the map AdimA−1(A)Q → AdimhA−1(

hA)Q is injective.
Since AdimA−1(A)Q → AdimÂ−1(Â )Q is injective by (2), so is AdimA−1(A)Q →
AdimhA−1(

hA)Q.

Next we shall prove (3)⇒ (2). Assume that AdimA−1(A)Q
f∗−→ AdimÂ−1(Â )Q

is not injective for an equi-dimensional local ringA. Let c be a non-zero element
of AdimA−1(A)Q such thatf∗(c) = 0. Putd = dimA. SinceτA/T : G0(A)Q →
A∗(A)Q is an isomorphism, there exist finitely generatedA-modulesM andN
with dimension less thand such that

τA/T

( [M] − [N]
n

)
= c − (τd−1 + τd−2 + · · · + τ0)

for some positive integern. SinceA is equi-dimensional, we may assume that
[N] = 0. Let B denote the idealizationA � (An−1 ⊕ M). Then we have the
following commutative diagram of isomorphisms:

G0(B)Q
τB/T A∗(B)Q

α

G0(A)Q
τA/T A∗(A)Q.

Here, vertical maps are induced by the proper map SpecB → SpecA. Then we
have

ατB/T
([B]) = τA/T

([B]) = τA/T
(
n[A] + [M]) = nτd + nc.

HenceB is not a Roberts ring sinceα is a graded isomorphism. On the other hand,
we have the following commutative diagram:

A∗(B)Q
α

γ A∗
(
B̂

)
Q

β

A∗(A)Q f∗ A∗
(
Â

)
Q
,

whereβ is the map induced by the proper morphism SpecB̂ → SpeĉA. Using [7,
Lemma 4.1(c)], we haveγ τB/T ([B])= τ

B̂/T̂
([B̂]). Therefore, we have
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βτ
B̂/T̂

([
B̂

]) = βγ τB/T
([B]) = f∗ατB/T

([B]) = f∗(nτd + nc)

= nf∗(τd) ∈ Ad(Â )Q.

We haveτ
B̂/T̂

([B̂]) ∈ Ad (B̂)Q sinceβ is a graded isomorphism. Hence,̂B is

a Roberts ring. ✷
We give some remarks.

Remark 6.3. Note that the henselizationhA of a noetherian local ringA
is the direct limit of ringsB as below. Therefore, in completely the same
way as the proof of Proposition 6.2, it will be proved that, under the same
situation, the following conditions are also equivalent to the conditions (1)–(3)
in Proposition 6.2:

(4) Let (A,m) be a reduced equi-dimensional local ring. Letn be a positive
integer and leta1, . . . , an be elements inA. Assume thatan ∈ m and
an−1 /∈ m. PutB =A[x](m,x)/(x

n+a1x
n−1+· · ·+an), wherex is a variable.

Then, for any ringsA andB that satisfy the assumption as above, the induced
map G0(A)Q → G0(B)Q is injective.

(5) For any ringsA andB that satisfy the same assumption as in (4), the induced
map AdimA−1(A)Q → AdimB−1(B)Q is injective.

(6) For any ringsA and B that satisfy the same assumption as in (4),A is
a Roberts ring if so isB.

(7) Let (A,m) be a reduced equi-dimensional local ring. Letn be a positive
integer and leta1, . . . , an be elements inA. Assume thatan ∈ m and
an−1 /∈ m. Let h(x) be in A[x] such thath(0) /∈ m, wherex is a variable.
PutC = A[x,h(x)−1]/(xn + a1x

n−1 + · · · + an). Then, for any ringsA and
C that satisfy the assumption as above, the induced map G0(A)Q → G0(C)Q
is injective.

Remark 6.4. Letf : (A,m)→ (B,n) be a flat local homomorphism of noetherian
local rings. For an idealI of A, set

[SpecA/I ] =
∑

P∈AsshA A/I

�AP (AP /IAP )[SpecA/P ],

where AsshAA/I = {P ∈ MinAA/I | dimA/P = dimA/I }. Then, we ob-
tain a graded morphismf∗ : A∗(A) → A∗(B) defined byf∗([SpecA/Q]) =
[SpecB/QB].

If B/PB is equi-dimensional for any minimal prime idealP of A, thenB/QB

is equi-dimensional for any prime idealQ of A. In the case,f∗ satisfies

f∗
([SpecA/Q]) =

∑
q

�Bq
(Bq/QBq)[SpecB/q],

where the sum is taken over all minimal prime ideals ofB/QB.
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If the closed fibreB/mB is Cohen–Macaulay, thenB/QB is equi-dimensional
for any prime idealQ of A. It is easily verified since all fibres are Cohen–
Macaulay if so is the closed fibre (that is proved using Macaulayfication due
to Kawasaki [4]). We remark that flat local homomorphisms in (2) and (5) in
Proposition 6.2 and Remark 6.3 satisfy the condition.

For a local ring(A,m), we setAs =A[x1, . . . , xs]mA[x1,...,xs ], wherex1, . . . , xs
are variables.

Proposition 6.5. Let f : (A,m) → (B,n) be a flat local homomorphism of
noetherian local rings.

(a) Assume thatB/n is finitely generated overA/m as a field andG0(As)Q →
G0(Âs)Q is injective fors = tr degA/m B/n, that is the transcendence degree
of B/n overA/m. Then, bothf∗ : G0(A)Q → G0(B)Q andf∗ : A∗(A)Q →
A∗(B)Q are injective.

(b) Suppose thatA contains a field of characteristic0. If Question1.4 is true
for any local ring, then bothf∗ : G0(A)Q → G0(B)Q and f∗ : A∗(A)Q →
A∗(B)Q are injective.

Proof. We shall only prove the injectivity of the maps between Grothendieck
groups. The injectivity of the maps between Chow groups will be proved in
completely the same way.

First we shall prove (a). Taket1, . . . , ts ∈ B such thatt1, . . . , ts ∈ B/n is
a transcendence basis overA/m. Consider the homomorphisms

A
g−→D =A[x1, . . . , xs]mA[x1,...,xs ] h−→ B,

whereh is defined byh(xi) = ti for eachi. By the local flatness criterion (e.g.,
[10, Theorem 22.3]), we know thath is flat. Sincef = hg, we havef∗ = h∗g∗.
We shall prove that bothg∗ andh∗ are injective.

We first prove thatg∗ is injective. We may assumes = 1. We have only to
prove that a flat mapA → A[x,p(x)−1] induces the injective map G0(A)Q →
G0(A[x,p(x)−1])Q for p(x) ∈ A[x]\mA[x]. Take a monic polynomialq(x) ∈
A[x] of positive degree such thatp(x) and q(x) (in (A/m)[x]) are relatively
prime. Since (p(x), q(x),m)A[x] = A[x], p(x) is a unit in A[x]/(q(x)).
Therefore,

A
[
x,p(x)−1]/(

q(x)
) =A[x]/(q(x)) (6.6)

is satisfied. The commutative diagram

A A
[
x,p(x)−1

]

A
[
x,p(x)−1

]/(
q(x)

)
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induces the following commutative diagram:

G0(A)Q G0
(
A

[
x,p(x)−1

])
Q

G0
(
A

[
x,p(x)−1

]/(
q(x)

))
Q
.

Here, the vertical map sends[M] to [M/q(x)M] − [0 :M q(x)] for each finitely
generatedA[x,p(x)−1]-moduleM. SinceA[x,p(x)−1]/(q(x)) is a finitely gen-
eratedA-free module by (6.6), the map G0(A)Q → G0(A[x,p(x)−1]/(q(x)))Q
is injective. Hence G0(A)Q → G0(A[x,p(x)−1])Q is injective.

We next prove thath∗ is injective. Remark that(D,P ) → (B,n) is a flat
local homomorphism such thatB/n is a finite algebraic extension ofD/P . Since
G0(D)Q → G0(D̂)Q is injective, we may assume that bothD andB are complete.
We shall prove the following claim.

Claim 6.7. Let h : (D,P ) → (B,n) be a flat local homomorphism of complete
local rings such thatB/n is a finite algebraic extension ofD/P . Then, the
induced maph∗ : G0(D)Q → G0(B)Q is injective.

Proof. Take q1, . . . , qt ∈ n such that the imageq1, . . . , qt is a system of
parameters ofB/PB. PutB ′ = B/(q1, . . . , qt ). Let α : G0(B)Q → G0(B

′)Q be
a map defined byα([M]) = ∑

i (−1)i[Hi(K. ⊗B M)], whereK. is the Koszul
complex overB with respect toq1, . . . , qt . Remark thath′ :D → B ′ is finite,
becauseD is complete. We have a maph′∗ : G0(B

′)Q → G0(D)Q defined by
h′∗([M])= [M].

We denote byφ the composite map of

G0(D)Q
h∗−→ G0(B)Q

α−→ G0(B
′)Q h′∗−−→ G0(D)Q.

We have only to prove that the composite map is an isomorphism. It is enough to
show that, for any prime idealQ of D,

φ([D/Q]) = [B/n :D/P ]e(q1,...,qt )(B/PB) · [D/Q]
+ (lower-dimensional terms) (6.8)

is satisfied, wheree(q1,...,qt )(B/PB) denotes the multiplicity ofB/PB with
respect to(q1, . . . , qt ).

We now start to verify the equality as above. ReplacingD/Q by D, we
may assume thatD is an integral domain andQ = 0. Let p1, . . . , pd be
a system of parameters ofD, andL. denotes the Koszul complex overD with
respect top1, . . . , pd . Let β : G0(D)Q → Q be a map defined byβ([M]) =∑

i (−1)i[Hi(L.⊗D M)]. Then, we have

βφ
([D]) = [B/n : D/P ]e(p1,...,pd ,q1,...,qt )(B)

= [B/n : D/P ]e(p1,...,pd )(D)e(q1,...,qt )(B/PB).
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Sinceβ([M]) = rankD M · e(p1,...,pd )(D), the equality (6.8) is proved. We have
completed the proof of (a).

We next prove (b). We may assume that bothA and B are complete.
SinceA contains a field of characteristic 0, we can take a coefficient fieldK

(respectivelyL) of A (respectivelyB) such thatK ⊆ L. LetM be an intermediate
field such thatL is algebraic overM andM is purely transcendental overK. Set

A= K❏y1, . . . , yt❑/I.

Put

C =M❏y1, . . . , yt❑/IM❏y1, . . . , yt❑ and

D = L❏y1, . . . , yt❑/IL❏y1, . . . , yt❑.

Then we have flat local homomorphisms

A
g−→C h−→ D r−→ B

such thatf = rhg. We shall prove thatg∗, h∗ andr∗ are injective.
The injectivity ofr∗ follows from Claim 6.7.
Next we prove thath∗ is injective. It is easy to see thath coincides with the

composite map of

C
h1−→ C ⊗M L

h2−→ D.

It is easily verified thatC⊗M L is a noetherian local ring andD is the completion
of C ⊗M L. Since we are assuming that Question 1.4 is true,h2∗ is injective.
SinceL is a direct limit of finite algebraic extensionsM ′ over M,C ⊗M L

is a direct limit of ringsCM ′ = M ′❏y1, . . . , yt❑/IM
′❏y1, . . . , yt❑. SinceCM ′ is

finitely generated freeC-module, the map G0(C)Q → G0(CM ′)Q is injective.
Thereforeh1∗ is injective.

Next we prove thatg∗ is injective. Let{tλ | λ ∈ A} be a transcendence basis of
M overK such thatM =K({tλ | λ ∈ A}). Set

E =A[tλ | λ ∈A]mA[tλ |λ∈A].

It is easy to see thatg coincides with the composite map of

A
g1−→ E

g2−→ C.

It is easy to see thatE is a noetherian local ring andC is the completion ofE.
Since we are assuming that Question 1.4 is true,g2∗ is injective. It is easy to
see thatE is the direct limit of ringsAs = A[t1, . . . , ts]mA[t1,...,ts ]. As we have
seen in the proof of (a), the map G0(A)Q → G0(As)Q is injective. Hence,g1∗ is
injective. ✷

Using Theorem 1.5 and Proposition 6.5, the following corollary is immediately
proved.
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Corollary 6.9. Let (A,m) → (B,n) be a flat local homomorphism of excellent
local rings. Assume thatA has at most isolated singularity.

1. If B/n is finitely generated overA/m, then G0(A)Q → G0(B)Q and
A∗(A)Q → A∗(B)Q are injective.

2. If A contains a field of characteristic0, then G0(A)Q → G0(B)Q and
A∗(A)Q → A∗(B)Q are injective.

Let (A,m)→ (B,n) be a flat local homomorphism with closed fibreF . Then,
we can prove the following:

• If B is a Roberts ring, then so isF .
• Even if bothA andF are Roberts rings,B is not necessary so.

It is natural to ask equivalence between the Robertsness ofA and that ofB
under some strong assumption onF .

Proposition 6.10. Let f : (A,m) → (B,n) be a flat local homomorphism of
noetherian local rings such thatB/n is finitely generated overA/m as a field.

(a) Suppose thatB/n is separable overA/m and B/mB is a complete
intersection. Assume thatG0(B)Q → G0(B̂)Q is injective. Then, ifA is
a Roberts ring, so isB.

(b) Suppose thatB/mB is Cohen–Macaulay. Assume thatG0(As)Q → G0(Âs)Q
is injective fors = tr degA/m B/n. Then, ifB is a Roberts ring, so isA.

We omit a proof of the proposition as above. Using Theorem 1.5, we
immediately obtain the following corollary.

Corollary 6.11. Let f : (A,m) → (B,n) be a flat local homomorphism of
noetherian local rings.

1. Suppose thatB/n is a finitely generated separable extension overA/m and
B/mB is a complete intersection. Assume thatG0(As)Q → G0(Âs)Q and
G0(B)Q → G0(B̂)Q are injective fors = tr degA/m B/n. Then,A is a Roberts
ring if and only if so isB.

2. Suppose that bothA andB are excellent andf is étale essentially of finite
type. Assume thatA has at most isolated singularity. Then,A is a Roberts
ring if and only if so isB.
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