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Abstract

We prove that the induced map&l) — GO(X) by completion is injective ifA is an
excellent noetherian local ring that satisfies one of the following three conditionsigi)
henselian; (ii)A is a local ring at the homogeneous maximal ideal of a homogeneous ring
over afield; (iii) A has at most isolated singularity.
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1. Introduction

In this paper, we discuss the injectivity of the map(®) — Go(A) induced
by completionA — A. The problem is closely related to the theoryRidberts
rings as follows.
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For a schemeX that is of finite type over a regular scherSewe have an
isomorphism ofQ-vector spaces

by the singular Riemann—Roch theorem (Fulton [2, Chapters 18 and 20]), where
Go(X) (respectively A(X)) denotes the Grothendieck group of coherént-
modules (respectively Chow group &f). This is the natural generalization of
the Grothendieck—Riemann—Roch theorem to singular schemes. Usually the map
Tx/s depends not only oX but also onS (see Section 6).

Let T be a regular local ring and let be a homomorphic image @f. Since
A is of finite type ovelT', we have an isomorphism @f-vector spaces

Tspeca/ spear - G0(SpecA)q — A (Specd)q

by the singular Riemann—Roch theorem as above. We d {84/ specr
Go(SpecA), and A.(SpecA) simply bytA/T, Go(A), and A.(A), respectively.

The construction of the map, 7 depends not only o but also onT.
However, ifA is a complete local ring ot is essentially of finite type over either a
field or the ring of integers, it is proved in [7] that the mag is independent of
the choice off". Furthermore, no example is known where the map. actually
depends on the choice Bf It seems natural to consider the following conjecture.

Conjecture 1.1. Let A be a local ring that is a homomorphic image of a regular
local ringT'. Then, the Riemann—Roch map . as above is independent of the
choice ofT.

In 1985, P. Roberts [14] proved that the vanishing theorem holds for a local
ring A that satisfies:A/T([A]) € Adima(A)qg, where we say that the vanishing

theorem holds fona if Zi(—l)"ZA(ToriA(M, N)) =0 is satisfied for two finitely
generatedA-modules M and N that satisfy the following three conditions:
(1) both of them have finite projective dimension, (2) difr+- dimN < dim A,
(3) M ®4 N is of finite length. (This result contains an affirmative answer to a
conjecture proposed by Serre [16]. The conjecture was independently solved by
Roberts [14], Gillet and Soulé [3].)

Inspired by the result of Roberts, the second author defined the notion of
Roberts rings as below and studied them in [7,8].

Definition 1.2. Allocal ring A is said to be &oberts ringf there is a regular local
ring T such thatd is a homomorphic image df andrA/T([A]) € Adima(A)g is
satisfied.

By the result of Roberts [14], we know that Roberts rings satisfy the vanishing
theorem.
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The category of Roberts rings contains complete intersections, quotient
singularities, and Galois extensions of regular local rings. Normal Roberts rings
areQ-Gorenstein. There are examples of Gorenstein normal non-Roberts rings.
If AisaRobertsring, then so is the completﬁr(See [7] or Remark 6.1.) Here,
we want to ask the following question:

Question 1.3. Let A be a local ring that is a homomorphic image of a regular
local ring. Assume that the completighis a Roberts ring. Then, ig a Roberts
ring, too?

There is a deep connection between Conjecture 1.1 and Question 1.3. As we
shall see in Proposition 6.2 in Section 6, Question 1.3 is true foraifhgnd only
if Question 1.4 as below is true for adly Furthermore, if Question 1.4 is true for
alocal ringA, then Conjecture 1.1 is true for the local ridg(see Section 6 (1)).

Question 1.4. Let A be alocal ring that is a homomorphic image of a regular local
ring. Then, is the map §&A)g > Go(A)q (induced by the flat mag > A)
injective?

In Sections 3, 4 and 5, we shall prove the following theorem that is the main
theorem of the paper.

Theorem 1.5. Let A be a homomorphic image of an excellent regular local
ring. If A satisfies one of the following three conditions, then the natural map
Go(A) L5 Go(A) is injective

() Ais ahenselian local ring
(i) A = Sy, where S = @@0 S, is a noetherian positively graded ring
over a henselian local rindSg, mo), and M = mgSo + S+ (where S, =

@n>0 Sn);
(iii) A has at most an isolated singularity.

The three assertions in Theorem 1.5 will be proved in completely different
ways. In the proof of Claim 4.3 in [7], the injectivity was announced in case (i)
as above without a proof. We shall give a precise proofto Theorem 1.5 in case (i)
in Section 3. In the proof, Popescu—Ogoma’s approximation theorem [11,12] is
used. We remark that rings in (i) are contained in those in (ii). In case (ii), we use
a method similar to “deformation to normal cones” in Chapter 5 of Fulton [2].
In case (iii), we use the localization sequencekirtheory due to Thomason
and Trobaugh [18], that is a generalization of the exact sequences constructed
by Quillen [13] or Levine [9].

We shall give some applications of Theorem 1.5 in Section 6. As we shall see
in Proposition 6.5, Question 1.4 is equivalent to the statement that the induced
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map G(A)g £ Go(B)q is injective for any flat local homomorphise £> B
such that its extension of the residue class fields is finitely generatédAfB is
a flat local homomorphism such thatcontains a field of characteristic 0, then the
induced map &(A)qg LN Go(B)q is injective if Question 1.4 is true. The authors
have no example of a flat local homomorphigm> B such that the induced map
Go(A) — Go(B) is not injective.

The next section is devoted to preliminaries.

2. Preliminaries

Throughout the article, a local ring is always assumed to be a homomorphic
image of a regular local ring. Remark that such rings are universally catenary.

First of all, let us define the Grothendieck group and the Chow group of
aringA.

Definition 2.1. For a ring A, let G(A) be theGrothendieck groupf finitely
generatedi-modules, i.e.,
D Z- M)

M: a finitely generatedi-module
(IM]1—[L]1-[N]|0—L— M — N — Oisexact

Let A;(A) be theith Chow groupof A, i.e.,
&b Z - [SpecA/P]

PeSpecA,dimA/P=i

Go(A) =

Ai(A) = (div(Q,x)| Q e SpecA, dmA/Q=i+1, x € A\Q)’
where
div(Q.x)= > £a,(Ap/(Q.x)Ap)[Speca/P],

PeMing A/(Q,x)

where 4, () denotes the length as atp-module. TheChow groupof A is
defined to be A(A) = BIMA A; (A).
For an abelian groupf, Mg denotes\ @z Q.

Definition 2.2. (1) Letg : A — B be aflat ring homomorphism. Then, we have the
induced homomorphism, : Go(A) — Go(B) defined byg, ([M]) =[M ®4 B].

(2) Let (A, m) be alocal ring and denotes the completion df in them-adic
topology. For each, the natural mapt > A induces the map AA) 2% A; (A)
defined by

f(1Speca/P1) =Y "tz (Ap/PAy)[Specd/p],
p
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where the sum is taken over all minimal prime idgatsf A/PA as anA-module.

Here, remark thatA/PA A/P is equi-dimensional sincel is universally
catenary (Matsumura [10, Theorem 31.7]). See Remark 6.4 for induced maps by
general flat local homomorphisms.

Remark 2.3. Assume thati is ad-dimensional excellent normal local ring. Then
A is also normal and the natural map(@) — CI(A) is injective, where Gl4) is
the divisor class group of.

On the other hand, it is well known that;A1(A) coincides with C{A). Thus,
we know thatf, :Agz_1(A) — Ag_1(A) is injective if A is an excellent normal
ring of dimensiond.

Then, we have the following proposition.

Proposition 2.4. Let A be a local ring. Then, the following conditions are
equivalent

1. Go(A)g L> Go(A)g is injective.

2. A(A)Q L5 A (R)q is injective for alli.

Proof. Take a regular local rin@ such thatA is a homomorphic image df .
Then, by the singular Riemann—Roch theorem, we have isomorphisi@s of
vector spacesA/T:Go(A)Q — Ay(A)g and Tx/f:GO(A)Q — A.(A)g such
that the following diagram is commutative [7, Lemma 4.1(c)]:

Go(A)g 2o A, (A)g
f*l J/f* (2.5)

Go(A)g—">Au(A)g
Here f.:A.(A)g — A*(A)Q is the direct sum of fi.:A;(A)g — Ai(Z)Q |
i=0,1,...,dimA}. Therefore we know immediately that two conditions in the
proposition are equivalent.C

By the proposition, Question 1.4 is a natural generalization of the injectivity
of divisor class groups (Remark 2.3) in a sense. In Proposition 6.2, we shall know
that Question 1.4 is true if and only ifgn 4—1(A)g — AdimA_l(Zf)@ is injective
for any reduced equi-dimensional local ridg

3. The proof of Theorem 1.5 in the case of (i)

We shall prove the injectivity of aA) Go(A) in the case wherdl is
a henselian local ring in the section.
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By the assumption, there is an excellent regular local #inguch thatA is
a homomorphic image df. Replacingl’ with its henselization, we may assume
that T is an excellent henselian regular local ring. 3et T/1 for an ideall
of T.

Before proving the theorem, we need some preliminaries.

The key point of the proof is to apply the following Popescu—Ogoma’s
approximation theorem [11,12].

Theorem 3.1. Let s and ¢ be positive integers. LetR,n) be an excellent
henselian local ring. Consider the polynomial riRj X1, ..., X,] with variables
X1,..., X;. Letfi, ..., fy be polynomials iR[ X1, ..., X;]. If there are elements
ai, ..., a; of then-adic completiorﬁthat satisfy

fiat,...,a)=---= fs(a1,...,a;) =0 inR,
then there exist elements, .. ., b, of R that satisfy
fl(blvvbl‘)zzfi(blvvbl‘)ZO InR
If a1,...,a; satisty fi(a1,...,a;) =--- = fs(a1,...,a,) = 0, we say that
ai, ..., a; is asolutionof the polynomial equationg = --- = f;, =0.

The following lemma will play an essential role in the proof of Theorem 1.5 in
the case of (i).

Lemma 3.2. Let T be a regular local ring and’ denotes its completion. Let

(a m/)

(an—1,ij) (azij)

0 s Tra (Wid) Fr, g 71 @), Fro (3.3)

be an exact sequence of fréemodules, wheréay;;) is anri_1 x r, matrix
with entries in7. Then there exist variablegAy;; | k,i, j} corresponding to
{akij | k,i, j}, some variableg1, ..., Y;, and polynomials

S fs € T[{Akij Lk iy jh Y1, ... Y]

which satisfy the following two conditions

(a) There are elements, ..., y, of T such thatf{ay; | k.1, j}, y1,..., y: isaso-
lutionof f1=---= f; =0.

(b) Let{bij | k,i, j}, z1,...,2 be elements ifT. If {by;j | ki, j},z1,...,2 iS
a solution of f1 = --- = f; =0, then the sequence Bflinear maps

(bnij) (b1ij)

0—s T7n Trn1 Gn-v,ij)  b2ij) T T70

is exact.
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Proof. Since the sequence (3.3) is a chain compley, | k, i, j} is a solution of
the polynomial equations

re—1

Y Ak-1igArgj =0 (Vk,i, ).

g=1
If a system of element®y;; | k, i, j} in T is a solution of the equations as above,
then the sequence

0—s T"n (bnij) Tra1 (bn—1,i.j) (b2ij) T (b1ij)

"0 (3.4)

is a chain complex of'-linear maps. We shall argue when it is exact.
Put

ek =Tk — Tkl + k42— """

for eachk > 0, where we considet, = 0 if m > n. Remark that eacéy, is a non-
negative integer fok = 1, ..., n since the sequence (3.3) is exact. Thanks to a
theorem of Buchsbaum-Eisenbud [1], the complex (3.4) is exact if and only if the
following two conditions are satisfied:

1. The rank of the matrixby;;) is equal toe, fork =1, ..., n.

2. The grade of the idedl, ((bx;;)) of T is at leastk for k =1,...,n, where
I, ((btij)) denotes the ideal generated by all #ie< e, minors of the matrix
(bkij). Here, we think that the grade &f((b;;)) is infinity.

It is easy to see that there are polynomials such thathf; | k,i, j} is
a solution of the polynomial equations, then the rank of the matix) is at
mostey, for eachk.

Therefore we have only to find polynomials to keep grade high. Remark that
the grade of an ideal coincides with the height of it, because a regular local
ring. Then, by [5, Lemma 3.7], we can find polynomials with coefficientg in
which preserve height of ideals.0

Now we start to prove Theorem 1.5(i).

Assume thatr € Go(A) satisfiesf, (o) = 0. We want to show = 0. There are
finitely generatedd-modulesM and N such thatx = [M] — [N]. By definition,
fi(@)=[M ®4 Al — [N ®4 A]. Therefore[M ®,4 A] = [N ®4 Al is satisfied in
Go(A). Under the situation, we want to pro& ] =[N]in Go(A).

The category of finitely generatéﬁ-modules must contain some short exact
sequences which give the relatiof ®4 A] = [N ®4 A] in Go(A ). For example,
if there are short exact sequences

O—>M®AZ—>L1—>L2—>O,
O—>L2—>L1—>N®A;\\—>0 (3.5)
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of finitely generated?—modules, then
[M®sA]=[L1]—[Lal=[N®4 A] inGo(A)

is satisfied.
For the simplicity, we assume that there exist short exact sequences as in (3.5).
(The general case would be proved in completely the same way.)
LetF. andG. be finiteT -free resolutions oM andN, respectively. Since there
are short exact sequences as in (3.5), we have exact sequences of chain complexes
of free T-modules
0—-FQr f—)f@.—>@.—>0,
0—>/S\.—>@—>(G®T?—>0, (3.6)
where botfP. andQ. are finite7-free resolutions of.1, and bothR. andS. are
finite T-free resolutions of.». In particular,

P.,Q.,R., andS. are finite free resolutions. (3.7)

Furthermore, there exist exact sequences of chain complexes Gf-imemdules

0-V.5oR >S.->W-o0 (3.8)
such that
T.,U.,V., andW. are bounded split exact sequences (3.9

Using Lemma 3.2, we know that there is a set of polynomial equations with
coefficients in7_that preserves conditions (3.6)—(3.9). Sindg(’.), Ho(Q.),
Ho(R.), andHo(S.) areA = T /IT-modules,

Ho(P.), Ho(Q.), Ho(R.), and Hy(S). are annihilated by. (3.10)

It is easy to see that there is a set of polynomial equations with coefficieffts in
that preserves the condition (3.10). R
The polynomial equations which we found as above has a solutidnTinen,
applying Popescu—Ogoma’s approximation theorem (see Theorem 3.1), the set of
polynomial equations has a solution Th becausel’ is an excellent henselian
local ring. Then we have exact sequences of fifitee resolutions
O—-F.—-P.—R.—0,
0—-S.—-Q.— G.—0,
0->T.—-P.—->Q.—-U.—>0,

0—-V.-R. —-S.—W.—0, (3.11)

such that
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e T.,U., V., andW. are split exact,

e Hy(P.), Ho(Q.), Ho(R.), andHp(S.) are annihilated by, and

o P, Q. R., andS., are finiteT -free resolutions ofip(IP.), Ho(Q.), Ho(R.),
and Hy(S.), respectively.

Then, by the first two exact sequences in (3.11), we have exact sequences of

A-modules as

0— M — Ho(P.) - Hp(R.) — O,
0— Hp(S.) - Ho(Q.) > N — 0.

Furthermore, by the last two exact sequences in (3.11), we knowHy(&t) (re-
spectivelyHp(R.)) is isomorphic toHp(Q.) (respectivelyHp(S.)) as aT-module.
Since modules are annihilated bythey are isomorphisms asmodules. Hence,
we have

[M]=[Ho(P.)] — [Ho(R.)] = [Ho(Q.)] — [Ho(S.)] = [N] in Go(A).
We have completed the proof of Theorem 1.5(i).

4. The proof of Theorem 1.5in the case of (ii)

We shall prove Theorem 1.5 in the case of (ii) in this section.

Put A = Sy, whereS = @@0 S, is a noetherian positively graded ring over
a henselian local ringSo, mo), andM = moSo + S+ .

PutB =[], S.- Itis theS, A-adic completion ofd. Here, B is flat overA
and A = B is satisfied. Letg: A — B denote the natural map. Sinceis an
excellent local ring, so i by Rotthaus [15, Theorem 3]. Furthermore, since
So is a henselian Lgcal ring/,\so iB. Since B is an excellent henselian local
ring, Go(B) — Go(B) = Gp(A) is injective byii) in Theorem 1.5. Therefore,
in order to show the injectivity of §A) — Gg(A ), we have only to prove that
Go(A) — Go(B) is injective.

Put

Fi= { (Dn>i Sn)A ifi>0
A ifi <O.
Then, F = {F;};c7 is a filtration of ideals of4, that is, it satisfies the following
three conditions: (1F; 2 Fi41 for anyi € Z; (2) Fo=A; (3) F;Fj C F;; for
anyi, j € Z. Similarly put
EZ{H@.Sn if i >0,
B ifi <O.
Then, F = {F,}iez is a filtration of ideals ofB. Remark thatf; coincides with
F;B=F; ®4 B for eachi. Put
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R(F) =@ Fit' < A[r.t71],

i€z

G(F)=R(F)/1"'R(F) = ) Fi/Fi11,
i>0

R(F)=@Fr' < B[t.171],
i€z

G(F)=R(F)/t *R(F) =P Fi/Fis1,
i=0

wherer is an indeterminate. Remark thR{(F) ® 4 B = R(F), G(F)®4 B=
G(F), andS = G(F) = G(F).

Flat homomorphisma 2 A[z, r~YandR(F) £> R(F)[(t~Y) Y = A1, 1Y
induce the maps @A) %> Go(A[t, 1) and G(R(F)) L5 Go(A[t, 1)), re-
spectively (see Definition 2.2). Since the natural projectiiiF) > G(F) is
finite, we have the induced map@ (F)) X-> Go(R(F)) defined byy*([M]) =
[M] for each finitely generated (F)-module M. Thus we have the following
diagram:

Go(A)

a*l

Go(G(F)) > Go(R(F)) —2~Go(A[1,171]) —0

Itis known that the horizontal sequence in the above diagram is exact. We refer the
basic facts on algebrai€-theory to Quillen [13] or Srinivas [17]. (The horizontal
exact sequence is called thecalization sequencanduced by a localization of
a category.)

On the other hand, we have a map: Go(R(F)) — Go(G(F)) satisfying
v«(IN]) =[N/t~IN]—[0:y t~1] for each finitely generateB (F)-moduleN. It
is easy to seg,y* = 0. Hence, we obtain the induced map Go(A[t, 1~ 1]) —
Go(G(F)) that satisfieg, 8. = y« because of the exactness of the localization
sequence. It is easy to see that, for an ideaf A,

F;
Vacs ([A/1]) = [EB m} -

i>0

is satisfied.



Y. Kamoi, K. Kurano / Journal of Algebra 254 (2002) 21-43 31

Similarly we have the diagram

GoiB)
Go(G(F)) —= Go(R(F)) —2-~ *tt ) ——o0
4
Go(G(F)

and the induced map, : Go(BI[t, t 1) — Go(G(F)).

Leth:S — A be the localization. Pugys = 1® g: Alt,t 1] — Alr,t Qa4
B=B[t,r Nandg,=1® g:G(F) > G(F) ®4 B = G(F). Remark thag is
an isomorphism.

Then we have the following commutative diagram:

P . Go(A) —2> Go(At, 171]) —> Go(G(F))

s | |-

Go(B) — > Go(B[r.171]) —*> Go(G(F)) = Go(S).

Go(S)

We denote by : Go(S) — Go(S) the composite map as above.
We need to show the following claim.

Claim 4.2. ¢ is the identity map.

We shall finish the proof of Theorem 1.5(ii).

Is is easy to see that, is surjective since: is a localization. Then, by the
claim, we know that, is an isomorphism angl, : Go(A) — Go(B) is injective.
Proof of Claim 4.2. It is easily verified that (S) is generated by

{{S/P]| P is a homogeneous prime ideal $.

Therefore, we have only to shaw([S/P]) =[S/ P] for any homogeneous prime
ideal P of S. PutP =P, Fi. Then we have

@([S/P]) = Veaxhi([S/P]) = yres([A/ PA])

F;
(B rarive = [@rn]-wm

i>0

(The third equality is obtained by the equality (4.1) as abovel)

We have completed the proof in the case (ii).
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5. The proof of Theorem 1.5in the case of (iii)

We shall prove Theorem 1.5 in the case of (iii) in the section.
It is enough to show the following claim.

Claim 5.1. Let A be a noetherian local ring and let be an ideal ofA. Let
B be the I-adic completion ofA. Assume that botlspecA\(SpecA/I) and
SpecB\(SpecB/IB) are regular schemes. Then, the induced n@&jgA) —
Go(B) is injective.

Remark that, ifA is an excellent local ring of isolated singularity, théis also
isolated singularity. Therefore, applying the clainy(@) — GO(Z) is proved to
be injective in the case.

Now we start to prove Claim 5.1.

We S putX = Sped, Y = SpecA/I U=X\Y, X= SpeaB, Y= SpecB/IB,
U= X\Y Then the natural mapf — Y is an isomorphism and we have the
following fibre squares:

Yy ——

]

Y——X~<~—U.

-

If U is empty, the assertion is obvious. Suppose thé not empty.
We have the following commutative diagram:

GliX) P GIIU) GoiY) — GOIX) GOIU) 0
r N t u
Gi1(X) —L=Gy1(0) Go(Y) — Go(X) Go(U) 0.

Here, for a schemé&/, G;(W) denotes theth K-group of the exact category
of coherentOy -modules. Horizontal sequences are exact (see Quillen [13] or
Srinivas [17]). Vertical maps are induced by flat morphisms.

We denote byC (respectivelyf) the cokernel ofp (respectivelyqg). Let
v:C — C be the induced map by. In order to prove the injectivity of
t:Go(X) — Go()?), we have only to show the following:

o u:Go(U) — Go(D) is injective,
e v:C — C is surjective.

(Recall thats : Go(Y) — Go(Y) is an isomorphism.)
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On the other hand, thanks to Thomason and Trobaugh [18], we have the
localization sequence iR -theory; that is, we have the following commutative
diagram:

K1(X) Ky (U) —=Ko(X 0nY) —=Ko(X) —% Ko(U) —=K_1(X onY)

R Vool b

Kl( )‘>K1(U)‘>Ko XOHﬂHKo( )‘>K0(U)‘>K,1(5(\OH/Y\).

Here, for a schemé&V, K;(W) denotes theéth K-group of the exact category
of locally free Oy -modules of finite rank. We denote by; & on Y) the ith
K-group of the derived category of perfe@ty-complexes with support iry.
By Thomason and Trobaugh [18], horizontal sequences in the above diagram are
exact.
Let W be a scheme. By definition, we have the natural regpK; (W) —
G; (W) for eachi > 0. Furthermorey is an isomorphism for each> 0 if W is
a regular scheme (Quillen [13, p. 27]).
We have the following commutative diagram:

Ko(U) —L= Go(U)

Ko(fj) i>G0((/]\)

Since both ot/ andU are regular schemes, both&f and&; are isomorphisms.
Thus,u is injective if and only if so ist'.

On the other hand, sinc¥ — X is a flat map withy = Y, we know that
the natural map KX onY) — K; (X onY) is an isomorphism for eache Z
by Theorem 7.1 in Thomason and Trobaugh [18]. In particufagnd w’ are
isomorphisms. Furthermore, singeand B are local rings, we have g(X) =
Ko(X) =Z andt is an isomorphism. Since neith€rnor Uis empty, bothy and
B are injective. Thereforey, is injective.

Sincea andp are injective, the cokernel gf (respectively;’) coincides with
Ko(X onY) (respectively k(X on ?)). Sinces’ is an isomorphism, we have

K1(0) = Im(g") + Im(), (5.2)

where Im() denotes the image of the given map. On the other hand, we have the
following commutative diagram:

K1(U)
P
Ky (X) —L=Ky (D) G1(U)

\\l

G1(%) L~ Gy(D).



34 Y. Kamoi, K. Kurano / Journal of Algebra 254 (2002) 21-43

Sincel is a regular scheméy is an isomorphism. By (5.2), we immediately
obtain

G1(U) = Im(g) + Im(r).

Therefore, the map:C — Cis surjective. We have completed the proof of
Theorem 1.5.

Remark 5.3. If a local ring satisfies one of (i)—(iii) in Theorem 1.5, we know, by
Proposition 2.4, that AA)q PLN Ai(X)@ is injective for all;.

If a local ring satisfies either (i) or (ii) in Theorem 1.5, we can prove that
A;(A) BN Ai(Z) is injective for alli using the same method as in the proof of
Theorem 1.5.

6. Applications

We shall give applications of Theorem 1.5 in the section.
Recall that local rings are assumed to be homomorphic images of regular local
rings throughout the paper. Therefore, remark that they are universally catenary.

(I) Let X be a scheme of finite type over a regular scheim&hen, the singular
Riernann—Roch theorem says that there exists an isomorphigavettor spaces

Ty)s- Go(X)Q — Ax(X)g

satisfying several good properties (Fulton [2, Chapter 18]). Remark that the
construction of the mapy depends not only oX but also onsS.
In fact, there are examples that the mapg actually depends on the choice of

a regular base schense Let k£ be an arbitrary field. PuX = ]P’,% andS = Speck.
Then, we have , (Ox) = [X] by the construction of, . On the other hand,
by Hirzebruch—-Riemann—Roch theorem, we obtz;(i}}((’)x) = [X1+ x (Ox)[t],
wheret is a rational point ofX. It is well known thaty (Ox) =1 and[¢] # 0 in
A(PHg.

Let T be a regular local ring and let be a homomorphic image @f. Then,
by the singular Riemann—Roch theorem as above, we have an isomorphism of
Q-vector spaces

Ta/T - Go(A)Q — Ax(A)g

determined by both oA andT.

It seems to be natural to consider Conjecture 1.1. In fact, for many important
local rings, the conjecture is true. (Conjecture 1.1 is affirmatively solved in [7] if
A is a complete local ring oA is essentially of finite type over either a field or
the ring of integers.)
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Look at the diagram (2.5). The bottom of the diagram (2.5) is independent of
the choice ofT sinceA is complete. Therefore, if vertical maps in the diagram
(2.5) are injectiverA/T is independent of the choice &f Hencejf Questionl.4
is true for a local ringA, then Conjecturd..1is true for the local ringA.

In particular, Conjecture 1.1 is true for a local ridgthat satisfies one of the
three conditions in Theorem 1.5.

(I Let A andT be rings as above and pdit= dim A. Set
tar([Al) =ta+ta-1+---+7 (1 €Ai(A)g).

Theser;’s satisfy interesting properties as follows (see [8, Proposition 3.1]):

(a) If A is a Cohen—Macaulay ring, then
tar(lwal) =t —ti-1+ta—2—-+ (—D'tg—i+ -+

is satisfied, where, denotes the canonical module 4f
(b) If A is a Gorenstein ring, then we hayg_; = 0 for each odd.
(c) If A is acomplete intersection, then we haye=0 fori <d.
(d) We haver; # 0, sincery, is equal to{SpecA],, where

[SpecAla= ) Ca,(Ap)[Speca/P]e A(A)g.
PeSpecA
dimA/P=d
(e) Assume thatA is normal. Let clws) € CI(A) be the isomorphism class
containingw,4. Then, we have,;_1 =cl(wa)/2 in Ayj_1(A)g = ClI(4)g.

We define the notion dRoberts ringsas in Definition 1.2.

The category of Roberts rings contains complete intersections (see (c) as
above), quotient singularities and Galois extensions of regular local rings. There
are examples of Gorenstein non-Roberts rings. (It is proved in [6] that

klxjjli=1,...,m, j=l,...,n]({xij})
I (xij)
is a Roberts ring if and only if it is a complete intersection. Therefore, if
m =n > 2, the ring is a Gorenstein ring that is not a Roberts ring.) In 1985,
Roberts [14] proved that the vanishing property of intersection multiplicity is

satisfied for Roberts rings. We refer the reader to basic facts and examples of
Roberts rings to [7,8].

Remark 6.1. By the diagram (2.5), we immediately obtain thatdifs a Roberts
ring, then so is the completiof. (By the commutativity of the diagram (2.5), we

haverx/?([;f]) = fu(z4,7(IAD). Remark that the map.AA)g L AL(A)g in
the diagram (2.5) is graded.)
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On the other hand, assume thais a Roberts ring. As in (), the Riemann—
Roch maprx/s is independent of a regular local rirfg Hence, we may assume

t/?/?([if]) € Adima(A)g. Therefore, if f, is injective, thenA is a Roberts

ring, too. In a sense, the converse is also true as we shall see in the following
proposition.

We give some equivalent conditions to Question 1.4.

Proposition 6.2. All local rings are assumed to be homomorphic images of
excellent regular local rings. Then, the following conditions are equivalent

(1) The induced mafBg(A)g — GO(X)@ is injective for any local ringA, that
is, Questiorl.4 is true.

(2) The induced mapAdima-1(A)g — Agmi_1(A)g is injective for any
reduced equi-dimensional local ring).

(3) For any local ring A, A is a Roberts ring if so isA. (That is to say,
Questionl.3is true)

Proof. We have already seen in Proposition 2.4 and Remark 6.1 that the
condition (1) implies both of (2) and (3).

We first prove (2)= (1). Let”A denote the henselization af Since’dA — A
induces the injection ﬁhA)Q — GO(Z)@ by Theorem 1.5(i), it is sufficient to
show the injectivity ofg.. : Go(A)g — Go(hA)@. It is equivalent to the injectivity
of g« :Ax(A)g — A«(")q since the diagram

T
Go(A)g—>AL(A)g

8 e
Go("4) A A, ('a),,

is commutative by [7, Lemma 4.1(c)]. Ld, ..., P, be prime ideals ofA of
coheightl, and letny, ..., n, be integers such that.(>_, n;[SpecA/P;1) =0,
where); n;[SpecA/ P;] denotes the image §f; n;[SpecA/P;]in A;(A)g. We
want to prove) ; n;[SpecA/P;] = 0 in A;(A)g. We may assume < dimA.
There are prime ideal@1, . .., Q; of "A of coheightl + 1, elements; € "A\Q;
forj=1,...,¢t,and integer$ #0, by, ..., b; such that

b ni[Speda/P"A] = "b;div(Q;.a;).
i J

On the other hand, dimd/(Q; N A) =1 + 1 holds for eachy, since any fibre
of a henselization has dimension 0. Se&= (01N A)N---N(Q; N A) and
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g 1A/l — "A/I"A. We may assume thdtis contained in all ofP;’s. Then we
haveg, (3_; ni[SpecA/P;]) = 0. Since the diagram

Al(A)g —2=  A("A)

T T

AA/Dg —5=Al('A/1'A)

Q

is commutative, we have only to show thgt is injective. Here, vertical maps
of the diagram are induced by proper morphisms Sphdc— SpecA and
SpedA/I"A — SpedA. Remark thafA /1A coincides with the henselization of
A/I. ReplacingA/I with A, it is sufficient to show that, for a reduced equi-
dimensional local ring4, the map Aima—1(A)g — AdimhA,l(hA)Q is injective.
Since Atima-1(A)g — Agimi_1(A)q is injective by (2), S0 is Ama—-1(A)g —
Agimm—1("A)q-

Next we shall prove (3} (2). Assume that &ma_1(A)g L> Agmz_1(A)g
is not injective for an equi-dimensional local ridg Let ¢ be a non-zero element
of Adima—1(A)g such thatf.(c) = 0. Putd = dimA. SincerA/T :Go(A)g —
A (A)q is an isomorphism, there exist finitely generateanodulesM and N
with dimension less thad such that

M]—[N
TA/T(%) =c—(tg-1+Ta—2+ -+ 10

for some positive integet. Since A is equi-dimensional, we may assume that
[N] = 0. Let B denote the idealizatiodt x (A"~ @& M). Then we have the
following commutative diagram of isomorphisms:

/T

Go(B)g——A«(B)q

Go(A)g—~ A, (A)g.
Here, vertical maps are induced by the proper map BpecSpecA. Then we
have

atB/T([B]) = ‘L'A/T([B]) = tA/T(n[A] + [M]) =nty +nc.

HenceB is not a Roberts ring sinceis a graded isomorphism. On the other hand,
we have the following commutative diagram:

A«(B)g—"=AL(B)g

L)
ArA)g—L= AL (A).

whereg is the map induced by the proper morphism Spee SpecA. Using [7,

o~

Lemma 4.1(c)], we havetB/T([B]) = tg/f([B]). Therefore, we have
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'Btﬁ/f([g])

,BVTB/T([B]) = f*OlTB/T([B]) = fe(nty +nc)

= nfi(14) € Aa(A)q.
We havetg/f([ﬁ]) € A4(B)q since B is a graded isomorphism. HencB, is
a Robertsring. O

We give some remarks.

Remark 6.3. Note that the henselizatiot of a noetherian local ringd

is the direct limit of ringsB as below. Therefore, in completely the same
way as the proof of Proposition 6.2, it will be proved that, under the same
situation, the following conditions are also equivalent to the conditions (1)—(3)
in Proposition 6.2:

(4) Let (A, m) be a reduced equi-dimensional local ring. lkebe a positive
integer and letas,...,a, be elements inA. Assume thata, € m and
an—1 ¢ m.PUtB = A[x](n )/ (x" +a1x" 14 +a,), wherex is a variable.
Then, for any ringsA andB that satisfy the assumption as above, the induced
map &(A)g — Go(B)q is injective.

(5) For any ringsA and B that satisfy the same assumption as in (4), the induced
map Ajima-1(A)g — Adima-1(B)q Is injective.

(6) For any ringsA and B that satisfy the same assumption as in (4)js
a Roberts ring if so iB.

(7) Let (A, m) be a reduced equi-dimensional local ring. lkebe a positive
integer and letas,...,a, be elements inA. Assume thata, € m and
an—1 ¢ m. Let h(x) be in A[x] such thath(0) ¢ m, wherex is a variable.
PutC = Alx, h(x)"1/(x" + a1x" 1+ --- +a,). Then, for any ringsA and
C that satisfy the assumption as above, the induced map g — Go(C)g
is injective.

Remark 6.4.Let f: (A, m) — (B, n) be aflat local homomorphism of noetherian
local rings. For an ideal of A, set

[SpecA/I1= Y fa,(Ap/IAp)[Speci/P],
PeAsshy A/I
where AssR A/I = {P € Ming A/I | dimA/P = dimA/I}. Then, we ob-
tain a graded morphisnf, :A.(A) — A.(B) defined by f.([SpecA/Q]) =
[SpecB/QB].
If B/P B is equi-dimensional for any minimal prime idelof A, thenB/QB
is equi-dimensional for any prime ide@l of A. In the casef. satisfies

f+(ISpecA/Q1) =Y " £3,(Bq/QBq)[SpecB/ql,
q

where the sum is taken over all minimal prime idealBgiD B.
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If the closed fibreB/m B is Cohen—Macaulay, the®/ QO B is equi-dimensional
for any prime idealQ of A. It is easily verified since all fibres are Cohen—
Macaulay if so is the closed fibre (that is proved using Macaulayfication due
to Kawasaki [4]). We remark that flat local homomorphisms in (2) and (5) in
Proposition 6.2 and Remark 6.3 satisfy the condition.

Foralocal ring(A, m), we setA; = A[xy, ..., XslmA[xy,...x,1» Wherexy, ..., xg
are variables.

Proposition 6.5. Let f:(A,m) — (B,n) be a flat local homomorphism of
noetherian local rings.

(a) Assume thaB/n is finitely generated oved /m as a field andGo(As)g —
GO(Z;)@ is injective fors = tr deg4/m B/n, that is the transcendence degree
of B/n over A/m. Then, bothf, :Go(A)g — Go(B)g and fi:A«(A)g —
A.(B)q are injective.

(b) Suppose tha#t contains a field of characteristi@. If Questionl.4 is true
for any local ring, then bothf, : Go(A)g — Go(B)g and fi:A.(A)g —

A (B)q are injective.

Proof. We shall only prove the injectivity of the maps between Grothendieck
groups. The injectivity of the maps between Chow groups will be proved in
completely the same way.

First we shall prove (a). Take,...,7; € B such thats1,...,i; € B/n is
a transcendence basis ovefm. Consider the homomorphisms

AL D=Alxs, ... XslmAy...0] 2> B,

whereh is defined byh(x;) = ¢; for eachi. By the local flathess criterion (e.g.,
[10, Theorem 22.3]), we know thatis flat. Sincef = hg, we havef, = h.g«.
We shall prove that both, andh, are injective.

We first prove thatg, is injective. We may assume= 1. We have only to
prove that a flat mapt — A[x, p(x)~1] induces the injective mapdéA)g —
Go(Alx, p(x)™ g for p(x) € A[x]\mA[x]. Take a monic polynomiaj(x) €
Alx] of positive degree such that(x) andg(x) (in (A/m)[x]) are relatively
prime. Since (p(x),q(x),m)A[x] = A[x], p(x) is a unit in A[x]/(g(x)).
Therefore,

Alx, p(0) 7/ (g(0)) = Alx1/(g(x)) (6.6)
is satisfied. The commutative diagram

A—=A[x, p()™1]

T~

Alx, p)7Y /(g ())
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induces the following commutative diagram:

Go(A)g ———Go(A[x, p()])q

Go(A[x, p() ]/ (q())) -

Here, the vertical map senfl&f] to [M/q(x)M] — [0 :p g (x)] for each finitely
generatedi[x, p(x)~1]-moduleM. SinceA[x, p(x)~11/(¢(x)) is a finitely gen-
eratedA-free module by (6.6), the mapoG4)gp — Go(Alx, p(x)*l]/(q(x)))Q
is injective. Hence G(A)g — Go(Alx, p(x)_l])Q is injective.

We next prove that, is injective. Remark thatD, P) — (B,n) is a flat
local homomorphism such th&t/» is a finite algebraic extension @f/ P. Since
Go(D)g — Go(D)g is injective, we may assume that batrand B are complete.
We shall prove the following claim.

Claim 6.7. Let h: (D, P) — (B,n) be a flat local homomorphism of complete
local rings such thatB/n is a finite algebraic extension ab/P. Then, the
induced maph,. : Go(D)g — Go(B)g Is injective.

Proof. Take g1,...,9; € n such that the imagey,...,q; is a system of
parameters oB/PB. PutB’ = B/(q1, ..., q:). Let a:Go(B)g — Go(B')q be
a map defined by ([M]) = Y, (—1)'[H;(K. ® M)], whereK. is the Koszul
complex overB with respect togs, ..., q;. Remark thath': D — B’ is finite,
becauseD is complete. We have a mag*: Go(B')g — Go(D)g defined by
h™*([M]) = [M].

We denote by the composite map of

Go(D)g 22> Go(B)g % Go(B')g 25 Go(D)g.

We have only to prove that the composite map is an isomorphism. It is enough to
show that, for any prime ided of D,

¢([D/Q)) = [B/n:D/Ple,,..q)(B/PB)-[D/Q]
+ (lower-dimensional terms (6.8)

is satisfied, wherez(,, .., (B/PB) denotes the multiplicity ofB/PB with
respecttdqs, ..., q:)-

We now start to verify the equality as above. ReplacibgQ by D, we
may assume thaD is an integral domain and) = 0. Let p1,..., ps be
a system of parameters @&f, andLL. denotes the Koszul complex ovér with
respect tops, ..., pa. Let B:Go(D)g — Q be a map defined by ((M]) =
> (=Di[H;(L. ®p M)]. Then, we have

,3(]5([1)]) = [B/n: D/P]e(pl ..... pd,ql,...,(h)(B)
= [B/n:D/Plep,...ps(D)es....q)(B/PB).
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SinceB([M]) =rankp M - e(,,,... p,) (D), the equality (6.8) is proved. We have
completed the proof of (a).

We next prove (b). We may assume that bothand B are complete.
Since A contains a field of characteristic 0, we can take a coefficient field
(respectivelyl) of A (respectivelyB) such thatk C L. Let M be an intermediate
field such thatl is algebraic oveM andM is purely transcendental ové&r. Set

AZK[[y]_,,y[]]/I
Put

C=M[y1,....y]/IM[y1,....»] and
D=L[ys,....y]/IL]y1, ..., ]

Then we have flat local homomorphisms
Adch prop

such thatf = rhg. We shall prove thag,, . andr, are injective.

The injectivity ofr, follows from Claim 6.7.

Next we prove that, is injective. It is easy to see thatcoincides with the
composite map of

chcoyl 2D,

Itis easily verified thal ®y, L is a noetherian local ring and is the completion
of C ®) L. Since we are assuming that Question 1.4 is thgg,is injective.
Since L is a direct limit of finite algebraic extensiond’ over M,C ®j L
is a direct limit of ringsCy = M'[[y1, ..., y:]/IM'[[y1, ..., y:]. SinceCyy is
finitely generated freeC-module, the map &C)g — Go(Cu)g IS injective.
Thereforeh, is injective.

Next we prove thag, is injective. Let{s, | A € A} be a transcendence basis of
M overK suchthatM = K({t, | A € A}). Set

E=Alty | A € AlmA[s, |ren]-
It is easy to see that coincides with the composite map of
ALL E 82

It is easy to see tha is a noetherian local ring and is the completion oft.
Since we are assuming that Question 1.4 is tgse,is injective. It is easy to
see thatf is the direct limit of ringsA; = Alf1, .. .. tslmAfs,....1,1- AS we have
seen in the proof of (a), the mapGl)g — Go(As)q is injective. Hencegy, is
injective. O

Using Theorem 1.5 and Proposition 6.5, the following corollary is immediately
proved.
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Corollary 6.9. Let (A, m) — (B, n) be a flat local homomorphism of excellent
local rings. Assume that has at most isolated singularity.

1. If B/n is finitely generated overd/m, then Go(A)g — Go(B)g and
A.(A)g — A.(B)g are injective.

2. If A contains a field of characteristi®, then Go(A)g — Go(B)g and
A.(A)g — A«(B)g are injective.

Let (A, m) — (B, n) be aflat local homomorphism with closed fibfe Then,
we can prove the following:

e If B is a Robertsring, then so .
e Evenif bothA andF are Roberts ringsB is hot necessary so.

It is natural to ask equivalence between the Robertsnegsarid that ofB
under some strong assumption Bn

Proposition 6.10. Let f:(A,m) — (B,n) be a flat local homomorphism of
noetherian local rings such tha/n is finitely generated ovet /m as a field.

(a) Suppose thatB/n is separable overA/m and B/mB is a complete
intersection. Assume thdbo(B)g — GO(E)@ is injective. Then, ifA is
a Robertsring, so iB.

(b) Suppose thaB/m B is Cohen—Macaulay. Assume tliag(A;)g — GO(ZE)@
is injective fors = trdeg, ,, B/n. Then, ifB is a Roberts ring, so .

We omit a proof of the proposition as above. Using Theorem 1.5, we
immediately obtain the following corollary.

Corollary 6.11. Let f:(A,m) — (B,n) be a flat local homomorphism of
noetherian local rings.

1. Suppose thaB/n is a finitely generated separable extension od¢rn and
B/mB is a complete intersection. Assume tl@&i(A;)g — GO(ZE)@ and
Go(B)g — GO(E)@ are injective fors = trdeg, ,,, B/n. Then,A is a Roberts
ring if and only if so isB.

2. Suppose that botd and B are excellent andf is étale essentially of finite
type. Assume that has at most isolated singularity. TheA,is a Roberts
ring if and only if so isB.
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