volume delineation. Reasons for non-compliance are mostly problems with target coverage. Thirty-eight percent of the centers reported issues with target coverage; in 1 center they interpret the Dose Volume Histogram differently and are now looking at the 85% coverage of the planning target volume instead of the 95%.

Conclusions: The introduction of new delineation guidelines for the RNA in breast radiotherapy has a major impact on the treatment planning and dosimetry with especially introducing newer treatment techniques to achieve better target coverage. Surprisingly, not all centers use the centrally reviewed and corrected target delineation to guide their radiotherapy to the RNA.

PO-0778
Delineation of the regional nodal areas in breast radiotherapy: What are the most problematic regions?
K. Verhoeven1, E. Hortobagyi1, C. Kirkove1, V. Remouchamps1, C. Weltens1
1KU Leuven - University of Leuven University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
2University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
3Catholic University of Louvain, Department of Radiation Oncology, Brussels, Belgium
4Clinique Sainte Elisabeth (AMPR), Department of Radiation Oncology, Namur, Belgium

Purpose/Objective: In the era of fast technological evolution in breast radiotherapy (RT), a correct delineation of the target volumes becomes more and more important. The objective in this study is to investigate the performance of the accuracy of the delineation of the regional nodal areas (RNA) by different radiation-oncologists and to determine the most difficult regions to contour.

Materials and Methods: Before the start of the national central review study for the delineation of the RNA in breast RT, all participating centers were asked to delineate all the different RNA on a CT-scan with intravenous contrast of one specific patient. The delineation guidelines as well as the delineation atlases, covering both target volumes and normal anatomy, were provided. The obtained contours were compared with the reference contour to evaluate the conformity using the overlapping volume (OV). The OV is defined by the intersection of the obtained contour with the reference contour divided by the union of those contours.

Results: Twenty-two radiation-oncologists of 15 different radiotherapy departments performed the delineation of the RNA of that one specific case. In general, the mean OV of all lymph node regions together was 0.52 (± std 0.12). The most problematic areas were the rotter space and the internal mammary lymph node region (figure), with a mean OV of respectively 0.42 (± std 0.09) and 0.48 (± std 0.09). Level IV (= supraclavicular) and level I of the axilla were contoured the best with a mean OV of 0.6 (± std 0.13) and 0.56 (± std 0.08), followed by level III and level II of the axilla with a mean OV of respectively 0.53 (± std 0.11) and 0.51 (± std 0.11).

Conclusions: Delineation of the regional nodal areas in breast radiotherapy is not easy with a large intercenter and interobserver variation, even in the presence of extensively written guidelines and clear atlases. The most difficult areas to contour in this pilot study were the rotter space and the internal mammary node region. The national central review study will tell us if practicing and central review lead to better contouring.

Figure: The performance of the delineation of a part of the internal mammary lymph node region. Red indicates very good agreement and blue does not. The yellow contour is the reference contour.

PO-0779
SIB-SIP: Combined simultaneous integrated boost and protection for upper abdominal SBRT
T.B. Brunner1, R. Wiehle1, S. Kirste1, F. Röhner1, V. Prokic1, A.L. Grosu1, U. Nestle1
1University Hospitals Freiburg, Dept of Rad Oncol, Freiburg, Germany

Purpose/Objective: Upper abdominal SBRT is significantly compromised by late toxicity to bowel structures, mostly stomach, duodenum and small bowel and to a lesser degree also colon. Often ablative doses cannot be prescribed without infringement of dose constraints to bowel organs at risk (OAR), limiting SBRT to selected places had distant from bowel structures.

Materials and Methods: We developed a method of SBRT where all doses were prescribed according to ICRU guidelines. After generation of the main planning target volume (PTV) by isotropic expansion of 4 mm from internal target volume (ITV) as determined by 4D-imaging. We then defined a high dose SIB-PTV by a negative margin of 10 mm of the ITV. Dose prescribed to the SIB-PTV was 122-125% of the dose prescribed to the main PTV. Additionally, we defined a SIP-PTV by subtracting the planning risk volume (PRV) of a bowel OAR created by a 4 mm margin expansion of the OAR structure. Dose prescribed to the SIP-PTV was chosen to meet the defined dose constraints to OARs as described by Timmerman in 2008. Two fractionation regimes were used, 5 or 12 fractions, given every other day. Five fraction regimens
were chosen when closeness of the PTV to the bowel was intermediate and doses were 5 x 6.5/9.0/11.0 Gy to SIP/main/SIB PTV. 12 fraction regimens were preferred in patients with large contact interfaces to bowel OARs and doses were 12 x 3.5/4.0/5.0 Gy to SIP/main/SIB PTV. If in doubt, a plan for 5 fractions was created and if dose constraints were violated a new plan for 12 fractions was made. Original dose constraints for OARs for 12 fractions were recalculated using EQD2 (equivalent dose in 2 Gy fractions) with α/β 3 for late bowel toxicity in an attempt to achieve isotoxicity. Proton pump inhibitors (PPI) were prescribed prior to SBRT for at least 6 months after completion of therapy.

Results: Since 08/2013 25 patients with the SIB-SIP concept were treated with hepatic metastases, primary hepatic lesions, Klatskin tumours and pancreatic cancer (PDAC). Most often SIP-volumes were small compared to the main PTV and lesions, Klatskin tumours and pancreatic cancer (PDAC). Most were treated with hepatic metastases, primary hepatic lesions, Klatskin tumours and pancreatic cancer (PDAC).

Results:

Since 08/2013 25 patients with the SIB-SIP concept were treated with hepatic metastases, primary hepatic lesions, Klatskin tumours and pancreatic cancer (PDAC). Most often SIP-volumes were small compared to the main PTV and lesions, Klatskin tumours and pancreatic cancer (PDAC). Most were treated with hepatic metastases, primary hepatic lesions, Klatskin tumours and pancreatic cancer (PDAC).

Conclusions: We here present a novel ICRU-type prescription technique for upper abdominal SBRT combining protection of bowel OARs with directed boost to the core regions of the lesion with favourable initial clinical tolerance and local tumour efficacy.

Table 1. Spearman correlation coefficients for the treatment position variability

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Association</th>
<th>Rho</th>
<th>Significance (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral dev.</td>
<td>Long. dev.</td>
<td>-0.007</td>
<td>0.785</td>
</tr>
<tr>
<td>Vertical dev.</td>
<td>Long. dev.</td>
<td>-0.039</td>
<td>0.157</td>
</tr>
<tr>
<td>Lateral dev.</td>
<td>Vertical dev.</td>
<td>-0.012</td>
<td>0.672</td>
</tr>
<tr>
<td>Max angular dev.</td>
<td>Delay time</td>
<td>0.092</td>
<td>0.006</td>
</tr>
<tr>
<td>3D deviation</td>
<td>Delay time</td>
<td>0.376</td>
<td>0.000</td>
</tr>
<tr>
<td>3D deviation</td>
<td>Max angular dev.</td>
<td>0.174</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Conclusions: We conclude that a subgroup of SRT/SRS patients may have considerable positioning error unless this is monitored and corrected during treatment, and that keeping the imaging and delivery times short is beneficial towards clinically relevant geographical misses.

PO-0781

Clinical target volume in postoperative radiotherapy for gastric cancer: the interobserver variability

J. Socha\(^1\), G. Wolakiewicz\(^2\), E. Wasilewska-Tesluk\(^3\), P. Janiga\(^4\), T. Kondraciuk\(^1\), A. Majewska\(^5\), K. Olearski\(^2\), L. Kepka\(^3\)

\(^1\)Regional Oncology Centre, Radiotherapy, Częstochowa, Poland
\(^2\)SP ZOZ MSW Warmia & Mazury Oncology Centre, Medical Physics, Olsztyn, Poland
\(^3\)SP ZOZ MSW Warmia & Mazury Oncology Centre, Radiotherapy, Olsztyn, Poland
\(^4\)Greater Poland Cancer Center, Radiotherapy, Poznan, Poland
\(^5\)Subcarpathian Cancer Centre, Radiotherapy, Brzozów, Poland
\(^6\)West Pomeranian Oncology Centre, Radiotherapy, Szczecin, Poland
\(^7\)Regional Oncology Centre, Radiotherapy, Tarnów, Poland

Purpose/Objective: To identify the main pitfalls and challenges and their possible sources in clinical target volume (SRT/SRS) and non-coplanar radiation beams, and if positioning uncertainty is associated with overall treatment time.

Materials and Methods: The patients were treated on an accelerator-based stereotactic equipment (NovalisTx with micoMLC, Varian/BrainLab). Orthogonal radiographic treatment verification data was extracted for 288 consecutive patients and 1344 fractions, and were analyzed with respect to 3D translational and angular corrections once during treatment delivery of SRT/SRS (ExacTrac, BrainLab). The treatment position was adjusted using 6D corrections (Robotics, BrainLab). Association was investigated using Spearman signed rank test and p-values less than 0.05 were considered significant.

Results:

The study shows that positioning corrections greater than 2 mm are required for ca. 6% of the beams (see Fig.1). Further, the magnitude of the translational corrections and the maximum angular deviations were both significantly associated with the delay time between the beams (p<0.006) (see Table 1). In addition, the maximum angular and translational deviations were associated (p<0.001).

Table 1. Spearman correlation coefficients for the treatment beams investigated.

PO-0780

Benefit of intra-fraction image-guidance for stereotactic radiotherapy and radiosurgery

S. Engelholm\(^1\), N. Tarnavski\(^1\), P. Munck af Rosenschold\(^1\)

\(^1\)Rigshospitalet University of Copenhagen, Section for Radiotherapy, Copenhagen, Denmark

Purpose/Objective: The purpose of this study was to analyze intra-fractional positioning uncertainty for stereotactic radiotherapy and radiosurgery of cranial tumors, including primary brain tumors and metastatic disease. Specifically, we wish to determine if the use of intra-fractional image guided patient positioning verification is necessary during delivery of ‘frameless’ stereotactic radiotherapy and radiosurgery (SRT/SRS) and non-coplanar radiation beams, and if positioning uncertainty is associated with overall treatment time.